
Slope-Oriented ODE Solution 1

Copyright © 2014 by Namir Clement Shammas

Slope-Oriented ODE Solution Methods
by

Namir Shammas

Introduction
Numerical integration methods that solve initial-values ODE problems usually

calculate the value of Y at regular steps of X. This paper presents an adaptive

approach for numerical solution for ODE problems. I will call this new method the

Slope-Oriented ODE Solution (or SOODES for short). The new algorithm focuses

on estimating the increment in X such that the change in the value of Y does not

exceed a preselected limit. This scheme allows the adaptive method to move fast in

small absolute slopes sections of Y and conversely move slow through high

absolute slope values.

The Basic Algorithm
The basic algorithm is very simple. Here is the pseudo-code for the basic

algorithm:

Given dY/dX = f(X,Y), we need to integrate from X1 (and Y1) to Xmax, with

YMaxDelta maximum change in Y:

 Repeat

o d = dY/dX_at_(X1,Y1)

o Adjust d if it is zero or close to zero.

o h = 2 * |YMaxDelta / d|

o Repeat

 h = h / 2

 X2 = X1 + h

o Until |Y2 - Y1| <= YMaxDelta

o If X2 > Xmax then

 h = Xmax- X1

 X2 = Xmax

o End

o Calculate Y2 for X2 using an algorithm of your choice.

o X1 = X2

o Y1 = Y2

 Until X2 >= Xmax

The above pseudo-code shows that the step that updates the value of Y is a general

one. This means that you can use any algorithm to calculate the next value of Y

going from X1 to X2. You can use the Euler method or any version of the Runge-

Slope-Oriented ODE Solution 2

Copyright © 2014 by Namir Clement Shammas

Kutta methods, just to name a few. Using more accurate methods yields better Y

values.

The implementation of the above pseudo-code should include a scheme that allows

you to obtain/access the values of Y at regular intervals of X. The VBA code that

comes next shows the details for such scheme.

Testing with Excel VBA Code
I tested the new algorithms using Excel taking advantage of the application’s

worksheet for easy input and the display of intermediate calculations. The

following listing shows the Excel VBA code used for testing. It implements the

SOODES algorithm use a variety of basic numerical integration methods:

Option Explicit

' Version 2. Handles slopes that are zero or close to zero1

Const EPSILON = 0.00000001

Function MyFx(ByVal sFx As String, ByVal X As Double, ByVal Y As Double) As

Double

 Dim Res As Double, SignofDerive As Integer

 sFx = UCase(sFx)

 sFx = Replace(sFx, " ", "")

 sFx = Replace(sFx, "X", "(" & X & ")")

 sFx = Replace(sFx, "Y", "(" & Y & ")")

 MyFx = Evaluate(sFx)

End Function

Function RK4(ByVal sFx As String, ByVal X As Double, ByVal Y As Double, _

 ByVal h As Double) As Double

 Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double

 Dim hby2 As Double

 hby2 = h / 2

 k1 = MyFx(sFx, X, Y)

 k2 = MyFx(sFx, X + hby2, Y + hby2 * k1)

 k3 = MyFx(sFx, X + hby2, Y + hby2 * k2)

 k4 = MyFx(sFx, X + h, Y + h * k3)

 RK4 = Y + h / 6 * (k1 + 2 * (k2 + k3) + k4)

End Function

Function RK4L(ByVal sFx As String, ByVal X As Double, ByVal Y As Double, _

 ByVal h As Double, ByVal Lambda As Integer) As Double

 Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double

 Dim hby2 As Double

 hby2 = h / 2

 k1 = MyFx(sFx, X, Y)

Slope-Oriented ODE Solution 3

Copyright © 2014 by Namir Clement Shammas

 k2 = MyFx(sFx, X + hby2, Y + hby2 * k1)

 k3 = MyFx(sFx, X + hby2, Y + (1 / 2 - 1 / Lambda) * h * k1 + h / Lambda *

k2)

 k4 = MyFx(sFx, X + h, Y + (1 - Lambda / 2) * h * k2 + Lambda / 2 * h * k3)

