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Introducing the New World of Polyterms: 
New Tools for Polynomial Regression 

By 

Namir Clement Shammas 

Introduction 
Polynomials make a significant contribution to algebra, calculus, numerical analysis 

algorithms, and curve fitting. This report focuses on the curve fitting aspects of 

polynomials. The popular linear regression represents fitting data with the best line-

-the simplest polynomial. In 1975, HP introduced the HP-55 programmable 

calculator as the first calculator with built-in linear regression feature. Fitting with 

linear, quadratic, and cubic polynomials have also become more popular built-in 

features in the last few decades in many handheld graphing calculators. Much earlier 

in the fifties and sixties, mainframe computers were used to perform higher-degree 

polynomial fitting to approximate many popular math and statistical functions. 

Among these are the gamma function, the inverse normal function, the inverse 

student-t function, and Bessel functions, just to name a few. Many such 

approximations can be found in Handbook of Mathematical Functions with 

Formulas Graphs and Mathematical Tables by Abramowitz & Stegun. Several 

Statistics and Math application manuals for vintage HP calculators also included 

polynomial approximations for various functions.  Curve fitting with polynomials 

typically offer a convenient and easy approximation for calculation-intensive 

functions. 

 

What is typical of regular polynomials is that their terms have powers that increase 

in a strictly linear fashion. The typical power increments are 1 or 2, and start at 

indices 1 or 2. Challenging the linear progression of polynomial powers was the out-

of-the-box spark that gave birth to a new class of quasi-polynomials. 

 

After over three decades of working with linearized and polynomial regression, I 

began to think of new types of quasi-polynomials in the early years of 2000. I tested 

how well these quasi-polynomials did in fitting financial stocks data, especially 

compared to similar polynomials. The results were very encouraging in favor of my 

new quasi-polynomials. The idea that came to me is to devise quasi-polynomials 
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whose power progression is slower than that of regular polynomials by using non-

integer powers. 

 

Since 2004, I have been attending annual HHC conferences for fans of vintage 

programmable HP calculators. A question that was frequently asked is “If 

mathematicians like Newton, Gauss, and Euler had programmable calculators how 

would numerical analysis algorithms look like today?” Funny, that no one asked 

about the effects if these same mathematicians had today’s laptops! I have expressed 

my opinion in these meetings that the legacy numerical analysis algorithms were 

influenced by the computing resources available to the legacy mathematicians. My 

guess, is that these mathematicians hired educated people who could reliably do long 

calculations by hand—not to mention the painful task of rechecking these 

calculations! I regard the Gaussian Quadrature and linear regression as examples of 

algorithms that pushed hand calculations to the limit.  Even doing linear regression 

using slide rules or four function calculators, in the seventies, was a real chore! This 

report attempts to give an answer of how computer power can offer resources for 

more advanced curve fitting using quasi-polynomials. 

The Advent of Shammas Polynomials 
In the HHC2008 conference at the HP offices in Corvallis, Oregon, I presented my 

first quasi-polynomial which I called the Shammas Polynomials. I chose to use my 

last name to avoid potential naming conflicts with other mathematicians and 

statisticians who may end up using the same descriptive name. The Shammas 

Polynomials have x values raised to non-integer powers. These powers are defined 

by a function p(i) = α*f(i) + β (such that p(i) < i), where f(i) is a function of the 

term index i, and α and β are parameters that can be integers or floating-point 

numbers. For regular polynomials the most typical values for α and β are 1 and 0, 

respectively. The general syntax for Shammas Polynomials is: 
 

Pn(x) = a0 + a1*xp(1) + a2*xp(2) + … + an*xp(n)      (1) 
 

The most common version of p(i) that I have used is the simple p(i) = α*i + β. One 

can use other equations for p(i) such as α*ln(i+1)+β, α/i+β, and α*√i+β. In each 

case, the values of parameters α and β are chosen to yield a good sequence of powers. 

