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Introduction 
Numerical integration methods that solve initial-values ODE problems usually 

calculate the value of Y at regular steps of X. This paper presents an adaptive 

approach for numerical solution for ODE problems. I will call this new method the 

Slope-Oriented ODE Solution (or SOODES for short). The new algorithm focuses 

on estimating the increment in X such that the change in the value of Y does not 

exceed a preselected limit. This scheme allows the adaptive method to move fast in 

small absolute slopes sections of Y and conversely move slow through high 

absolute slope values. 

The Basic Algorithm 
The basic algorithm is very simple. Here is the pseudo-code for the basic 

algorithm: 

Given dY/dX = f(X,Y), we need to integrate from X1 (and Y1) to Xmax, with 

YMaxDelta maximum change in Y: 

 Repeat 

o d = dY/dX_at_(X1,Y1) 

o Adjust d if it is zero or close to zero. 

o h = 2 * |YMaxDelta / d| 

o Repeat 

 h = h / 2 

 X2 = X1 + h 

o Until |Y2 - Y1| <= YMaxDelta 

o If X2 > Xmax then 

 h = Xmax- X1 

 X2 = Xmax 

o End 

o Calculate Y2 for X2 using an algorithm of your choice. 

o X1 = X2 

o Y1 = Y2 

 Until X2 >= Xmax 

The above pseudo-code shows that the step that updates the value of Y is a general 

one. This means that you can use any algorithm to calculate the next value of Y 

going from X1 to X2. You can use the Euler method or any version of the Runge-
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Kutta methods, just to name a few. Using more accurate methods yields better Y 

values. 

The implementation of the above pseudo-code should include a scheme that allows 

you to obtain/access the values of Y at regular intervals of X. The VBA code that 

comes next shows the details for such scheme. 

Testing with Excel VBA Code 
I tested the new algorithms using Excel taking advantage of the application’s 

worksheet for easy input and the display of intermediate calculations. The 

following listing shows the Excel VBA code used for testing. It implements the 

SOODES algorithm use a variety of basic numerical integration methods: 

Option Explicit 

' Version 2. Handles slopes that are zero or close to zero1 

Const EPSILON = 0.00000001 

 

Function MyFx(ByVal sFx As String, ByVal X As Double, ByVal Y As Double) As 

Double 

  Dim Res As Double, SignofDerive As Integer 

   

  sFx = UCase(sFx) 

  sFx = Replace(sFx, " ", "") 

  sFx = Replace(sFx, "X", "(" & X & ")") 

  sFx = Replace(sFx, "Y", "(" & Y & ")") 

  MyFx = Evaluate(sFx) 

End Function 

 

Function RK4(ByVal sFx As String, ByVal X As Double, ByVal Y As Double, _ 

             ByVal h As Double) As Double 

              

  Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double 

  Dim hby2 As Double 

   

  hby2 = h / 2 

  k1 = MyFx(sFx, X, Y) 

  k2 = MyFx(sFx, X + hby2, Y + hby2 * k1) 

  k3 = MyFx(sFx, X + hby2, Y + hby2 * k2) 

  k4 = MyFx(sFx, X + h, Y + h * k3) 

  RK4 = Y + h / 6 * (k1 + 2 * (k2 + k3) + k4) 

 

End Function 

 

Function RK4L(ByVal sFx As String, ByVal X As Double, ByVal Y As Double, _ 

             ByVal h As Double, ByVal Lambda As Integer) As Double 

              

  Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double 

  Dim hby2 As Double 

   

  hby2 = h / 2 

  k1 = MyFx(sFx, X, Y) 
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  k2 = MyFx(sFx, X + hby2, Y + hby2 * k1) 

  k3 = MyFx(sFx, X + hby2, Y + (1 / 2 - 1 / Lambda) * h * k1 + h / Lambda * 

k2) 

  k4 = MyFx(sFx, X + h, Y + (1 - Lambda / 2) * h * k2 + Lambda / 2 * h * k3) 

  RK4L = Y + h / 6 * (k1 + (4 - Lambda) * k2 + Lambda * k3 + k4) 

 

