
Quantum Shammas Polynomials 1D 1

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Quantum Shammas Polynomials
Part 1D of the Study

By

Namir Shammas

Contents
Introduction .. 2

The Quantum Shammas Polynomial Function .. 3

The Quantum Padé Shammas Polynomial Function ... 4

The Quantum Shammas Fourier Series Function .. 5

The PSO Function .. 5

The Random Search Function .. 8

The Halton Quasi Random Search Function ...10

The Sobol Quasi Random Search Function ...12

Testing Quantum Shammas Polynomials ..14

Testing Bessel Function Fit with PSO-Run1 ...14

Testing Bessel Function Fit with PSO-Run2 ...18

Testing Bessel Function Fit with Random Search Optimization-Run122

Testing Bessel Function Fit with Random Search Optimization-Run226

Testing Bessel Function Fit with Halton Random Search Optimization-Run130

Testing Bessel Function Fit with Halton Random Search Optimization-Run234

Testing Bessel Function Fit with Sobol Random Search Optimization-Run138

Testing Bessel Function Fit with Sobol Random Search Optimization-Run242

Conclusion for Bessel Function Fitting ...46

Testing ln(x) Function Fit with PSO ..47

Testing ln(x) Function Fit with Random Search Optimization50

Testing ln(x) Function Fit with Halton Random Search Optimization54

Testing ln(x) Function Fit with Sobol Random Search Optimization58

Quantum Shammas Polynomials 1D 2

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Conclusion for fitting the ln(x) Function ...62

Testing the Right-Side Gauss-Bell Function Fit with PSO63

Testing the Right-Side Gauss-Bell Function Fit with Random Search Optimization

 ..66

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search

Optimization ...70

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search

Optimization ...74

Conclusion for fitting the Right-Side Normal Gaussian Function78

Conclusion for Part 1D ..79

Next is Part 1E ...79

Document History ..79

Introduction
Part 1 of this study introduced you to Quantum Shammas Polynomials. Parts 1B and

1C showed you examples of using power ranges that are wider and narrower,

respectively, that the one in Part 1. In this part, I present a version of the Quantum

Shammas Polynomials that have power ranges that alternate between wide and

narrow ranges. The equation for Quantum Shammas Polynomials is:

y(x) = a0 + a1*xr1 + a2*xr2 + … + an*xrn for x>=0 (1)

In this part, the odd-indexed ranges (r1, r3, etc) have certain values that are bigger

than those of even-indexed ranges (r2, r4, etc). The values of these ranges, which I

chose arbitrarily, for the first four polynomial terms are:

1) The range for r1 is (0.5, 1.5) with a span of 1 within the range.

2) The range for r1 is (1.7, 2.3) with a span of 0.6 within the range and a gap of

0.2 with ranges r1 and r3.

3) The range for r3 is (2.5, 3.5) with a span of 1 within the range and a gap of 0.2

with ranges r2 and r4.

4) The range for r4 is (3.7, 4.3) with a span of 0.6 within the range and a gap of

0.2 with ranges r3.

Quantum Shammas Polynomials 1D 3

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The limits of these ranges never overlap and have a gap of 0.2 between them. This

gap ensures that no two random powers have the same exact value. The values of

the random powers (ri) are chosen to minimize the sum of errors squared between

some observed values of y(x) and the ones calculated using equation (1). This

minimization process involves optimization using either an optimization algorithm

or random search. The latter method is feasible in the case of Quantum Shammas

Polynomials because the ranges for the random powers are relatively small. This

study shows using an evolutionary optimization algorithm, randoms search

optimization, and quasi-random sequence search optimization (using the Holton and

Sobol sequences).

The Quantum Shammas Polynomial Function
The Quantum Shammas Polynomial function in MATLAB is:

function SSE = quantShammasPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 n = length(xData);

 order = length(pwr);

 SSE = 0;

 X = [1+zeros(n,1)];

 for j=1:order

 X = [X xData.^pwr(j)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 SStot = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

 yCalc = zeros(n,1);

 for i=1:n

 yCalc(i) = QSPcoeff(1);

 for j=1:order

 yCalc(i) = yCalc(i) + QSPcoeff(j+1)*xData(i)^pwr(j);

 end

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

end

The above function takes one input parameter, the array of random powers pwr. The

function returns the sum of errors squared. The function builds the regression matrix

and calls function regress() to obtain the regression coefficients. The function then

Quantum Shammas Polynomials 1D 4

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

calculates the projected y values and uses them to calculate the result. The function

also calculates the total sum of squared differences between the observed values and

their mean value. Finally, the function calculates the coefficient of determination and

stores it in the global variable glbRsqr. The function also uses global variables to

access the x and y data, return the calculated values of y, and return the coefficients

of the fitted Quantum Shammas Polynomial.

