Grand Summary for Project 997

The following table shows the summary of results in the various documents of Project 997.

Algorithm	Equation	Upper Mean	Document Files
	- #	Penalty	Part Number
		Factor	
frac(π+9997*r)	End of	147.6264391	1
	section 2		
frac(0.8502+1237*r)	End of	147.7205	1
	section 2		
frac(0.047907 + 15701*r)	End of	147.7246371	1
	section 2		
$frac(\pi + 110011*r)$	End of		1
	section 2	147.9719176	
Double-random number	5.1, 5.2	143.0952581	1
generators ^[1]			
Whichmann-Hill Variant	2.5, 2.6	147.781193	2
ACORN Variant 1	2.2	147.769423	3
ACORN Variant 2	3.2	147.7426001	3
MRG32a Variant 1	2.2	147.773747	4
MRG32a Variant 2	3.1	147.7724717	4
Power Method version 1	2.2	147.776513	5
LCGM Squared version 1	2.2	147.6341104	6
LCGM Squared version 2	3.2	147.1263891	6
LCGM Cubed version 1	2.2	147.763261	7
LCGM Cubed version 2	3.2	144.480268	7

Table 1. Summary results listed by document part number.

Table 2 shows the results sorted by the upper mean penalty factors. The doublerandom number generators and the LCGM cubed version2 have significant advantages over the other algorithms.

Algorithm		Equation #	Upper Mean Penalty Factor	Document Files Part Number
Double-random generators ^[1]	number	5.1, 5.2	143.0952581	1

Copyright © 2023 by Namir Clement Shammas

Grand Summary for Project 997

LCGM Cubed version 2	3.2	144.480268	7
LCGM Squared version 2	3.2	147.1263891	6
frac(π+9997*r)	End of	147.6264391	1
	section 2		
LCGM Squared version 1	2.2	147.6341104	6
frac(0.8502+1237*r)	End of	147.7205	1
	section 2		
frac(0.047907 + 15701*r)	End of	147.7246371	1
	section 2		
ACORN Variant 2	3.2	147.7426001	3
LCGM Cubed version 1	2.2	147.763261	7
ACORN Variant 1	2.2	147.769423	3
MRG32a Variant 2	3.1	147.7724717	4
MRG32a Variant 1	2.2	147.773747	4
Power Method version 1	2.2	147.776513	5
Whichmann-Hill Variant	2.5, 2.6	147.781193	2
$frac(\pi + 110011*r)$	End of		1
	section 2	147.9719176	

Table 2. Summary results sorted by the values of the upper mean penalty factors.

The best algorithm is: $z = frac(991*r_n)$ $r_{n+1} = frac(11111*z)$

(5.1 in Part 1) (5.2 in Part 1)

The second-best algorithm is:

```
\begin{split} M &= 2^{2}4-1 \\ a0 &= 34876 \\ a1 &= 9754 \\ a2 &= 45847 \\ a3 &= 29574 \\ ix(1) &= round(rand*11, 0); \\ ix(2) &= a0+a1*ix(1) \bmod M \\ for i=1 to maximum number of random numbers \\ ix(3) &= a0+a1*ix(1)^{2} +a2*ix(2) \mod M \\ x(i) &= ix(3)/M \\ ix(1:2) &= ix(2:3) \\ end \end{split}
```

(3.2 in Part 7)

Grand Summary for Project 997

The value x(i) is the uniform random number generated in the range of 0 to 1 (excluded) in each iteration.

[1] All the results of the various flavors of the double-random number generators in tables 5.1 and 5.2 of Part 1 show values for the upper mean penalty factors below 147! So basically, any one of the algorithms should be a good PRNG.