End Function 

 

 

Function RK2(ByVal sFx As String, ByVal X As Double, ByVal Y As Double, _ 

             ByVal h As Double) As Double 

              

  Dim k1 As Double, k2 As Double 

  Dim g As Double 

   

  g = 2 * h / 3 

  k1 = MyFx(sFx, X, Y) 

  k2 = MyFx(sFx, X + g, Y + g * k1) 

  RK2 = Y + h / 4 * (k1 + 3 * k2) 

 

End Function 

 

Sub DoEuler() 

  Dim X1 As Double, Y1 As Double, Xmax As Double 

  Dim X2 As Double, Y2 As Double, Deriv As Double 

  Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double 

  Dim sFx As String, R As Integer 

   

  X1 = [B1].Value 

  Y1 = [B2].Value 

  Xmax = [B3].Value 

  YMaxDelta = [B4].Value 

  sFx = [B5].Value 

  XnextIncr = [B6].Value 

  Xnext = X1 + XnextIncr 

  R = 2 

  Do 

    Deriv = MyFx(sFx, X1, Y1) 

    If Deriv < EPSILON Then Deriv = 0.0001 

    h = 2 * Abs(YMaxDelta / Deriv) 

    Do 

      h = h / 2 

      X2 = X1 + h 

      If X2 > Xnext Then 

        h = Xnext - X1 

        X2 = Xnext 

      End If 

      Y2 = Y1 + h * MyFx(sFx, X1, Y1) 

    Loop Until Abs(Y2 - Y1) <= YMaxDelta 

       

    If X2 = Xnext Then 

      Cells(R, 3) = X2 

      Cells(R, 4) = Y2 

      R = R + 1 

      Xnext = Xnext + XnextIncr 

      If Xnext > Xmax Then Xnext = Xmax 

    End If 
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    X1 = X2 

    Y1 = Y2 

  Loop Until X1 >= Xmax 

End Sub 

 

Sub DoRK4() 

  Dim X1 As Double, Y1 As Double, Xmax As Double 

  Dim X2 As Double, Y2 As Double, Deriv As Double 

  Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double 

  Dim sFx As String, R As Integer 

   

  X1 = [B1].Value 

  Y1 = [B2].Value 

  Xmax = [B3].Value 

  YMaxDelta = [B4].Value 

  sFx = [B5].Value 

  XnextIncr = [B6].Value 

  Xnext = X1 + XnextIncr 

  R = 2 

  Do 

    Deriv = MyFx(sFx, X1, Y1) 

    If Deriv < EPSILON Then Deriv = 0.0001 

    h = 2 * Abs(YMaxDelta / Deriv) 

    Do 

      h = h / 2 

      X2 = X1 + h 

      If X2 > Xnext Then 

        h = Xnext - X1 

        X2 = Xnext 

      End If 

      Y2 = RK4(sFx, X1, Y1, h) 

    Loop Until Abs(Y2 - Y1) <= YMaxDelta 

       

    If X2 = Xnext Then 

      Cells(R, 3) = X2 

      Cells(R, 4) = Y2 

      R = R + 1 

      Xnext = Xnext + XnextIncr 

      If Xnext > Xmax Then Xnext = Xmax 

    End If 

   

    X1 = X2 

    Y1 = Y2 

  Loop Until X1 >= Xmax 

End Sub 

 

Sub DoRK4Lambda() 

  Dim X1 As Double, Y1 As Double, Xmax As Double 

  Dim X2 As Double, Y2 As Double, Deriv As Double 

  Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double 

  Dim sFx As String, R As Integer, Lambda As Integer 

   

  X1 = [B1].Value 

  Y1 = [B2].Value 

  Xmax = [B3].Value 

  YMaxDelta = [B4].Value 
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  sFx = [B5].Value 

  XnextIncr = [B6].Value 

  Xnext = X1 + XnextIncr 

  Lambda = [B7].Value 

   

  R = 2 

  Do 

    Deriv = MyFx(sFx, X1, Y1) 

    If Deriv < EPSILON Then Deriv = 0.0001 

    h = 2 * Abs(YMaxDelta / Deriv) 

