
Slope-Oriented Numerical Integration 1

Copyright © 2014 by Namir Clement Shammas

Slope-Oriented Numerical Integration
Methods

by
Namir Shammas

Introduction
Numerical integration methods calculate the area under the curve of a function at

various values of the independent variable X. Method like Simpson’s rule calculate

the area at regular intervals of X. By contrast, Gaussian quadrature methods

calculate the area at roots of orthogonal polynomials. The general accuracy of the

calculated area increases with increasing the number of sampled X values. In the

case of methods like Simpson’s rule, the smaller increments in X yield higher

accuracy in calculating the area. In the case of Gauss quadrature, using higher

polynomial orders yields more roots and consequently more accurate results.

This paper presents a new and adaptive approach for numerical integration. I will

call this new method the Slope-Oriented Numerical Integration (or SONI for

short). The new algorithm focuses on estimating the increment in X such that the

change in the value of Y (=f(X)) does not exceed a preselected limit and remains

approximately constant. This scheme allows the adaptive method to move fast in

small absolute slope sections of f(X) and conversely move slow through high

absolute slope values.

The Basic Algorithm
The basic algorithm is very simple. Here is the pseudo-code for the basic

algorithm:

Given Y=f(X), we need to integrate from X1 to Xmax, with YMaxDelta maximum

change in Y and max change in X of XMaxDelta:

 Y1=f(X1)

 Area = 0

 Repeat

o Deriv = f’(X1)

o Adjust Deriv to be a small value if it is zero or near zero

o h = 2 * |YMaxDelta / Deriv|

o Repeat

 h = h / 2

 If h > XMaxDelta then h = XMaxDelta

Slope-Oriented Numerical Integration 2

Copyright © 2014 by Namir Clement Shammas

 X2 = X1 + h

o Until |Y2 - Y1| <= YMaxDelta

o If X2 > Xmax then

 h = Xmax- X1

 X2 = Xmax

o End

o Area = Area + area of f(X) between X1 and X2 using an algorithm

of your choice.

o X1 = X2

o Y1 = Y2

 Until X2 >= Xmax

The above pseudo-code shows that the step that updates the value of the area is a

general one. This means that you can use any algorithm to calculate the (partial)

area between X1 and X2. You can use the Trapezoidal rule, Simpson’s rule,

Simpson’s 3/8th rule, Gaussian Quadrature, and Romberg’s method, t name a few.

Using more accurate methods yields better final results.

Testing with Excel VBA Code
I tested the new algorithms using Excel taking advantage of the application’s

worksheet for easy input and the display of intermediate calculations. The

following listing shows the Excel VBA code used for testing. It implements the

SONI algorithm use a variety of basic numerical integration methods:

Option Explicit

' Version 2.1. Handles slopes that are zero or close to zero1

Const EPSILON = 0.00000001

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = UCase(sFx)

 sFx = Replace(sFx, " ", "")

 sFx = Replace(sFx, "EXP(", "!!")

 sFx = Replace(sFx, "X", "(" & X & ")")

 sFx = Replace(sFx, "!!", "EXP(")

 MyFx = Evaluate(sFx)

End Function

Function MyDx(ByVal sFx As String, ByVal X As Double) As Double

 Dim h As Double, Res As Double, Fxp As Double

 h = 0.001 * (Abs(X) + 1)

 Fxp = MyFx(sFx, X + h)

 Res = (Fxp - MyFx(sFx, X - h)) / 2 / h

 If Abs(Res) < EPSILON Then

 Res = EPSILON * Sgn(Res)

 If Res = 0 Then Res = EPSILON

 End If

 MyDx = Res

End Function

Slope-Oriented Numerical Integration 3

Copyright © 2014 by Namir Clement Shammas

Function GaussQuad2(ByVal sFx As String, ByVal A As Double, ByVal B As

Double) As Double

 Const ORDER = 2

 Dim Z(ORDER) As Double, Wt(ORDER) As Double, Sum As Double

 Dim I As Integer

 Dim K1 As Double, K2 As Double

 K1 = (B - A) / 2

 K2 = (A + B) / 2

 Wt(1) = 1

 Z(1) = 1 / Sqr(3)

