
Best Polynomial Models Using Excel Linest Function 1

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

Best Polynomial Models Using Excel
Linest Function
By Namir C. Shammas

In this article I present two versions of VBA subroutines that select the best polynomial

regression models among a larger set of models. In both cases, the subroutines obtain the values

of observed variables, apply a number of transformations on each variable, and then use these

transformed values to determine which combination of transformations yield the best set of fitted

polynomials. In other words, the VBA subroutines go beyond performing simple/typical

polynomial regression. This approach allows you to investigate polynomial relations between the

transformations of the observed variables! While we are certainly interested in the very best

polynomial model, it is a very wise to view the best say 20 models. The reason is that if the user

has several sets of similar data (each having its own errors) then a possible best empirical

polynomial model will consistently appear in the set of top models. Once you select one or more

polynomial models, you can use subroutine MLR, which I present in the first article, to obtain

the regression ANOVA table for these selected polynomial models.

This article presents two approaches for obtaining the best (empirical) polynomial models:

 Scheme P1: Applying a combination of powers and the natural logarithm to the observed

variables. These transformed variables then participate in the polynomial regression for a

specific polynomial order.

 Scheme P2: Is a version of scheme P1 that covers a range of orders.

The Scheme P1 Approach for Best Polynomial Models
The best way to present and explain scheme P1 is to show you the worksheet for this approach to

getting the best polynomial models. Figures 1 and 2 show the left and right sides, respectively, of

a sample scheme P1 worksheet. Notice the following individual cells and columns of cells that

provide input for the regression program:

 Cell A2 specifies the polynomial order.

 Cell A4 contains the values for the maximum number of best polynomial models. The

current value is 20.

 Cells A6 and A8 specify the shift and scale values for the observed independent variable

X. The default settings for the shift and scale values are 0 and 1, respectively.

 Cells A10 and A12 specify the shift and scale values for the observed dependent variable

Y. The default settings for the shift and scale values are 0 and 1, respectively.

 Column B has the values of the observed dependent variable Y, starting at cells B2.

 Column C stores the values of the observed independent variable X, starting at cell C2.

Best Polynomial Models Using Excel Linest Function 2

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 Column D MUST BE empty.

 Column E contains the numerically coded transformations for variable Y. The numerical

codes for the transformations are the same ones used in the best multiple regression

programs.

 Column F contains the numerically coded transformations for variable X.

 Column G MUST BE empty.

The following worksheet columns provide the regression output generated by running the VBA

macro BestPolyReg:

 Column H shows the best transformations for variable Y.

 Column I shows the best transformations for variable X.

 Column J displays the values of the F statistic.

 Column K shows the values of the R
2
 statistic.

 Column L displays the values of the intercepts.

 Column M shows the values for regression coefficient for the transformed variable

raised to power 1.

 Column N and up displays the values for regression coefficient for the transformed

variable raised to power 2 and up, respectively.

The rows that start with the column H represent the record for each model. These rows are sorted

in a descending order using the values of the F statistic (in column J).

Figure 1. The left side of worksheet for scheme P1.

Best Polynomial Models Using Excel Linest Function 3

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

Figure 2. The right side of worksheet for scheme P1.

Looking at columns E and F in Figure 1, you see the list of transformations for each variable.

The numerically coded transformations represent powers used to raise the variables in order to

calculate their transformations. For example, the value of –4 in cell E2 tells the program that one

of the transformations for variable Y is 1/Y^4. You will no doubt notice that columns E and F

contain the value of 0. The VBA code treats 0 as a special case and applies the natural logarithm

to the corresponding variable.

The transformations of the observed variables require that you obey the following simple rules:

 Each variable has its own set of transformations that are independent, in number and

sequence, of those used with the other variable.

 The transformation can be integers and non-integers, as well as negative, zero, or

positive. The VBA subroutine has an error handler and will catch runtime errors. Any set

of transformation that generates a runtime error is out of the contest, so to speak!

Looking at the sample results in Figure 2, the best model is:

Y = 100 + 2 X + 3 X
2
 + 0.1 X

3

This model has the F statistic of 3.09E+32 and the R
2
 value of 1.