    Do 

      h = h / 2 

      X2 = X1 + h 

      If X2 > Xnext Then 

        h = Xnext - X1 

        X2 = Xnext 

      End If 

      Y2 = RK4L(sFx, X1, Y1, h, Lambda) 

    Loop Until Abs(Y2 - Y1) <= YMaxDelta 

       

    If X2 = Xnext Then 

      Cells(R, 3) = X2 

      Cells(R, 4) = Y2 

      R = R + 1 

      Xnext = Xnext + XnextIncr 

      If Xnext > Xmax Then Xnext = Xmax 

    End If 

   

    X1 = X2 

    Y1 = Y2 

  Loop Until X1 >= Xmax 

End Sub 

 

Sub DoRK2() 

  Dim X1 As Double, Y1 As Double, Xmax As Double 

  Dim X2 As Double, Y2 As Double, Deriv As Double 

  Dim h As Double, YMaxDelta As Double, Xnext As Double, XnextIncr As Double 

  Dim sFx As String, R As Integer 

   

  X1 = [B1].Value 

  Y1 = [B2].Value 

  Xmax = [B3].Value 

  YMaxDelta = [B4].Value 

  sFx = [B5].Value 

  XnextIncr = [B6].Value 

  Xnext = X1 + XnextIncr 

  R = 2 

  Do 

    Deriv = MyFx(sFx, X1, Y1) 

    If Deriv < EPSILON Then Deriv = 0.0001 

    h = 2 * Abs(YMaxDelta / Deriv) 

    Do 

      h = h / 2 

      X2 = X1 + h 

      If X2 > Xnext Then 

        h = Xnext - X1 

        X2 = Xnext 
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      End If 

      Y2 = RK2(sFx, X1, Y1, h) 

    Loop Until Abs(Y2 - Y1) <= YMaxDelta 

       

    If X2 = Xnext Then 

      Cells(R, 3) = X2 

      Cells(R, 4) = Y2 

      R = R + 1 

      Xnext = Xnext + XnextIncr 

      If Xnext > Xmax Then Xnext = Xmax 

    End If 

   

    X1 = X2 

    Y1 = Y2 

  Loop Until X1 >= Xmax 

End Sub 
 

The VBA function MyFX calculates the slope value based on a string that contains 

the function’s expression. This expression must use X and Y as the variable names 

for X and Y, respectively.  

The following subroutines tests the various versions of SOODES: 

 The subroutine DoEuler applies the Euler’s method. 

 The subroutine DoRK2 applies the second-order Runge-Kutta method. This 

subroutine calls function RK2 to calculate each subsequent value of Y. 

 The subroutine DoRK4 applies the fourth-order Runge-Kutta method. This 

subroutine calls function RK4 to calculate each subsequent value of Y. 

 The subroutine DoRK2L applies the general fourth-order Runge-Kutta 

method (developed by Tan Delin and Chen Zheng[3]). This subroutine calls 

function RK4L to calculate each subsequent value of Y. 

Figure 1 shows a sample Excel sheet that contains the input and output data 
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Figure 1. The Excel spreadsheet used to test Euler’s method with the SOODES 

algorithm. 

The Input Cells 

The VBA code relies on the following cells to obtain data: 

 Cells B1 and B2 supply the initial ODE value (X0,Y0). 

 Cell B3 contains the maximum value of X. 

 Cell B4 contains the value for the maximum change in Y for each step. 

 Cell B5 contains the expression for dY/dX = f(X,Y). Notice that the 

expression in cell B5 uses X and Y as the variable names. The expression is 

case insensitive. 

 Cell B5 contains the value of the increment in X that is used to display 

values of Y. 

 In the case of the general fourth-order Runge-Kutta method, cell B6 supplies 

the value for the lambda factor use by this method. 

Output 

The output appears in the following columns: 

 Column C displays the value of X. 

 Column D displays the values of Y. 

 Column E displays the calculated exact values of Y. 