 Wt(2) = 1

 Z(2) = -Z(1)

 Sum = 0

 For I = 1 To ORDER

 Sum = Sum + Wt(I) * MyFx(sFx, K1 * Z(I) + K2)

 Next I

 GaussQuad2 = K1 * Sum

End Function

Function GaussQuad3(ByVal sFx As String, ByVal A As Double, ByVal B As

Double) As Double

 Const ORDER = 3

 Dim Z(ORDER) As Double, Wt(ORDER) As Double, Sum As Double

 Dim I As Integer

 Dim K1 As Double, K2 As Double

 K1 = (B - A) / 2

 K2 = (A + B) / 2

 Z(1) = 0

 Wt(1) = 8 / 9

 Z(2) = Sqr(3 / 5)

 Wt(2) = 5 / 9

 Z(3) = -Z(2)

 Wt(3) = Wt(2)

 Sum = 0

 For I = 1 To ORDER

 Sum = Sum + Wt(I) * MyFx(sFx, K1 * Z(I) + K2)

 Next I

 GaussQuad3 = K1 * Sum

End Function

Function GaussQuad4(ByVal sFx As String, ByVal A As Double, ByVal B As

Double) As Double

 Const ORDER = 4

 Dim Z(ORDER) As Double, Wt(ORDER) As Double, Sum As Double

 Dim I As Integer

 Dim K1 As Double, K2 As Double

 K1 = (B - A) / 2

 K2 = (A + B) / 2

 Z(1) = Sqr((3 - 2 * Sqr(6 / 5)) / 7)

 Wt(1) = (18 + Sqr(30)) / 36

 Z(2) = Sqr((3 + 2 * Sqr(6 / 5)) / 7)

Slope-Oriented Numerical Integration 4

Copyright © 2014 by Namir Clement Shammas

 Wt(2) = (18 - Sqr(30)) / 36

 Z(3) = -Z(1)

 Wt(3) = Wt(1)

 Z(4) = -Z(2)

 Wt(4) = Wt(2)

 Sum = 0

 For I = 1 To ORDER

 Sum = Sum + Wt(I) * MyFx(sFx, K1 * Z(I) + K2)

 Next I

 GaussQuad4 = K1 * Sum

End Function

Function GaussQuad5(ByVal sFx As String, ByVal A As Double, ByVal B As

Double) As Double

 Const ORDER = 5

 Dim Z(ORDER) As Double, Wt(ORDER) As Double, Sum As Double

 Dim I As Integer

 Dim K1 As Double, K2 As Double

 K1 = (B - A) / 2

 K2 = (A + B) / 2

 Z(1) = 0

 Z(2) = Sqr(5 - 2 * Sqr(10 / 7)) / 3

 Z(3) = Sqr(5 + 2 * Sqr(10 / 7)) / 3

 Z(4) = -Z(2)

 Z(5) = -Z(3)

 Wt(1) = 128 / 225

 Wt(2) = (322 + 13 * Sqr(70)) / 900

 Wt(3) = (322 - 13 * Sqr(70)) / 900

 Wt(4) = Wt(2)

 Wt(5) = Wt(3)

 Sum = 0

 For I = 1 To ORDER

 Sum = Sum + Wt(I) * MyFx(sFx, K1 * Z(I) + K2)

 Next I

 GaussQuad5 = K1 * Sum

End Function

Sub UseTrapezoid()

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

Slope-Oriented Numerical Integration 5

Copyright © 2014 by Namir Clement Shammas

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + h / 2 * (Y1 + Y2)

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D2].Value = "Trapezoid"

 [E2].Value = Sum

End Sub

Sub UseSimpson()

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 If h > XMaxDelta Then h = XMaxDelta

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + (X2 - X1) / 6 * (MyFx(sFx, X1) + 4 * MyFx(sFx, (X1 + X2) / 2)