 RK4L = Y + h / 6 * (k1 + (4 - Lambda) * k2 + Lambda * k3 + k4)

End Function

Function RK2(ByVal sFx As String, ByVal X As Double, ByVal Y As Double, _

 ByVal h As Double) As Double

 Dim k1 As Double, k2 As Double

 Dim g As Double

 g = 2 * h / 3

 k1 = MyFx(sFx, X, Y)

 k2 = MyFx(sFx, X + g, Y + g * k1)

 RK2 = Y + h / 4 * (k1 + 3 * k2)

End Function

Sub DoEuler()

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double, Deriv As Double

 Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double

 Dim sFx As String, R As Integer

 X1 = [B1].Value

 Y1 = [B2].Value

 Xmax = [B3].Value

 YMaxDelta = [B4].Value

 sFx = [B5].Value

 XnextIncr = [B6].Value

 Xnext = X1 + XnextIncr

 R = 2

 Do

 Deriv = MyFx(sFx, X1, Y1)

 If Deriv < EPSILON Then Deriv = 0.0001

 h = 2 * Abs(YMaxDelta / Deriv)

 Do

 h = h / 2

 X2 = X1 + h

 If X2 > Xnext Then

 h = Xnext - X1

 X2 = Xnext

 End If

 Y2 = Y1 + h * MyFx(sFx, X1, Y1)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 = Xnext Then

 Cells(R, 3) = X2

 Cells(R, 4) = Y2

 R = R + 1

 Xnext = Xnext + XnextIncr

 If Xnext > Xmax Then Xnext = Xmax

 End If

Slope-Oriented ODE Solution 4

Copyright © 2014 by Namir Clement Shammas

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

End Sub

Sub DoRK4()

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double, Deriv As Double

 Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double

 Dim sFx As String, R As Integer

 X1 = [B1].Value

 Y1 = [B2].Value

 Xmax = [B3].Value

 YMaxDelta = [B4].Value

 sFx = [B5].Value

 XnextIncr = [B6].Value

 Xnext = X1 + XnextIncr

 R = 2

 Do

 Deriv = MyFx(sFx, X1, Y1)

 If Deriv < EPSILON Then Deriv = 0.0001

 h = 2 * Abs(YMaxDelta / Deriv)

 Do

 h = h / 2

 X2 = X1 + h

 If X2 > Xnext Then

 h = Xnext - X1

 X2 = Xnext

 End If

 Y2 = RK4(sFx, X1, Y1, h)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 = Xnext Then

 Cells(R, 3) = X2

 Cells(R, 4) = Y2

 R = R + 1

 Xnext = Xnext + XnextIncr

 If Xnext > Xmax Then Xnext = Xmax

 End If

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

End Sub

Sub DoRK4Lambda()

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double, Deriv As Double

 Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double

 Dim sFx As String, R As Integer, Lambda As Integer

 X1 = [B1].Value

 Y1 = [B2].Value

 Xmax = [B3].Value

 YMaxDelta = [B4].Value

Slope-Oriented ODE Solution 5

Copyright © 2014 by Namir Clement Shammas

 sFx = [B5].Value

 XnextIncr = [B6].Value

 Xnext = X1 + XnextIncr

 Lambda = [B7].Value

 R = 2

 Do

 Deriv = MyFx(sFx, X1, Y1)

 If Deriv < EPSILON Then Deriv = 0.0001

 h = 2 * Abs(YMaxDelta / Deriv)

 Do

 h = h / 2

 X2 = X1 + h

 If X2 > Xnext Then

 h = Xnext - X1

 X2 = Xnext

 End If

 Y2 = RK4L(sFx, X1, Y1, h, Lambda)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 = Xnext Then

 Cells(R, 3) = X2

 Cells(R, 4) = Y2

 R = R + 1

 Xnext = Xnext + XnextIncr

 If Xnext > Xmax Then Xnext = Xmax

 End If

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

End Sub

Sub DoRK2()