The BestPolyReg VBA Subroutine
Listing 1 shows the source code for subroutine BestPolyReg. This subroutine performs the

following general tasks:

 Read the input from the leading columns. This includes the observations for the different

variables, the scale and shift values for X and Y, and the lists of numerically coded

transformations.

Best Polynomial Models Using Excel Linest Function 4

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 Start nested loops to transform the X and Y variables. The nested loops perform the nest

tasks.

 Prepare the regression variables for the polynomial regression.

 Invoke the Linest function and store its results in variable vRegResultsMat. The

subroutine compares the value of the F statistic with the lowest value of F in the Hit

Parade list. If the newly calculated F statistic is greater than that lowest F value, the

subroutine overwrites the last Hit Parade row with newly calculated data and then

invokes Excel’s Sort method to quickly re-sort the Hit Parade list using values of the F

statistics.

Option Explicit

Option Base 1

Sub BestPolyReg()

 Const MAX_ERRORS As Double = 1000000# ' initial max error value

 Dim ErrorCounter As Double, MaxErrors As Double, sMaxErr As String

 Dim NumIndpVars As Integer ' number of variables

 Dim PolyOrder As Integer ' polynomial order

 Dim TN As Integer ' total number coefficients

 Dim N As Integer ' number of data points

 Dim MaxTrans As Integer ' max transformations

 Dim MaxResults As Integer ' max results

 Dim Col1 As Integer, Col2 As Integer, Col3 As Integer

 Dim Col4 As Integer, Col5 As Integer

 Dim I As Integer, J As Integer, K As Integer

 Dim M1 As Integer, M As Integer

 Dim iY As Integer, iX As Integer

 Dim TransfMat() As Double

 Dim CurrentTransf() As Double, CountTransf() As Integer

 Dim NumTransf() As Integer ' number of transformations

 Dim Y() As Variant, X() As Variant

 Dim Yt() As Variant, Xt() As Variant

 Dim Xtp() As Variant

 Dim vRegResultsMat As Variant

 Dim F As Double, Rsqr As Double, xval As Double

 Dim ShiftX As Double, ShiftY As Double

 Dim ScaleX As Double, ScaleY As Double

 ErrorCounter = 0

 MaxErrors = MAX_ERRORS

 NumIndpVars = 2

 PolyOrder = [A2].Value

Best Polynomial Models Using Excel Linest Function 5

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 MaxResults = [A4].Value

 TN = PolyOrder + 1

 ShiftX = [A6].Value

 ScaleX = [A8].Value

 ShiftY = [A10].Value

 ScaleY = [A12].Value

 Col1 = 2 ' first column of data

 Col2 = 5 ' first column of transformations

 Col3 = 8 ' first column of best transformations

 Col4 = 10 ' first column of results

 Col5 = Col4 + TN + 1 ' last column of results

 Range(Cells(1 + Col3), Cells(1, 50)).Value = ""

 Cells(1, Col3) = "Transf Y"

 Cells(1, Col3 + 1) = "Transf X"

 Cells(1, Col4) = "F"

 Cells(1, Col4 + 1) = "Rsqr"

 For I = 0 To PolyOrder

 Cells(1, Col4 + 2 + I) = "A" & I

 Next I

 Range(Cells(2, Col3), Cells(1 + 2 * MaxResults, Col4 + 3 *

TN)).Value = ""

 Range(Cells(2, Col4), Cells(1 + MaxResults, Col4 + 1 + TN)).Value =

0

 MaxTrans = Range(Cells(2, Col2), Cells(1,

Col2)).CurrentRegion.Rows.Count - 1

 ReDim NumTransf(NumIndpVars), TransfMat(NumIndpVars, MaxTrans),

CurrentTransf(NumIndpVars)

 ReDim CountTransf(NumIndpVars)

 For I = 1 To NumIndpVars

 J = 2

 Do While Trim(Cells(J, Col2 + I - 1)) <> ""

 TransfMat(I, J - 1) = Cells(J, Col2 + I - 1)

 J = J + 1

 Loop

 NumTransf(I) = J - 2

 Next I

 N = Range("B1").CurrentRegion.Rows.Count - 1

 Y = Range("B2:B" & N + 1).Value

 X = Range(Cells(2, 3), Cells(N + 1, 2 + PolyOrder)).Value

 Yt = Range("B2:B" & N + 1).Value

 Xt = Range(Cells(2, 3), Cells(N + 1, 2 + PolyOrder)).Value

Best Polynomial Models Using Excel Linest Function 6

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 ReDim Xtp(N, PolyOrder) ' polynomial data matrix