The Quantum Padé Shammas Polynomial Function
The Quantum Shammas Padé Polynomial function in MATLAB is:

function SSE = quantShammasPadéPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 global orderP orderQ

 n = length(xData);

 order = length(pwr);

 SSE = 0;

 X = [1+zeros(n,1)];

 for j=1:orderP

 X = [X xData.^pwr(j)];

 end

 for j=1:orderQ

 k = orderP + j;

 X = [X -yData.*xData.^pwr(k)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 SStot = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

 yCalc = zeros(n,1);

 for i=1:n

 sumP = QSPcoeff(1);

 for j=1:orderP

 sumP = sumP + QSPcoeff(j+1)*xData(i)^pwr(j);

 end

 sumQ = 1;

 for j=1:orderQ

 k = orderP + j;

 sumQ = sumQ - QSPcoeff(k+1)*yData(i)*xData(i)^pwr(k);

 end

 yCalc(i) = sumP / sumQ;

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

Quantum Shammas Polynomials 1D 5

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

end

The above function resembles the quantShammasPoly() except it performs a Padé

polynomial fit and calculations for the projected y data. The function returns the sum

of errors squared. The function also calculates the coefficient of determination and

stores it in the global variable glbRsqr. The function also uses global variables to

access the x and y data, return the calculated values of y, and return the coefficients

of the fitted Quantum Shammas Polynomial.

The Quantum Shammas Fourier Series Function
The Quantum Shammas Fourier Series (Gen 1) function in MATLAB is:

function SSE = quantShammasFourierPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 n = length(xData);

 order = length(pwr);

 X = [1+zeros(n,1)];

 for j=1:2:order

 X = [X sin(pwr(j)*xData) cos(pwr(j+1)*xData)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

 yCalc = zeros(n,1);

 for i=1:n

 yCalc(i) = QSPcoeff(1);

 for j=2:2:order

 yCalc(i) = yCalc(i) + QSPcoeff(j)*sin(pwr(j-1)*xData(i)) + ...

 QSPcoeff(j+1)*cos(pwr(j)*xData(i));

 end

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

end

The above function resembles the quantShammasPoly() except it performs a Fourier

series fit (with sine and cosine terms) and calculations for the projected y data. The

function returns the sum of errors squared. The function also calculates the

coefficient of determination and stores it in the global variable glbRsqr.

The PSO Function
The next function implements the Particle Swarm Optimization (PSO) algorithm:

Quantum Shammas Polynomials 1D 6

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

function [bestX,bestFx] = psox(fx,Lb,Ub,MaxPop,MaxIters,bShow)

% PSOX implements particle swarm optimization.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxPop - maximum population of swarm.

% MaxIters - maximum number of iterations

% bShow - Boolean flag to request viewing intermediate results.

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

%

% Example

% =======

%

% >>

%

 if nargin < 6, bShow = false; end

 n = length(Lb);

 m = n + 1;

 pop = 1e+99+zeros(MaxPop,m);

 pop2 = pop;

 aPop = zeros(1,n);

 vel = zeros(MaxPop,n);

 % Initizialize population

 for i=1:MaxPop

 pop(i,1:n) = Lb + (Ub - Lb) .* rand(1,n);

 vel(i,1:n) = (Ub - Lb) / 10 .* (2*rand(1,n)-1);

 pop(i,m) = fx(pop(i,1:n));

 pop2(i,:) = pop(i,:);

 aPop(1:n) = Lb + (Ub - Lb) .* rand(1,n);

 f0 = fx(aPop);

 if f0 < pop2(i,m)

 pop2(i,1:n) = aPop(1:n);

 pop2(i,m) = f0;

 end

 end

 pop = sortrows(pop,m);

 pop2 = pop;

 if bShow

 fprintf('Best X =');

 fprintf(' %f,', pop(1,1:n));

 fprintf('Best Fx = %e\n', pop(1,m));

Quantum Shammas Polynomials 1D 7

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 end

 bestFx = pop(1,m);