The difference in powers between neighboring terms is less than 1 (as opposed to 1 

or 2 in regular polynomials). One should avoid sequences of powers that are way too 
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close to each other. Using p(i) = i/2 is a special case that allows you to use regular 

polynomial curve fitting tools by simply supplying the square root of the original 

independent variable, x, as the transformed independent variable, xt. You can 

likewise supply cube roots and other roots of x as the transformed independent 

variable. The rule of thumb for the p(i) function is that it should generate a sequence 

of powers that are either consistently increasing or decreasing. Determining the best 

values for parameters α and β, and also the regression coefficients, involves using 

optimization and multiple/polynomial regression. You can replace the optimization 

step with using two nested loops (one that iterates over a range of values for 

parameter α and the other for the values of parameter β) to find the best optimized 

values of α and β.  Using the function p(i) essentially instills a new tempo for the 

progression of the sequence of powers in the Shammas Polynomials. This tempo is 

meant to slow down the increase in powers for the various terms. As such, the 

Shammas Polynomials are meant for raising numbers to lower powers and avoid 

possible rounding errors in regression calculations. I also have applied the notion of 

this new tempo to Fourier series. 

 

Thus, the Shammas Polynomials represent the first example of polyterms. The 

creation of Shammas Polynomials easily led to the rational Shammas Padé 

polynomials which divide two Shammas Polynomials. Keep in mind that Polyterms 

are non-orthogonal quasi-polynomials where the powers used with the various terms 

have a pattern and are not chosen willy nilly. 

 

While regular polynomials accept all values for the independent variable, the 

polyterms have some limitations in that regard. Some polyterms exclude zero and/or 

negative values for the independent variable. Other polyterms work strictly with 

positive values for the independent variable. In this case, you need to map the 

original values of the independent variable, that have non-positive values, to values 

in the range of (1, ω) where ω is 2 or higher, using the following equation: 
 

xt = (x – min(x))/(max(x) – min(x)) + ω – 1      (2) 
 

Keeping the value of ω low prevents higher power of the Shammas Polynomials 

from creating large numbers. For example, 24 is 16, while 104 is 10000—a big 

difference! Compressing the range of the independent variable has a down side. It 

amplifies how relatively small value changes of the independent variable affect the 

values of the dependent variable. 



Introducing the New World of Polyterms    4 
 

Copyright © 2024 by Namir Clement Shammas Version 1.0.0 

The Advent of More Polyterms 
More recently, I devised a new type of polyterms which I called the Quantum 

Shammas Polynomials. Quantum Shammas Polynomials are inspired by how 

quantum physics views the probabilistic orbits of the electrons in an atom. These 

non-orthogonal polynomials have nothing to do with the new art of quantum 

computing per se.  Early on, scientists assumed that the electrons in an atom had 

distinct orbits that were thought to be fixed. This concept parallels the fixed powers 

of classical polynomials. By contrast, the Heisenberg uncertainty principle suggests 

that the orbits of the electrons are more probabilistic than fixed. This is the 

inspiration for Quantum Shammas Polynomials. While classical polynomials have 

the familiar fixed integer powers, the non-orthogonal Quantum Shammas 

Polynomials have random powers that typically vary closely above and below 

integer powers. For examples they can use ranges between (i – 1) + 0.5 to i + 0.4 

where i is the term number. The general form of the Quantum Shammas Polynomial 

is:  
  

y(x) = a0 + a1*xR1 + a2*xR2 + … + an*xRn, for x >= 0     (3)  
  

Where 0.5 ≤ R1 ≤ 1.4, 1.5 ≤  R2  ≤  2.4, …, and (n-1)+0.5 ≤  Rn  ≤  n+0.4. Notice that 

the upper value of a random power is 0.1 less than the lower value of its successor. 

This gap ensures that no two random powers have the same exact value. I chose the 

above ranges for the random powers ri as arbitrary values (a kind of starting point or 

first run, if you will) and are by no means set in stone. You can narrow the range of 

random powers by using a scheme like (n-1)+0.6 ≤ Rn  ≤ n+0.3 to play it safer by 

using a wider gap between the powers of neighboring terms.  The values of the 

random powers (Ri) are chosen to minimize the sum of errors squared for some 

observed values of y(x). This minimization process involves optimization using 

either an optimization algorithm or random search. The latter method is feasible in 

the case of Quantum Shammas Polynomials because the ranges for the random 

powers are relatively small.  