 For iY = 1 To NumTransf(1)

 CurrentTransf(1) = TransfMat(1, iY)

 For iX = 1 To NumTransf(2)

 CurrentTransf(2) = TransfMat(2, iX)

 On Error GoTo HandleErr

 For I = 1 To N

 DoEvents

 If CurrentTransf(1) <> 0 Then

 Yt(I, 1) = (ScaleY * Y(I, 1) + ShiftY) ^ CurrentTransf(1)

 Else

 Yt(I, 1) = Log(ScaleY * Y(I, 1) + ShiftY)

 End If

 If CurrentTransf(2) <> 0 Then

 Xt(I, 1) = (ScaleX * X(I, 1) + ShiftX) ^ CurrentTransf(2)

 Else

 Xt(I, 1) = Log(ScaleX * X(I, 1) + ShiftX)

 End If

 For J = 1 To PolyOrder

 Xtp(I, J) = Xt(I, 1) ^ J

 Next J

 Next I

 ' perform the regression calculations

 vRegResultsMat = Application.WorksheetFunction.LinEst(Yt, Xtp,

True, True)

 Rsqr = vRegResultsMat(3, 1)

 F = vRegResultsMat(4, 1)

 ' check if F > F of last result

 If F > Cells(MaxResults + 1, Col4) Then

 M1 = MaxResults + 1

 ' write new results to row M

 Cells(M1, Col4) = F

 Cells(M1, Col4 + 1) = Rsqr

 For I = 1 To TN

 Cells(M1, Col4 + I + 1) = vRegResultsMat(1, TN - I + 1)

 Next I

Best Polynomial Models Using Excel Linest Function 7

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 For I = 1 To NumIndpVars

 Cells(M1, Col3 + I - 1) = CurrentTransf(I)

 Next I

 Range(Cells(2, Col3), Cells(MaxResults + 1, Col5)).Select

 Range(Cells(2, Col3), Cells(MaxResults + 1, Col5)).Sort

Key1:=Range(Cells(2, Col4), Cells(MaxResults + 1, Col4)),

Order1:=xlDescending

 End If ' If F > Cells(MaxResults + 1, Col3)

 GoTo Here

HandleErr:

 ErrorCounter = ErrorCounter + 1

 If ErrorCounter > MaxErrors Then

 If MsgBox("Reached maximum error limits of " & ErrorCounter &

vbCrLf & _

 "Want to stop the process?", vbYesNo + vbQuestion, "Confirmation

requested") = vbYes Then

 Exit Sub

 Else

 sMaxErr = InputBox("Update maximum number of errors", "Max

Errors Input", MaxErrors)

 If Trim(sMaxErr) = "" Then

 MsgBox "User canceled calculations process", vbOKOnly +

vbInformation, "End of Process"

 Exit Sub

 End If

 MaxErrors = CDbl(sMaxErr)

 ErrorCounter = 0

 End If

 End If

 Resume Here

Here:

 Next iX

 Next iY

 MsgBox "Done", vbOKOnly + vbInformation, "Success!"

End Sub

Listing 1. The BestPolyReg subroutine.

Best Polynomial Models Using Excel Linest Function 8

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

Handling Runtime Error in Scheme P1, and P2
The subroutines BestPolyReg and BestPolRegSet (which I will introduce later in this article)

have an error handler and an error counting scheme. The constant MAX_ERRORS represents

the initial value for the maximum number of occurring runtime errors. The subroutine assigns the

value of this constant to the variable MaxErrs. The subroutine also uses the variable

ErrorCounter to count the number of occurring runtime errors. When the value in variable

ErrorCounter exceeds that in variable MaxErrs, the subroutine displays a message box telling

you that the number of occurring runtime errors has reached its maximum limit. This message

should not convey a mandatory end to the calculations. The message box has a Yes and No

buttons allowing you to end the program by clicking the Yes button. If you click the No button,

the subroutine displays an input box prompting you to enter a new maximum error limit. The

input box shows the current maximum error limit as the default value. You can alter the

maximum error limit or simply press the OK button to accept it and proceed with the statistical

calculations. In this case, the subroutine resets the value in ErrorCounter to 0. You can also

stop the subroutine altogether by clicking the Cancel button. Thus, the subroutine offers you two

points of exit.