 % pso loop

 for iter = 1:MaxIters

 IterFactor = sqrt((iter - 1)/(MaxIters - 1));

 w = 1 - 0.3 * IterFactor;

 c1 = 2 - 1.9 * IterFactor;

 c2 = 2 - 1.9 * IterFactor;

 for i=2:MaxPop

 for j=1:n

 vel(i,j) = w*vel(i,j) + c1*rand*(pop(1,j) - pop(i,j)) + ...

 c2*rand*(pop2(i,j) - pop(i,j));

 p = pop(i,j) + vel(i,j);

 if p < Lb(j) || p > Ub(j)

 pop(i,j) = Lb(j) + (Ub(j) - Lb(j))*rand;

 else

 pop(i,j) = p;

 end

 end

 pop(i,m) = fx(pop(i,1:n));

 % find new global best?

 if pop(1,m) > pop(i,m)

 pop(1,:) = pop(i,:);

 % find new local best?

 elseif pop(i,m) < pop2(i,m)

 pop2(i,:) = pop(i,:);

 end

 end

 [pop,Idx] = sortrows(pop,m);

 pop2 = sortrows(pop2,m);

 vel = vel(Idx,:);

 if bestFx > pop(1,m)

 if bShow

 fprintf('%i: Best X = %i', iter);

 fprintf(' %f,', pop(1,1:n));

 fprintf('Best Fx = %e\n', pop(1,m));

 end

 bestFx = pop(1,m);

 end

 end

 bestFx = pop(1,m);

 bestX = pop(1,1:n);

end

Quantum Shammas Polynomials 1D 8

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The function has the following input parameters:

• The parameter fx is the handle of the optimized function.

• The parameter Lb is the row array of low bound values.

• The parameter Ub is the row array of upper bound values.

• The parameter MaxPop is the maximum population of swarm.

• The parameter MaxIters is the maximum number of iterations

• The parameter bShow is the Boolean flag to request viewing intermediate

results.

The output parameters are:

• The parameter bestX is the array of best solutions.

• The parameter bestFx is the best optimized function value.

The Random Search Function
The next function performs a random search optimization:

function [bestX,bestFx] = randomSearch(fx,Lb,Ub,MaxIters)

% RANDOMSEARCH performs random search optimization.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 for irun=1:2

 for iter = 1:MaxIters

 X = Lb + (Ub - Lb).*rand(1,n);

 f = fx(X);

 if f < bestFx

Quantum Shammas Polynomials 1D 9

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The function has the following input parameters:

Quantum Shammas Polynomials 1D 10

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

• The parameter fx is the handle of the optimized function.

• The parameter Lb is the row array of low bound values.

• The parameter Ub is the row array of upper bound values.

• The parameter MaxIters is the maximum number of iterations

The output parameters are:

• The parameter bestX is the array of best solutions.

• The parameter bestFx is the best optimized function value.

The above function is easy to code and works well with Quantum Shammas

Polynomials since the range of each power is relatively small (<2). The above

improvement performs two passes for the random search. The first pass uses the

lower and upper ranges (in parameters Lb and Ub) that are supplied to the function.

The second pass narrows the values of arrays Lb and Ub to closely bracket the best

values of X obtained at the end of the first pass.

The Halton Quasi Random Search Function
The next function performs random-search optimization using the Halton quasi-

random sequences:

function [bestX,bestFx] = haltonRandomSearch(fx,Lb,Ub,MaxIters)

% HALTONRANDOMSEARCH performs optimization using the Halton

quasi-random sequence.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

Quantum Shammas Polynomials 1D 11

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 % set up halton sequences

 p = haltonset(n,'Skip',1e3,'Leap',1e2);

 p = scramble(p,'RR2');

 rando = net(p,MaxIters);

 for irun=1:2

 for iter = 1:MaxIters

 for i=1:n

 X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i);

 end

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

Quantum Shammas Polynomials 1D 12

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 end

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The above function has the same input and output parameters as the randomSearch()

function. The above code shows lines in red that highlight the statements that

generate multiple columns of the Halton sequence and stores them in the matrix

rando. The function accesses the various elements of matrix rando as pseudo-random

numbers are needed.

