Namir C Shammas

RPN2

RPN2
By

Namir C. Shammas

Introduction
Vintage programmable HP calculators combined RPN operations and keystroke programming to offer the users the ability to write short programs, and sometimes not so short programs, depending on the level of dedication and desperation of the programmer. Today, calculators like the HP-33S and the HP-35S still offer RPN programming. In the late eighties, HP also launched RPL as the programming language for graphics calculators. Programming with RPL has several advantages over programming RPN. Table 1 compares a few features between programming in RPN and RPL.
Table 1. Comparing RPN and RPL programming.

	Programming with RPN
	Programming with RPL

	Support mainly floating-point numbers. Certain models support complex numbers, arrays and matrices.
	Support for various types of data such as reals, strings, complex numbers, vectors, matrices, and lists.

	RPN stores data in numbered or single-letter variables.
	RPL stores data in named variables.

	RPN programs support simple line-oriented or label oriented constructs for decision-making and for looping.
	RPL programs support multiple constructs for decision-making and for looping. These constructs parallel those of languages like BASIC.

	All variables are global. There is no support for local variables.
	RPL programs support nested scoping of variables. Thus, you can create a new scope and store data in variables that are local to that scope. The runtime system in RPL automatically removes the local variables when they reach the end of their scope.

	Supports programming style somewhat similar to assembly language.
	RPL and RPL programming presents a mix between structured programming and OOP-like support for various data types.

	Not very easy to create library of routines, because all of the variables have a global scope. In addition there can be a conflict between labels.
	Easy to create library of routines.

	No support for the concept of directories.
	Supports directory for “paging” variables.

Enter RPN2

Many die hard RPN programmers have not adapted well to programming in RPL. This paper discusses RPN2, which is the next generation RPN. RPN2 is inspired by the HP-41C and the HP-42S.
In a nutshell, RPN2 supports modular programming. This kind of programming lends itself to easily create modular libraries that free programmers from worrying about conflicting variable names and labels.

The basic idea of RPN2 is quite simple. The core or minimal RPN2 is based on the support for modules, each with its own scope of variables and labels. Consequently RPN2 offers:
· Global and local labels. A global label declares a module.
· Local variables. Each module automatically defines a scope (page or directory, if you prefer) for the variables used by the routines in that module. These variables are accessible to all the routines in the host module.
RPN2 uses the MDL keyword as a global label that defines a new module and also doubles up as the first label in the module. Within that module, RPN2 supports the use of the keyword LBL to define additional local labels.

Within a module, RPN2 offers the keywords GTO and GSB to jump to a label or call a subroutine that is local to the host module, respectively. Likewise, RPN2 offers the keywords JMP and XEQ to jump to a module (or a label within a module) or call a module (or a label within a module), respectively.

Here is a simple example for a program (minus the details) that tests a random number generation module:

MDL MAIN

…
GSB TestRand

call a local subroutine

…

RTN

LBL TestRand

Start local subroutine
XEQ RAND#INIT

Initialize random number generator
…

STO LoopVar

store a value in the loop variable

LBL 00

Start loop to test random number
…

XEQ RAND#URND

Get a random number from module RAND
…

ISG LoopVar

End of loop
GTO 00

…

RTN

MDL RAND

Module for random number generator
LBL INIT

Routine to seed random number
STO SEED
RTN

LBL URND

Routine to generate random number
RCL SEED

…

STO SEED

…

RTN

The above code has two modules-- MAIN and RAND. The module MAIN contains the main program, while module RAND contains two local routines to support the random number generation. The first routine is in the local label INIT and serves to initialize the random number seed. This routine stores the seed value in the local variable SEED. The second routine, in label URND, calculates a uniformly distributed random number, say between 0 and 1. The routine also updates the value in the local variable SEED.
The main module calls a local subroutine TestRand. That routine uses the command XEQ RAND#INIT to call the routine INIT in module RAND. Using a loop, the main module repeatedly obtains random numbers by using the command XEQ RAND#URND. This command calls the routine URND in module RAND. Once the module subroutine TestRand ends its loop, it processes the data obtained using local variables (detailed code is not shown in the listing).

The two modules interact with each other by passing data in the stack. Each module has its own local variables. These variables can have identical names without overwriting each other’s values. Thus, you can, for example, rename the main module’s LoopVar as I, and likewise rename the RAND module’s variable SEED as I, without creating errors in the results.

Under RPN2, the runtime system creates variables dynamically and qualifies their names with the name of the host module. Thus, the RPN2 stores the values in the LoopVar and SEED variables as something like MAIN#LoopVar and RAND#SEED. This is why using the same names for the multiple variables creates no conflict because each name is qualified by the name of the host page.

By using distinct keywords for jumping to a local/global label and for invoking local/global subroutine, RPN2 knows how and where to look for a target label.
RPN2 brings modular programming to the RPN and removes the headaches of conflicting variable names and labels.

Implementing RPN2 on future HP calculator with 32K RAM or higher should be relatively easy. Replacing user-defined variable names with numbered or single-letter variable names in each module gives additional simplification. Likewise, using numbered or single-letter labels in each module will further reduce the overhead of managing labels in modules.