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double, Deriv As Double

 Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double

 Dim sFx As String, R As Integer

 X1 = [B1].Value

 Y1 = [B2].Value

 Xmax = [B3].Value

 YMaxDelta = [B4].Value

 sFx = [B5].Value

 XnextIncr = [B6].Value

 Xnext = X1 + XnextIncr

 R = 2

 Do

 Deriv = MyFx(sFx, X1, Y1)

 If Deriv < EPSILON Then Deriv = 0.0001

 h = 2 * Abs(YMaxDelta / Deriv)

 Do

 h = h / 2

 X2 = X1 + h

 If X2 > Xnext Then

 h = Xnext - X1

 X2 = Xnext

Slope-Oriented ODE Solution 6

Copyright © 2014 by Namir Clement Shammas

 End If

 Y2 = RK2(sFx, X1, Y1, h)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 = Xnext Then

 Cells(R, 3) = X2

 Cells(R, 4) = Y2

 R = R + 1

 Xnext = Xnext + XnextIncr

 If Xnext > Xmax Then Xnext = Xmax

 End If

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

End Sub

The VBA function MyFX calculates the slope value based on a string that contains

the function’s expression. This expression must use X and Y as the variable names

for X and Y, respectively.

The following subroutines tests the various versions of SOODES:

 The subroutine DoEuler applies the Euler’s method.

 The subroutine DoRK2 applies the second-order Runge-Kutta method. This

subroutine calls function RK2 to calculate each subsequent value of Y.

 The subroutine DoRK4 applies the fourth-order Runge-Kutta method. This

subroutine calls function RK4 to calculate each subsequent value of Y.

 The subroutine DoRK2L applies the general fourth-order Runge-Kutta

method (developed by Tan Delin and Chen Zheng[3]). This subroutine calls

function RK4L to calculate each subsequent value of Y.

Figure 1 shows a sample Excel sheet that contains the input and output data

Slope-Oriented ODE Solution 7

Copyright © 2014 by Namir Clement Shammas

Figure 1. The Excel spreadsheet used to test Euler’s method with the SOODES

algorithm.

The Input Cells

The VBA code relies on the following cells to obtain data:

 Cells B1 and B2 supply the initial ODE value (X0,Y0).

 Cell B3 contains the maximum value of X.

 Cell B4 contains the value for the maximum change in Y for each step.

 Cell B5 contains the expression for dY/dX = f(X,Y). Notice that the

expression in cell B5 uses X and Y as the variable names. The expression is

case insensitive.

 Cell B5 contains the value of the increment in X that is used to display

values of Y.

 In the case of the general fourth-order Runge-Kutta method, cell B6 supplies

the value for the lambda factor use by this method.

Output

The output appears in the following columns:

 Column C displays the value of X.

 Column D displays the values of Y.

 Column E displays the calculated exact values of Y.

X0 1 X Y Exact Error

Y0 0 1.1 0.095699 0.09531018 -0.00038894

Xmax 2 1.2 0.182986 0.182321557 -0.0006642

Max Delta y 0.01 1.3 0.263229 0.262364264 -0.00086478

dy/dx 1/X 1.4 0.337542 0.336472237 -0.00106984

X Next Incr 0.1 1.5 0.406726 0.405465108 -0.00126126

1.6 0.471449 0.470003629 -0.00144526

1.7 0.532252 0.530628251 -0.00162383

1.8 0.589562 0.587786665 -0.001775

1.9 0.643783 0.641853886 -0.00192939

2 0.695209 0.693147181 -0.00206207

Sqrt of Sum Squares 0.004463916

Slope-Oriented ODE Solution 8

Copyright © 2014 by Namir Clement Shammas

 Column D displays the error in Y. The bottom-most cell in this column

calculates the square root of the sum of error squared. This value gives a

measure of the overall errors.

Columns E and D serve to examine the errors associated with the particular version

of SOODES.

The Results
I tested the various versions of the SOODES.

Euler’s Method

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change

in function value equal to 0.01 and the results to be displayed at steps of 0.1. The

results appear in Figure 1. The value of Y at X=2 was accurate to two decimals.

Second-Order Runge-Kutta Method

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change

in function value equal to 0.01 and the results to be displayed at steps of 0.1. The

results appear in Figure 1. The value of Y at X=2 was accurate to six decimals.