The Sobol Quasi Random Search Function
The next function performs random-search optimization using the Sobol quasi-

random sequences:

function [bestX,bestFx] = sobolRandomSearch(fx,Lb,Ub,MaxIters)

% SOBOLRANDOMSEARCH performs optimization using the Sobol quasi-

random sequence.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 % set up Sobol sequences

 p = sobolset(n,'Skip',1e3,'Leap',1e2);

 p = scramble(p,'MatousekAffineOwen');

 rando = net(p,MaxIters);

 for irun=1:2

Quantum Shammas Polynomials 1D 13

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 for iter = 1:MaxIters

 for i=1:n

 X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i);

 end

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

Quantum Shammas Polynomials 1D 14

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 Ub

 end

end

The above function has the same input and output parameters as the randomSearch()

function. The above code shows lines in red that highlight the statements that

generate multiple columns of the Sobol sequence and store them in the matrix rando.

The function accesses the various elements of matrix rando as pseudo-random

numbers are needed.

Testing Quantum Shammas Polynomials
The next sections show examples of using the Quantum Shammas Polynomials to

fit a selection of arbitrary functions. The results of the Quantum Shammas

Polynomials are compared with those of classical polynomials. The adjusted

coefficient of determinations are good indicators of how the two types of polynomial

stack up against each other.

Testing Bessel Function Fit with PSO-Run1
The next MATLAB script (found in file testBessel1pso.m) tests fitting Bessel J(0, x)

for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order

Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf(sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

Quantum Shammas Polynomials 1D 15

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

Quantum Shammas Polynomials 1D 16

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above code copies the console output to a diary text file. It also writes the

summary results to an Excel table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.766113533 2.299726913 3.498583136 4.294254393

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

1.001265312 -0.020919321 -0.276014328 0.071689049 -0.00988616

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999997844 0.999803041

Table 1. Summary of the results appearing in file besselj_0_x_run1.xlsx.

Quantum Shammas Polynomials 1D 17

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The second row shows the powers for the fitted Quantum Shammas Polynomial. The

fifth row shows the intercept (below QSPcoeff1) and to its right the coefficients for

the other coefficients of the Quantum Shammas Polynomial. The eighth row shows

the intercept and coefficients for the classical polynomial. The cell under r_sqr1

shows the adjusted coefficient of determination for the fitted Quantum Shammas

Polynomial. The cell under r_sqr2 shows the adjusted coefficient of determination

for the fitted classical polynomial. The adjusted coefficient of determination for the

fitted Quantum Shammas Polynomial is higher than the one for the classical

polynomial. This condition indicates that the Quantum Shammas Polynomial

performs a better fit for the above example.

Quantum Shammas Polynomials 1D 18

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_run1.jpg) for the Bessel function and the

two fitted polynomials:

Figure 1. The graph from file besselj_0_x_run1.jpg.

The above graph shows a reasonably good fit for both polynomials. Keep in mind

that the Quantum Shammas Polynomial is slightly better than the one for the

classical polynomial

Testing Bessel Function Fit with PSO-Run2
The next MATLAB script (found in file testBessel2pso.m) tests fitting Bessel J(0,

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order

Quantum Shammas Polynomial and a sixth order classical polynomial.

Quantum Shammas Polynomials 1D 19

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf(sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 1D 20

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox()) performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code copies the

Quantum Shammas Polynomials 1D 21

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6
1.496676211 2.296721037 3.499666852 4.2368365 5.464643311 6.278845477

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.967697087 0.222450939
-

0.543360839 0.181328362
-

0.043681228 0.001401985 -6.76896E-05

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161
-

0.688054603 0.203338833
-

0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.998806149 0.996718149

Table 2. Summary of the results appearing in file besselj_0_x_run2.xlsx.

The second row shows the powers for the fitted Quantum Shammas Polynomial. The

fifth row shows the intercept (below QSPcoeff1) and to its right the coefficients for

the rest of the coefficients of the Quantum Shammas Polynomial. The eighth row

shows the intercept and coefficients for the classical polynomial. The cell under

r_sqr1 shows the adjusted coefficient of determination for the fitted Quantum

Shammas Polynomial. The cell under r_sqr2 shows the adjusted coefficient of

determination for the fitted classical polynomial. The adjusted coefficient of

determination for the fitted Quantum Shammas Polynomial is slightly higher than

the one for the classical polynomial. This condition indicates that the Quantum

Shammas Polynomial performs a better fit for the above example.