+ MyFx(sFx, X2))

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D3].Value = "Simpson"

 [E3].Value = Sum

End Sub

Sub UseSimpson38()

Slope-Oriented Numerical Integration 6

Copyright © 2014 by Namir Clement Shammas

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 If h > XMaxDelta Then h = XMaxDelta

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + (X2 - X1) / 8 * (MyFx(sFx, X1) + 3 * MyFx(sFx, (2 * X1 + X2)

/ 3) + 3 * MyFx(sFx, (X1 + 2 * X2) / 3) + MyFx(sFx, X2))

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D4].Value = "Simpson 3/8"

 [E4].Value = Sum

End Sub

Sub UseGauss2()

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 If h > XMaxDelta Then h = XMaxDelta

Slope-Oriented Numerical Integration 7

Copyright © 2014 by Namir Clement Shammas

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + GaussQuad2(sFx, X1, X2)

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D5].Value = "Gauss 2"

 [E5].Value = Sum

End Sub

Sub UseGauss3()

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 If h > XMaxDelta Then h = XMaxDelta

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + GaussQuad3(sFx, X1, X2)

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D6].Value = "Gauss 3"

 [E6].Value = Sum

End Sub

Sub UseGauss4()

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

Slope-Oriented Numerical Integration 8

Copyright © 2014 by Namir Clement Shammas

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 If h > XMaxDelta Then h = XMaxDelta

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + GaussQuad4(sFx, X1, X2)

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D7].Value = "Gauss 4"

 [E7].Value = Sum

End Sub

Sub UseGauss5()

 Dim Sum As Double

 Dim X1 As Double, Y1 As Double, Xmax As Double

 Dim X2 As Double, Y2 As Double

 Dim h As Double, YMaxDelta As Double, XMaxDelta As Double

 Dim sFx As String

 X1 = [B1].Value

 Xmax = [B2].Value

 YMaxDelta = [B3].Value

 XMaxDelta = [B4].Value

 sFx = [B5].Value

 Y1 = MyFx(sFx, X1)

 Sum = 0

 Do

 DoEvents

 h = 2 * Abs(YMaxDelta / MyDx(sFx, X1))

 Do

 h = h / 2

 If h > XMaxDelta Then h = XMaxDelta

 X2 = X1 + h

 Y2 = MyFx(sFx, X2)

 Loop Until Abs(Y2 - Y1) <= YMaxDelta

 If X2 > Xmax Then

 X2 = Xmax

Slope-Oriented Numerical Integration 9

Copyright © 2014 by Namir Clement Shammas

 Y2 = MyFx(sFx, X2)

 End If

 Sum = Sum + GaussQuad5(sFx, X1, X2)

 X1 = X2

 Y1 = Y2

 Loop Until X1 >= Xmax

 [D8].Value = "Gauss 5"

 [E8].Value = Sum

End Sub

Sub DoAll()

 [D1].Value = "Method"

 [E1].Value = "Integral"

 UseTrapezoid

 UseSimpson

 UseSimpson38

 UseGauss2

 UseGauss3

 UseGauss4

 UseGauss5

End Sub

The VBA function MyFX calculates the function value based on a string that

contains the function’s expression. This expression must use X as the variable

name. The function MyDx calculates the slope of a function.

The subroutine DoAll tests the various versions of SONI. These versions tap into

the following basic integration methods:

 Trapezoidal rule.

 Simpson’s rule.

 Simpson’s 3/8th rule.

 Gaussian quadrature of order 2, 3, 4, and 5.

The subroutine DoAll calls other subroutines to test different versions of the SONI

methods. These subroutines include UseTrapezoid, UseSimpson, UseSimpson38,

UseGauss2, UseGauss3, UseGauss4, and UseGauss5. The last four subroutines

call functions GaussQuad2, GaussQuad3, GaussQuad4, and GaussQuad5,

respectively.

Figure 1 shows a sample Excel sheet that contains the input and output data

Slope-Oriented Numerical Integration 10

Copyright © 2014 by Namir Clement Shammas

Figure 1. The Excel spreadsheet used to compare the different versions of the

SONI algorithm.