Figure 2. The Excel spreadsheet used to test the second-order Runge-Kutta method

with the SOODES algorithm.

X0 1 X Y Exact Error

Y0 0 1.1 0.09531018 0.09531018 -2.4845E-09

Xmax 2 1.2 0.18232156 0.182321557 -4.7495E-09

Max Delta y 0.01 1.3 0.26236427 0.262364264 -6.9308E-09

dy/dx 1/X 1.4 0.33647225 0.336472237 -8.8504E-09

X Next Incr 0.1 1.5 0.40546512 0.405465108 -1.0694E-08

1.6 0.47000364 0.470003629 -1.2345E-08

1.7 0.53062827 0.530628251 -1.3981E-08

1.8 0.58778668 0.587786665 -1.5428E-08

1.9 0.6418539 0.641853886 -1.6801E-08

2 0.6931472 0.693147181 -1.8164E-08

Sqrt of Sum Squares 3.83081E-08

Slope-Oriented ODE Solution 9

Copyright © 2014 by Namir Clement Shammas

Fourth-Order Runge-Kutta Method

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change

in function value equal to 0.01 and the results to be displayed at steps of 0.1. The

results appear in Figure 3. The value of Y at X=2 was accurate to nine decimals.

Figure 3. The Excel spreadsheet used to test the fourth-order Runge-Kutta method

with the SOODES algorithm.

General Fourth-Order Runge-Kutta Method

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change

in function value equal to 0.01 and the results to be displayed at steps of 0.1. I set

the lambda factor to be 3. The results appear in Figure 4. The value of Y at X=2

was accurate to nine decimals. The results as just as accurate as the regular fourth-

order Runge-Kutta method.

X0 1 X Y Exact Error

Y0 0 1.1 0.09531018 0.09531018 -7.3685E-12

Xmax 2 1.2 0.182321557 0.182321557 -1.4057E-11

Max Delta y 0.01 1.3 0.262364264 0.262364264 -2.056E-11

dy/dx 1/X 1.4 0.336472237 0.336472237 -2.6265E-11

X Next Incr 0.1 1.5 0.405465108 0.405465108 -3.1719E-11

1.6 0.470003629 0.470003629 -3.6618E-11

1.7 0.530628251 0.530628251 -4.1495E-11

1.8 0.587786665 0.587786665 -4.5745E-11

1.9 0.641853886 0.641853886 -4.9821E-11

2 0.693147181 0.693147181 -5.3885E-11

Sqrt of Sum Squares 1.1363E-10

Slope-Oriented ODE Solution 10

Copyright © 2014 by Namir Clement Shammas

Figure 4. The Excel spreadsheet used to test the general fourth-order Runge-Kutta

method with the SOODES algorithm.

Conclusion
The SOODES algorithm provides a mechanism to solve ODE problems in a

manner that has the Y values calculated at approximately regular intervals.

References
1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition,

Cambridge University Press; 3rd edition, September 10, 2007.

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage

Learning, 9th edition, August 9, 2010.

3. Wikipedia, Runge-Kutta Methods

Document Information
Version Date Comments

1.0.0 3/12/2014 Initial release.

1.1.0 3/15/2014 Adjusted the VBA code

to handle slopes of zero

or close to zero.

X0 1 X Y Exact Error

Y0 0 1.1 0.09531018 0.09531018 -7.3685E-12

Xmax 2 1.2 0.182321557 0.182321557 -1.4057E-11

Max Delta y 0.01 1.3 0.262364264 0.262364264 -2.056E-11

dy/dx 1/X 1.4 0.336472237 0.336472237 -2.6265E-11

X Next Incr 0.1 1.5 0.405465108 0.405465108 -3.1719E-11

Lambda 3 1.6 0.470003629 0.470003629 -3.6618E-11

1.7 0.530628251 0.530628251 -4.1495E-11

1.8 0.587786665 0.587786665 -4.5745E-11

1.9 0.641853886 0.641853886 -4.9821E-11

2 0.693147181 0.693147181 -5.3885E-11

Sqrt of Sum Squares 1.1363E-10