Note that the adjusted coefficient of determination for the fitted Quantum Shammas

Polynomial in Table 2 is slightly higher than the one in Table 1. Since both methods

used involve random numbers, I do not consider the difference as significant. It does

show that the random search method surprisingly performs as well as the PSO

method!

Quantum Shammas Polynomials 1D 22

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_run2.jpg) for the Bessel function and the

two fitted polynomials:

Figure 2. The graph from file besselj_0_x_run2.jpg .

The above graphs let you detect some slight deviations between the Bessel

function and the two fitted polynomials. This is not unexpected since I have

doubled the upper limit of the range of x from 5 to 10.

Testing Bessel Function Fit with Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Random.m) tests fitting Bessel

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth

order Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1D 23

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf(sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

Quantum Shammas Polynomials 1D 24

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code copies the

console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

Quantum Shammas Polynomials 1D 25

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.91709331 2.240315179 3.81358442 4.121911307

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

1.001100624 -0.022892391 -0.255085298 0.081079599 -0.038437534

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998535 0.999803041

Table 3. Summary of the results appearing in file besselj_0_x_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 2.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is higher than that for the classical polynomial. Both are good values.

Quantum Shammas Polynomials 1D 26

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_random_run1.jpg) for the Bessel function

and the two fitted polynomials:

Figure 3. The graph from file besselj_0_x_random_run1.jpg.

The figure shows that both types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Random Search Optimization-Run2
The next MATLAB script (found in file testBessel2Random.m) tests fitting Bessel

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth

order Quantum Shammas Polynomial and a sixth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1D 27

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n", sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

Quantum Shammas Polynomials 1D 28

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code is very

similar to the one before it. The differences are in the names of the output files and

the range of x. The above code copies the console output to a diary text file. It also

writes the summary results to an Excel table, shown below:

Quantum Shammas Polynomials 1D 29

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.471129989 2.490811225 3.789273019 4.670677265 5.975886814 6.783246831

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.985939304 -0.001890649 -0.278459568 0.08785271 -0.017568416 0.000630699 -3.7781E-05

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.999738603 0.996718149

 Table 4. Summary of the results appearing in file besselj_0_x_random_run2.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 2.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is slightly higher than that for the classical polynomial.

Quantum Shammas Polynomials 1D 30

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_random_run2.jpg) for the Bessel function

and the two fitted polynomials:

Figure 4. The graph from file besselj_0_x_random_run2.jpg.

The above graphs let you detect some slight deviations between the Bessel function

and the two fitted polynomials. This is not unexpected since I have doubled the upper

limit of the range of x from 5 to 10.

Testing Bessel Function Fit with Halton Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Halton.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order

Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1D 31

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_halton_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

Quantum Shammas Polynomials 1D 32

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code is

like the one in first random search optimization program. The main difference is that

the above code uses functions that involve the Halton quasi-random sequence.

Running the above code produces the following Excel table:

Quantum Shammas Polynomials 1D 33

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.838502519 2.223110895 3.814380804 4.146430872

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

1.001161815 -0.019630073 -0.256923923 0.074714453 -0.033552986

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998466 0.999803041

Table 5. Summary of the results appearing in file

besselj_0_x_halton_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 2.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is higher than that for the classical polynomial. Both are good values.

Using the Halton sequence gives surprisingly good results. I suspect using one

million iterations has something to do with it.

Quantum Shammas Polynomials 1D 34

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_halton_random_run1.jpg) for the Bessel

function and the two fitted polynomials:

Figure 5. The graph from file besselj_0_x_halton_random_run1.jpg.

The figure shows that both types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Halton Random Search Optimization-Run2
The next MATLAB script (found in file testBessel2Halton.m) tests fitting Bessel J(0,

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order

Quantum Shammas Polynomial and a sixth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

Quantum Shammas Polynomials 1D 35

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

zFilename = "besselj_0_x_halton_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

Quantum Shammas Polynomials 1D 36

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code is

very similar to the one before it. The differences are the names of the files and the

range for x. The above code produces the following Excel table:

Quantum Shammas Polynomials 1D 37

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.345272192 2.515237649 3.805536898 4.662782744 5.99095649 6.703197674

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.987239028 -0.010214761 -0.272434219 0.089617199 -0.018782304 0.000674102 -5.55858E-05

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.999747391 0.996718149

Table 6. Summary of the results appearing in file

besselj_0_x_halton_random_run2.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 2.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is slightly higher than that for the classical polynomial.