The Scheme P2 Approach for Best Polynomial Models
Scheme P2 allows you to find the best polynomial order (in a range of orders that you specify)

and the best power/logarithm transformations for each polynomial. Unlike, scheme P1, scheme

P2 works on multiple worksheets. Therefore you will need a separate workbook for each set of

data when using scheme P2. The first sheet in the workbook specifies the polynomial order, the

maximum number of results for that worksheet, the source data, and transformation lists. All

subsequent sheets need only to specify the polynomial order and the maximum number of results

for that worksheet. The VBA subroutine copies the source data and transformation lists from the

first worksheet to all other worksheets.

Figures 3 and 4 show the left and right sides, respectively, of a sample scheme P2 worksheet.

This is the first sheet that also includes the source data, and transformation lists. Notice the

following individual cells and columns of cells that provide input for the regression program:

 Cell A2 contains the polynomial order.

 Cell A4 contains the values for the maximum number of best models. The current value

is 20.

 Column B has the values of the observed dependent variable Y, starting at cell B2.

 Column C stores the values of the observed independent variable X, starting at cell C2.

 Column D MUST BE empty.

 Column E contained the numerically coded transformations for variable Y.

 Column F contained the numerically coded transformations for variable X.

 Column G MUST BE empty.

Best Polynomial Models Using Excel Linest Function 9

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

The following worksheet columns provide the regression output generated by running the VBA

macro FindBestPolyReg. You need to prepare the headers manually:

 Column H shows the best transformations for variable Y.

 Column I shows the best transformations for variable X.

 Column J displays the values of the F statistic.

 Column K shows the values of the R
2
 statistic

 Column L displays the values of the intercepts.

 Column M shows the values for regression coefficient for the transformed variable

raised to power 1.

 Columns N and up show values for regression coefficient for the transformed variable

raised to power 2 and up, respectively.

The rows that start with the column H represent the record for each model. These rows are sorted

in a descending order using the values of the F statistic (in column J).

Figure 3. The left side of worksheet for scheme P2.

Best Polynomial Models Using Excel Linest Function 10

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

Figure 4. The right side of worksheet for scheme P2.

The data in Figure 3 is based on the following polynomial:

Y = 100 + 2 X + 3 X
2
 + 0.1 X

3

The workbook has four worksheets to perform polynomial regression in the orders 1 through 4.

When you run the FindBestPolyReg subroutine, it selects worksheet Set 3 which has the cubic

polynomial. Figures 5 and 6 show the best results of running the FindBestPolyReg subroutine.

Figure 5. The message box that appears when subroutine FindBestPolyReg terminates.

Best Polynomial Models Using Excel Linest Function 11

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

Figure 6. The best results of running the FindBestPolyReg subroutine.

The best fitted polynomial has the F statistic of 1.238E+31 and the R
2
 value of 1. The

calculations identify the best polynomial as:

Y = 100 + 2 X + 3 X
2
 + 0.1 X

3

The FindBestPolyReg VBA Subroutine
Listing 2 shows the source code for subroutine FindBestPolyReg. This subroutine performs the

following general tasks:

 Initializes the index of the best worksheet and F statistics for the best polynomial.

 Loops over the worksheets in the workbook.

o Select the next worksheet.

o If the current worksheet is not the first one, copy the data in columns B to

columns K from the first worksheet to the current worksheet.

o Invoke subroutine BestPolyReg to find the best transformations for the currently

selected polynomial order. This code for the accompanying BestPolyReg

subroutine is the same one used in scheme P1.

o Store the best F and the index of the current worksheet if it provides the best F

statistic.

 Select the worksheet that has the best polynomial model.

 Display a message box that states the order of the best polynomial model (see Figure 5

for a sample message box).