The Input Cells

The VBA code relies on the following cells to obtain data:

 Cells B1 and B2 supply the range for integration.

 Cell B3 contains the maximum value in f(X).

 Cell B4 contains the maximum step in X.

 Cell B5 contains the expression for f(X). Notice that the expression in cell

B4 use X as the variable name. The expression is case insensitive.

 Cell B6 contains the value of the exact integral.

Output

The output appears in columns D, E, and F. The integrals appear in column E and

their associated errors appear in column F.

The Results
I tested the various versions of the SONI method on different functions, integrals,

and maximum increment in f(X) values.

Integral of 1/X
I calculated the integral of 1/X for different ranges. Figure 2 shows results for the

integral from 1 to 2 (equal to ln(2)) and for the maximum change in function value

equal to 0.01:

X0 1 Method Integral Error

Xmax 2 Trapezoid 0.699360657 0.006213477

Max Delta y 0.01 Simpson 0.693147181 2.8028E-10

Max Delta X 0.1 Simpson 3/8 0.693147181 1.24572E-10

f(X) 1/X Gauss 2 0.69314718 -1.8685E-10

Exact Integral 0.693147 Gauss 3 0.693147181 -3.3307E-15

Gauss 4 0.693147181 0

Gauss 5 0.693147181 0

Slope-Oriented Numerical Integration 11

Copyright © 2014 by Namir Clement Shammas

Figure 2. The result for integrating 1/X from 1 to 2.

As expected, the more advanced functions generated less errors. The Gaussian

quadrature of order 4 ad 5 gave exact values in Excel.

For the same integral between 1 and 10 (equal to ln(10)) and a maximum change in

function value equal to 0.0001. Figure 3 shows these results.

Figure 3. The result for integrating 1/X from 1 to 10.

Again, the more advanced methods yield better (and accurate) results. In the case

of the integral between 1 and 100, Figure 4 shows the results:

Figure 4. The result for integrating 1/X from 1 to 100.

X0 1 Method Integral Error

Xmax 2 Trapezoid 0.699360657 0.006213477

Max Delta y 0.01 Simpson 0.693147181 2.8028E-10

Max Delta X 0.1 Simpson 3/8 0.693147181 1.24572E-10

f(X) 1/X Gauss 2 0.69314718 -1.8685E-10

Exact Integral 0.693147 Gauss 3 0.693147181 -3.3307E-15

Gauss 4 0.693147181 0

Gauss 5 0.693147181 0

X0 1 Method Integral Error

Xmax 10 Trapezoid 2.3095793 0.006994192

Max Delta y 0.001 Simpson 2.3025851 1.99467E-11

Max Delta X 0.1 Simpson 3/8 2.3025851 8.86313E-12

f(X) 1/X Gauss 2 2.3025851 -1.32969E-11

Exact Integral 2.302585 Gauss 3 2.3025851 0

Gauss 4 2.3025851 0

Gauss 5 2.3025851 0

X0 1 Method Integral Error

Xmax 100 Trapezoid 4.64859732 0.043427134

Max Delta y 0.001 Simpson 4.605170186 4.10045E-11

Max Delta X 0.1 Simpson 3/8 4.605170186 1.8229E-11

f(X) 1/X Gauss 2 4.605170186 -2.7329E-11

Exact Integral 4.60517019 Gauss 3 4.605170186 0

Gauss 4 4.605170186 0

Gauss 5 4.605170186 0

Slope-Oriented Numerical Integration 12

Copyright © 2014 by Namir Clement Shammas

On the Gaussian quadrature of orders 3, 4, and 5 yield accurate results.

The e-x sin(x) Integral
Figure 5 shows the results of the integrating the damped oscillating function e-

xsin(x) between 0 and 5, for a maximum function change value of 0.01:

Figure 5. The first set of results for integrating e-Xsin(X) from 0 to 5.