 

The creation of Quantum Shammas Polynomials easily led to the rational Quantum 

Shammas Padé polynomials which divide two Quantum Shammas Polynomials. 

 

Another type of polyterms that I have studied is the symmetrical extended 

polynomials. It has an equal number of terms with positive and negative powers. 
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Thus, you can define symmetrical extended polynomials with a single order. Half of 

that number specifies the positive powers and the other half specifies negative 

powers. These powers can be: 
 

1. Simple negative and positive integer powers. Here is an example of a fourth 

order symmetrical polynomial: 
 

y(x) = b2/x
2 + b1/x + a0 + a1*x + a2*x2 

 

2. Powers that use the Shammas Polynomial power function p(i) with terms 

having positive and negative non-integer powers. Here is an example of a 

fourth order symmetrical Shammas polynomial using p(i) = i+0.5: 
 

y(x) = b2/x
2.5 + b1/x

1.5 + a0 + a1*x1.5 + a2*x2.5 
 

 

3. Powers that use the Quantum Shammas Polynomial random power value Ri 

with terms having positive and negative non-integer powers.  Here is an 

example of a fourth order symmetrical Quantum polynomial: 
 

y(x) = b2/x
1.9 + b1/x

1.1 + a0 + a1*x1.1 + a2*x1.9 
 

Asymmetrical extended polyterms differ in that the number of terms with positive 

and negative powers are unequal. They require two orders to specify the number of 

terms with positive and negative powers. So, for each η symmetrical extended 

polyterms there are η2 asymmetrical extended polyterms. 

 

Polyterms are not limited to just one independent variable. I am also studying 

polyterms with two and three independent variables that include cross product terms 

of two or three independent variables. The number of terms in these multivariate 

polyterms easily runs high. That is why I limit the orders of these multivariate 

polyterms to 2 and 3. The simple form of multivariate polyterms uses a single order 

that is applied to each independent variable. A more advanced version applies a 

separate order to each independent variable. 

 

The above types of polyterms are sample examples of polyterms in general. If 

polynomials are akin to impressive multi-stories huge cruise ships, then polyterms 

are the vast oceans these cruise ships navigate. Polyterms are non-orthogonal quasi-
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polynomials that are limited by our imagination! I hope my comments here open the 

door for more powerful curve fitting tools. 

A Question! 
A question that poses itself. How well do polyterms fit data? The answer is neither 

regular polynomials nor polyterms are superior in fitting ALL functions and data. 

The nature of the data (whether calculated or observed) and the errors associated 

(whether from approximation or observation) will determine the winner. Functions 

and low-error data that are analytically approximated by polynomials will naturally 

favor regular polynomials. Polytems provide a worthwhile challenge to polynomials 

in curve fitting. One needs to test and compare a polyterm and its comparable 

polynomial (with the same order) to determine which of the two provides a better 

curve fit. Also, keep in mind that when polyterms or polynomials offer a better curve 

fit, the best adjusted coefficient of determination may still be disappointing 

(especially less than 0.9). Better may not always mean a spectacular fit! When 

approximating functions, one aims at getting adjusted coefficient of determination 

values with as many 9s after the decimal place as possible. This is important 

especially when you want to replace a calculation-intensive function with a very 

good approximation using a polynomial or a polyterm. 

 

My website (https://www.namirshammas.com/NEW/mainNEW.htm) should have 

several entries for various kinds of polyterms. Enjoy! 

 

 Do not mix between polyterms and mathematical expressions (in a general 

sense). The following is an example of a mathematical expression (or we can call 

it an arbitrary polyterm): 
 

√x + x2 + 1/x 
 

While this is an example of a polyterm: 
 

7/x2.1 + 4/x1.1 + 5 + 2*x1.1 + 3*x2.1  

 

 

 