Option Explicit

Option Base 1

Best Polynomial Models Using Excel Linest Function 12

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

Sub FindBestPolyReg()

 Dim I As Integer, N As Integer

 Dim BestF As Double, BestOrder As Integer, BestSheet As Integer

 BestF = 0

 BestOrder = 0

 N = Application.Worksheets.Count

 For I = 1 To N

 Sheets(I).Select

 If I > 1 Then

 ' copy (X,Y) data and transformations from first sheet

 Sheets(1).Range("B1:K32000").Copy Range("B1:K32000")

 End If

 Call BestPolyReg

 If BestF < Cells(2, 10) Then

 BestF = Cells(2, 10)

 BestOrder = Cells(2, 1)

 BestSheet = I

 End If

 Next I

 Sheets(BestSheet).Select

 MsgBox "Best Polyomial Order is " & BestOrder, vbOKOnly +

vbInformation, "Success!"

End Sub

Sub BestPolyReg()

 Const MAX_ERRORS As Double = 1000000# ' initial max error value

 Dim ErrorCounter As Double, MaxErrors As Double, sMaxErr As String

 Dim NumIndpVars As Integer ' number of variables

 Dim PolyOrder As Integer ' polynomial order

 Dim TN As Integer ' total number of coefficients

 Dim N As Integer ' number of data points

 Dim MaxTrans As Integer ' max transformations

 Dim MaxResults As Integer ' max results

 Dim Col1 As Integer, Col2 As Integer, Col3 As Integer

 Dim Col4 As Integer, Col5 As Integer

 Dim I As Integer, J As Integer, K As Integer

 Dim M1 As Integer, M As Integer

 Dim iY As Integer, iX As Integer

 Dim TransfMat() As Double

 Dim CurrentTransf() As Double, CountTransf() As Integer

 Dim NumTransf() As Integer ' number of transformations

 Dim Y() As Variant, X() As Variant

Best Polynomial Models Using Excel Linest Function 13

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 Dim Yt() As Variant, Xt() As Variant

 Dim Xtp() As Variant

 Dim vRegResultsMat As Variant

 Dim F As Double, Rsqr As Double, xval As Double

 ErrorCounter = 0

 MaxErrors = MAX_ERRORS

 NumIndpVars = 2

 PolyOrder = [A2].Value

 MaxResults = [A4].Value

 TN = PolyOrder + 1

 Col1 = 2 ' first column of data

 Col2 = 5 ' first column of transformations

 Col3 = 8 ' first column of best tranformations

 Col4 = 10 ' first column of results

 Col5 = Col4 + TN + 1 ' last column of results

 Range(Cells(1 + Col3), Cells(1, 50)).Value = ""

 Cells(1, Col3) = "Transf Y"

 Cells(1, Col3 + 1) = "Transf X"

 Cells(1, Col4) = "F"

 Cells(1, Col4 + 1) = "Rsqr"

 For I = 0 To PolyOrder

 Cells(1, Col4 + 2 + I) = "A" & I

 Next I

 Range(Cells(2, Col3), Cells(1 + 2 * MaxResults, Col4 + 3 *

TN)).Value = ""

 Range(Cells(2, Col4), Cells(1 + MaxResults, Col4 + 1 + TN)).Value =

0

 MaxTrans = Range(Cells(2, Col2), Cells(1,

Col2)).CurrentRegion.Rows.Count - 1

 ReDim NumTransf(NumIndpVars), TransfMat(NumIndpVars, MaxTrans),

CurrentTransf(NumIndpVars)

 ReDim CountTransf(NumIndpVars)

 For I = 1 To NumIndpVars

 J = 2

 Do While Trim(Cells(J, Col2 + I - 1)) <> ""

 TransfMat(I, J - 1) = Cells(J, Col2 + I - 1)

 J = J + 1

 Loop

 NumTransf(I) = J - 2

 Next I

Best Polynomial Models Using Excel Linest Function 14

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 N = Range("B1").CurrentRegion.Rows.Count - 1

 Y = Range("B2:B" & N + 1).Value

 X = Range(Cells(2, 3), Cells(N + 1, 2 + PolyOrder)).Value

 Yt = Range("B2:B" & N + 1).Value

 Xt = Range(Cells(2, 3), Cells(N + 1, 2 + PolyOrder)).Value

 ReDim Xtp(N, PolyOrder) ' polynomial data matrix

 For iY = 1 To NumTransf(1)

