Lagrangian Interpolation for the HP67

by

Namir Shammas

This article presents an HP-67 program for Langrangian Interpolation of N points, where 1 < N < 9.

Usage

A Program prompts you to enter N and the N points
B Program prompts you to enter the interpolated value of x

Program calculates and displays the value of the interpolated Y.

Example

Consider the data in the following table:

Х	Υ
1	1
5	25
10	100

Using the above data, calculate Y for X = 4. The Steps involved are:

Step	Task	Command/Input	Output
1	Start the program.	3 [A]	1.0000
2	Enter the first data point.	1 [ENTER]1 [R/S]	2.0000
3	Enter the second data point.	25 [ENTER]5 [R/S]	3.0000
4	Enter the third data point.	100 [ENTER]10[R/S]	4.0000

Step	Task	Command/Input	Output
5	Start the interpolation.	4 [B]	16.0000

Algorithm

```
INPUT N, array X(1..N), Y(1..N), and Xint
Yint = 0
FOR I = 1 TO N
Product = Y(I)
FOR J = 1 to N
IF I <> J THEN
Product = Product * (Xint - X(J)) / (X(I) - X(J))
ENDIF
NEXT J
Yint = Yint + Product
NEXT I
Show Yint
```

Memory Map

RA	=	Xint
RB	=	Yint
RC	=	
RD	=	X(I)
RE	=	X(J)
R0	=	N
R1	=	I
R2	=	J
R3	=	Product
R4	=	X(1)
R5	=	X(2)
R6	=	X(3)
R7	=	X(4)
R8	=	X(5)
R9	=	X(6)
SRO) =	= X(7)
SR1	_ =	= X(8)
SR2	2 =	= Y(1)

SR3 = Y(2) SR4 = Y(3) SR5 = Y(4) SR6 = Y(5) SR7 = Y(6) SR8 = Y(7) SR9 = Y(8)

Source Code

The source code for the HP-41C program appears below. Please note the following:

• The blank lines are intentionally inserted to separate logical blocks of commands:

LBL A STO 0 1 STO 1	# store N, the number of points
LBL 3 -x- R/S RCL 1	<pre># Start loop for data input # Blink X reg to prompt for next point # Get Y /^ X</pre>
GSB 1 ST I RDN STO (i) RDN RCL 1	# Get index for X(I)
	# Get index for Y(I)
GTO 3 RTN	# end of loop
LBL 1 3 + RTN	# Get Index for X(I)

LBL 2 # Get Index for Y(I) 11 + RTN LBL B STO A # Store Xint 0 STO B # Yint = 0 1 STO 1 # I = 1LBL 4 # Start outer loop RCL 1 GSB 2 # Get index for Y(I) ST I RCL (i) STO 3 # Product = Yint RCL 1 GSB 1 # Get index for X(I) ST I RCL (i) STO D # Store X(I) in register D 1 STO 2 # J = 1LBL 5 # start inner loop RCL 1 RCL 2 X=Y? # Skip calculation step? GTO 6 RCL 2 GSB 1 # Get index for X(J) ST I RCL (i) STO E # Store X(I) in register E RCL A RCL E _ RCL D RCL E _ 1 STO* 3 LBL 6 # Jump here when I = J1 STO+ 2 # J = J + 1

RCL 0	
RCL 2	
X<=Y?	
GTO 5	<pre># end of inner loop</pre>
RCL 3	
RCL B	
+	
STO B	<pre># Yint = Yint + Product</pre>
1	
STO+ 1	# I = I + 1
RCL 0	
RCL 1	
X<=Y?	
GTO 4	# end of outer loop
RCL B	# return Yint
RTN	