The higher order Gaussian quadrature versions yield more accurate results. The

improvement is a few order in magnitude. Figure 6 shows the same integrals for a

maximum function change value of 0.1:

Figure 6. The second set of results for integrating e-Xsin(X) from 0 to 5.

As expected, the reduction in the maximum change in function value also increases

the errors in the results by several order of magnitudes. Gaussian quadrature of

orders 4 and 5 still maintain exact solutions.

The e-x sin(x)2 Integral
Figure 7 shows the results of the integrating the damped oscillating function e-

xsin(x)2 between 0 and 5, for a maximum function change value of 0.001:

X0 0 Method Integral Error

Xmax 5 Trapezoid 0.501177985 -0.001096955

Max Delta y 0.01 Simpson 0.502274925 -1.54401E-08

Max Delta X 0.1 Simpson 3/8 0.502274933 -6.86215E-09

f(X) EXP(-X)*SIN(X) Gauss 2 0.50227495 1.02935E-08

Exact Integral 0.50227494 Gauss 3 0.50227494 -1.32561E-13

Gauss 4 0.50227494 0

Gauss 5 0.50227494 0

X0 0 Method Integral Error

Xmax 5 Trapezoid 0.482978533 -0.019296407

Max Delta y 0.1 Simpson 0.50227487 -6.98014E-08

Max Delta X 0.1 Simpson 3/8 0.502274909 -3.10208E-08

f(X) EXP(-X)*SIN(X) Gauss 2 0.502274987 4.65361E-08

Exact Integral 0.50227494 Gauss 3 0.50227494 -1.96576E-12

Gauss 4 0.50227494 0

Gauss 5 0.50227494 0

Slope-Oriented Numerical Integration 13

Copyright © 2014 by Namir Clement Shammas

Figure 7. The first set of results for integrating e-Xsin(X)2 from 0 to 5.

The Trapezoidal method generates a very large error! The 4th order of Gaussian

quadrature generates an exact result. The other method still generate good results.

Reducing the maximum function change value to 0.01 yields the results, in Figure

8, that show increased errors, except for the Gaussian quadrature of order 4 and 5.

Figure 8. The second set of results for integrating e-Xsin(X)2 from 0 to 5.

 Conclusion
The Slope-Oriented Numerical Integral method is a novice and flexible adaptive

strategy for numerical integration. It allows you to accurately keep pace with a fux

while using traditional numerical analysis to perform micro versions of numerical

integration.

References
1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition,

Cambridge University Press; 3rd edition, September 10, 2007.

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage

Learning, 9th edition, August 9, 2010.

X0 0 Method Integral Error

Xmax 5 Trapezoid 3.097892139 2.701093357

Max Delta y 0.001 Simpson 0.396798786 4.81825E-09

Max Delta X 0.1 Simpson 3/8 0.396798784 2.14134E-09

f(X) EXP(-X)*(SIN(X))^2 Gauss 2 0.396798778 -3.21227E-09

Exact Integral 0.396798782 Gauss 3 0.396798782 1.06137E-13

Gauss 4 0.396798782 0

Gauss 5 0.396798782 4.996E-16

X0 0 Method Integral Error

Xmax 5 Trapezoid 30.97892139 30.58212261

Max Delta y 0.01 Simpson 0.396798828 4.62901E-08

Max Delta X 0.1 Simpson 3/8 0.396798802 2.05702E-08

f(X) EXP(-X)*(SIN(X))^2 Gauss 2 0.396798751 -3.08629E-08

Exact Integral 0.396798782 Gauss 3 0.396798782 3.0726E-12

Gauss 4 0.396798782 0

Gauss 5 0.396798782 0

Slope-Oriented Numerical Integration 14

Copyright © 2014 by Namir Clement Shammas

Document Information
Version Date Comments

1.0.0 3/12/2014 Initial release.

1.1.0 3/15/2014 Modified the Excel

VBA to handle slopes

of zero and near zero.

1.2.0 3/26/2014 Added a maximum

limit for the change in

X. This change

increased, in general,

the accuracy of the

results.