X0 1 X Y Exact Error

Y0 0 1.1 0.095699 0.09531018 -0.00038894

Xmax 2 1.2 0.182986 0.182321557 -0.0006642

Max Delta y 0.01 1.3 0.263229 0.262364264 -0.00086478

dy/dx 1/X 1.4 0.337542 0.336472237 -0.00106984

X Next Incr 0.1 1.5 0.406726 0.405465108 -0.00126126

1.6 0.471449 0.470003629 -0.00144526

1.7 0.532252 0.530628251 -0.00162383

1.8 0.589562 0.587786665 -0.001775

1.9 0.643783 0.641853886 -0.00192939

2 0.695209 0.693147181 -0.00206207

Sqrt of Sum Squares 0.004463916
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 Column D displays the error in Y. The bottom-most cell in this column 

calculates the square root of the sum of error squared. This value gives a 

measure of the overall errors. 

Columns E and D serve to examine the errors associated with the particular version 

of SOODES.  

The Results 
I tested the various versions of the SOODES. 

Euler’s Method 

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change 

in function value equal to 0.01 and the results to be displayed at steps of 0.1. The 

results appear in Figure 1. The value of Y at X=2 was accurate to two decimals. 

Second-Order Runge-Kutta Method 

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change 

in function value equal to 0.01 and the results to be displayed at steps of 0.1. The 

results appear in Figure 1. The value of Y at X=2 was accurate to six decimals. 

 

 

Figure 2. The Excel spreadsheet used to test the second-order Runge-Kutta method 

with the SOODES algorithm. 

X0 1 X Y Exact Error

Y0 0 1.1 0.09531018 0.09531018 -2.4845E-09

Xmax 2 1.2 0.18232156 0.182321557 -4.7495E-09

Max Delta y 0.01 1.3 0.26236427 0.262364264 -6.9308E-09

dy/dx 1/X 1.4 0.33647225 0.336472237 -8.8504E-09

X Next Incr 0.1 1.5 0.40546512 0.405465108 -1.0694E-08

1.6 0.47000364 0.470003629 -1.2345E-08

1.7 0.53062827 0.530628251 -1.3981E-08

1.8 0.58778668 0.587786665 -1.5428E-08

1.9 0.6418539 0.641853886 -1.6801E-08

2 0.6931472 0.693147181 -1.8164E-08

Sqrt of Sum Squares 3.83081E-08
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Fourth-Order Runge-Kutta Method 

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change 

in function value equal to 0.01 and the results to be displayed at steps of 0.1. The 

results appear in Figure 3. The value of Y at X=2 was accurate to nine decimals. 

 

Figure 3. The Excel spreadsheet used to test the fourth-order Runge-Kutta method 

with the SOODES algorithm. 

 

General Fourth-Order Runge-Kutta Method 

I tested dY/dX=1/X for integrating from (1, 0) to 2. I specified a maximum change 

in function value equal to 0.01 and the results to be displayed at steps of 0.1. I set 

the lambda factor to be 3. The results appear in Figure 4. The value of Y at X=2 

was accurate to nine decimals. The results as just as accurate as the regular fourth-

order Runge-Kutta method. 

X0 1 X Y Exact Error

Y0 0 1.1 0.09531018 0.09531018 -7.3685E-12

Xmax 2 1.2 0.182321557 0.182321557 -1.4057E-11

Max Delta y 0.01 1.3 0.262364264 0.262364264 -2.056E-11

dy/dx 1/X 1.4 0.336472237 0.336472237 -2.6265E-11

X Next Incr 0.1 1.5 0.405465108 0.405465108 -3.1719E-11

1.6 0.470003629 0.470003629 -3.6618E-11

1.7 0.530628251 0.530628251 -4.1495E-11

1.8 0.587786665 0.587786665 -4.5745E-11

1.9 0.641853886 0.641853886 -4.9821E-11

2 0.693147181 0.693147181 -5.3885E-11

Sqrt of Sum Squares 1.1363E-10
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Figure 4. The Excel spreadsheet used to test the general fourth-order Runge-Kutta 

method with the SOODES algorithm. 

Conclusion 
The SOODES algorithm provides a mechanism to solve ODE problems in a 

manner that has the Y values calculated at approximately regular intervals.  
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