The RPN2 Interpreter

Rather than just discussing RPN2 as a concept, I decided to implement an RPN2 emulator. The emulator is an Excel application which runs on sizeable library of VBA code.
I wrote the RPN2 emulator not only to implement the core RPN2 concepts but to add several features. The emulator (including the source code), its documentation (a labor of love still in progress), and other files are all available in the RPN2.ZIP file that you can download from the HHC2009 link in my web site www.namirshammas.com. I have posted the material there so I can update it, if and when needed or when possible.

I recommend that you examine the VBA source code in the RPN2 workbook. The VBA code associated with the worksheets ThisWorkbook, Module1, and Module2 contain the implementation for the RPN2 engine. I have heavily commented the code to clarify how the commands work and what the various functions and subroutines do. As you examine the code you will see that I used Excel’s built-in matrix operations, summation functions, statistical functions, and high-level math functions for code compactness, convenience, speed, and accuracy.

The following subsections briefly present the various features of the RPN2 emulator.

Excel Interface

The RPN2 emulator uses several spreadsheets to manage program and data:

· The Program sheet is the main that contains the program steps, program comments, the stack, LastX register, four indexing registers, the Alpha register, two message text registers (one to display error messages and one to show benign messages from the emulator), a data path text register, a filename text register, and the angle conversion factor register.

[image: image1.png]
	(
	

	
	To enter a string, for the Alpha register, you need to simply begin the text with a double quote, or you may enclose the text in a pair of double quotes. To append text to the Alpha register, begin the text with the tilde character (~). The runtime system will automatically copy/append that text in the Alpha register.

To enter a number simply type in a number and the runtime system will push it into the stack.

· The I/O sheet that tracks program input and output.
[image: image2.png]
· The Memory sheet that shows the variables and their scopes.
[image: image3.png]
· The Debug sheet that contains the debug trace for the last program executed. The DEBUGON and DEBUGOFF commands turn on and off the debug mode, respectively.
· The sheet STAT2VAR shows the summary results for linear regression between two variables.

· The sheet STAT3VAR shows the summary results for multiple regression between three variables.

· The Command Summary sheet contains a summary of the RPN2’s commands. Browse through that worksheet in the RPN2 workbook to learn more about the rich functionality behind the RPN2 emulator.
Data Types Supports

The RPN2 emulator supports the following data types:

· Floating point numbers.

· Matrices. Arrays are considered either a single-column matrix or a single-row matrix.

· Logical flags. RPN2 handles these flags as a single array of flags. Thus, you access and test any flag using an index.
· Strings.

RPN2 Features Supported

The RPN2 emulator implements the basic features that I mentioned earlier. The MLD and LBL keywords define a module’s label and a local label, respectively. The GTO and GSB support jumping to a local label and executing a local subroutine, respectively. The global versions for GTO and GSB are JMP and XEQ, respectively. The RTN keyword declares the end of a module and also of a local subroutine.

The support for indirect addressing in RPN2 is alive and well. Moreover, some matrix commands can specify their argument in the program step, or when omitted use the text in the Alpha register to supply the arguments for the command.

When a program starts executing, the initial startup module creates the initial variable page for all data types. When a program uses the XEQ command to call a subroutine in another module, the runtime system automatically switches the variable page to match the name of the targeted host module. The same is true when a program uses the JMP command to jump to a label in another module. The module’s variables and their values remain intact between calls, and even after the program terminates. This approach allows you to inspect the variables in the different modules after the program terminates correctly or stop due to a runtime error.

You can access variables in other pages by using the pageName#variableName syntax in a STO or RCL command. This inter-module access gives programs more flexibility and does not limit the transfer of data between modules to the stack.
Extra Features

The RPN2 emulator supports additional features such as:

· Logical comparisons between strings variables.

· Support for an extensive set of matrix manipulation and operations, such as, inversion, transpose, multiplication, addition, and division. You can also use the index registers I and J to traverse the elements of a matrix forward or backwards and by row or by column. The index registers K and L serve a similar purpose. Thus you can simultaneously traverse the elements of two distinct matrices using the four index registers. In the case you need more than two pairs of indices to access various matrices, you can use the commands STOIJ, STOKL, RCLIJ, RCLKL, SWAPIJ, and SWAPKL to manage the paired I and J indices, and also the paired K and L indices. By storing, recalling, and swapping these paired indices with numeric variables you can extend their use to working with three or more matrices. Of course there are commands to individually store, recall, and swap each of the four index registers with the X stack register.
· The SKIPBY and SKIPNEXTBY commands that define how many steps to skip, after a test fails. The SKIPNEXTBY command sets the number of steps to skip for the next test only. The SKIPBY command provides a somewhat more permanent version. You can change the number of steps at will using subsequent SKIPBY commands.

· Support for linear and multiple regression using data in matrices or data fed one observation at a time.

· Support for string operations such as:

· Character count in a string

· Substring search

· Text replacement

· Extracting a leading substring

· Extracting a training substring

· Extracting inner characters

· Changing character case

· Reversing the characters of a string

· Supports for string variables. RPN2 offers operations for the Alpha register and string variables.

· Support for writing and reading variables to or from a file. You can specify writing all of the variables of a specific data type, or you limit these variables based on their host page.

· Offers many important mathematical functions and also common statistical distributions.
Currently, the best source of documentation for the RPN2 emulator is the comments that you find with the source code.

[image: image4.jpg]

Page 1

[image: image4.jpg]