 CurrentTransf(1) = TransfMat(1, iY)

 For iX = 1 To NumTransf(2)

 CurrentTransf(2) = TransfMat(2, iX)

 On Error GoTo HandleErr

 For I = 1 To N

 DoEvents

 If CurrentTransf(1) <> 0 Then

 Yt(I, 1) = Y(I, 1) ^ CurrentTransf(1)

 Else

 Yt(I, 1) = Log(Y(I, 1))

 End If

 If CurrentTransf(2) <> 0 Then

 Xt(I, 1) = X(I, 1) ^ CurrentTransf(2)

 Else

 Xt(I, 1) = Log(X(I, 1))

 End If

 For J = 1 To PolyOrder

 Xtp(I, J) = Xt(I, 1) ^ J

 Next J

 Next I

 ' perform the regression calculations

 vRegResultsMat = Application.WorksheetFunction.LinEst(Yt, Xtp,

True, True)

 Rsqr = vRegResultsMat(3, 1)

 F = vRegResultsMat(4, 1)

 ' check if F > F of last result

 If F > Cells(MaxResults + 1, Col4) Then

 M1 = MaxResults + 1

 ' write new results to row M

Best Polynomial Models Using Excel Linest Function 15

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

 Cells(M1, Col4) = F

 Cells(M1, Col4 + 1) = Rsqr

 For I = 1 To TN

 Cells(M1, Col4 + I + 1) = vRegResultsMat(1, TN - I + 1)

 Next I

 For I = 1 To NumIndpVars

 Cells(M1, Col3 + I - 1) = CurrentTransf(I)

 Next I

 Range(Cells(2, Col3), Cells(MaxResults + 1, Col5)).Select

 Range(Cells(2, Col3), Cells(MaxResults + 1, Col5)).Sort

Key1:=Range(Cells(2, Col4), Cells(MaxResults + 1, Col4)),

Order1:=xlDescending

 End If ' If F > Cells(MaxResults + 1, Col3)

 GoTo Here

HandleErr:

 ErrorCounter = ErrorCounter + 1

 If ErrorCounter > MaxErrors Then

 If MsgBox("Reached maximum error limits of " & ErrorCounter &

vbCrLf & _

 "Want to stop the process?", vbYesNo + vbQuestion, "Confirmation

requested") = vbYes Then

 Exit Sub

 Else

 sMaxErr = InputBox("Update maximum number of errors", "Max

Errors Input", MaxErrors)

 If Trim(sMaxErr) = "" Then

 MsgBox "User canceled calculations process", vbOKOnly +

vbInformation, "End of Process"

 Exit Sub

 End If

 MaxErrors = CDbl(sMaxErr)

 ErrorCounter = 0

 End If

 End If

 Resume Here

Here:

 Next iX

 Next iY

End Sub

Listing 2. The FindBestPolyReg subroutine.

Best Polynomial Models Using Excel Linest Function 16

Copyright © 2012, 2013 by Namir Clement Shammas Version 1.0.0.0

References
1. Shammas, Namir, Multiple Regression Model Using Excel Linest Function, article on

www.namirshammas.com web site.

2. Shammas, Namir, Best Multiple Regression Model Using Excel Linest Function, article

on www.namirshammas.com web site.

3. Wikipedia article Coefficient of Determination.

4. Wikipedia article Linear Regression.

5. Wikipedia article Simple Linear Regression.

6. Wikipedia article Akaike information criterion.

7. Draper and Smith, Applied Regression Analysis, Wiley-Interscience; 3rd edition (April

23, 1998).

8. Neter, Kuther, Wasserman, and Nachtsheim, Applied Linear Statistical Models, McGraw-

Hill/Irwin; 4th edition (February 1, 1996).

9. Fox, Applied Regression Analysis and Generalized Linear Models, Sage Publications,

Inc; 2nd edition (April 16, 2008).

10. Montgomery, Peck, and Vining, Introduction to Linear Regression Analysis, Wiley-

Interscience; 4th edition (2006).

11. Seber and Lee, Linear Regression Analysis, Wiley; 2nd edition (February 5, 2003).

About this Article
Version Date Comment

1.0.0.0 12/7/2012 Initial release.

http://www.namirshammas.com/
http://www.namirshammas.com/