Quantum Shammas Polynomials 1D 38

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_halton_random_run2.jpg) for the Bessel

function and the two fitted polynomials:

Figure 6. The graph from file besselj_0_x_halton_random_run2.jpg.

The curves in the above figure shows some deviations between the two polynomials

and the curve for the Bessel function.

Testing Bessel Function Fit with Sobol Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Sobol.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order

Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1D 39

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_sobol_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Quantum Shammas Polynomials 1D 40

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code is

like the one in first random search optimization program. The main difference is that

the above code uses functions that involve the Sobol quasi-random sequence.

Running the above code produces the following Excel table:

Quantum Shammas Polynomials 1D 41

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.796215397 2.213924021 3.80804616 4.167893

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

1.001161421 -0.017916299 -0.257919168 0.069826481 -0.029381273

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998426 0.999803041

Table 7. Summary of the results appearing in file

besselj_0_x_sobol_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 2.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is higher than that for the classical polynomial. Both are good values.

Using the Sobol sequence gives surprisingly good results. I also suspect using one

million iterations has something to do with it.

Quantum Shammas Polynomials 1D 42

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_sobol_random_run1.jpg) for the Bessel

function and the two fitted polynomials:

Figure 7. The graph from file besselj_0_x_sobol_random_run1.jpg.

The figure shows that both types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Sobol Random Search Optimization-Run2
The next MATLAB script (found in file testBessel1Sobo2.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a sixth order

Quantum Shammas Polynomial and a sixth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

Quantum Shammas Polynomials 1D 43

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

zFilename = "besselj_0_x_sobol_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

Quantum Shammas Polynomials 1D 44

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code is

very similar to the Halton version. The difference is in the filenames and the use of

the Sobol-version of the random search optimization function. The above code

generates the following Excel table.

Quantum Shammas Polynomials 1D 45

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.581084402 2.504505821 3.762496947 4.63588809 5.953390774 6.74527333

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.984583706 0.004758179 -0.28940728 0.09570202 -0.019051264 0.000658717 -4.14767E-05

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.999707577 0.996718149

Table 8. Summary of the results appearing in file

besselj_0_x_sobol_random_run2.xlsx.

As expected, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is slightly higher than the one for classical polynomials.

Quantum Shammas Polynomials 1D 46

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_sobol_random_run2.jpg) for the Bessel

function and the two fitted polynomials:

Figure 8. The graph from file besselj_0_x_sobol_random_run2.jpg

Again, the above curves show some deviations between the two types of fitted

polynomials and the curve for the Bessel function.

Conclusion for Bessel Function Fitting
The results for the Bessel curve fitting show that all the applied methods yield better

fittings than the classical polynomials.

The next four subsections look at the curve fitting of ln(x) with values of (x-1) in the

range of (1, 7).

Quantum Shammas Polynomials 1D 47

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Testing ln(x) Function Fit with PSO
The next MATLAB script (found in file testLog1pso.m) tests fitting ln(x) vs (x-1)

for x in the range (1, 7) and samples at 0.1 steps, and using the PSO method. The

curve fits use a fourth order Quantum Shammas Polynomial and a fourth order

classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

Quantum Shammas Polynomials 1D 48

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

Quantum Shammas Polynomials 1D 49

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox() performs a PSO search using a

population size of 50 and 500 maximum iterations. The above code is very similar

to the previous versions. The difference is in the filenames and the fitted function

ln(x) vs (x-1). The above code generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.939289561 1.700234372 2.500929602 3.709431112

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.002964267 0.929047739 -0.271126431 0.037786471 -0.000890851

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.99999546 0.99989954

Table 9. Summary of the results appearing in file Ln_x.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials.

Quantum Shammas Polynomials 1D 50

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x.jpg) for the ln(x) function and the two fitted

polynomials:

Figure 9. The graph from file ln_x.jpg

The above graph shows that the two types of polynomials fit the ln(x) function well.

Testing ln(x) Function Fit with Random Search Optimization
The next MATLAB script (found in file testLog1Random.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the random search

optimization. The curve fits use a fourth order Quantum Shammas Polynomial and

a fourth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1D 51

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

Quantum Shammas Polynomials 1D 52

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code is similar

to ln_x,m except it uses different output filenames and calls the randomSearch()

function for the curve fit optimization. The above code generates the following

summary Excel table:

Quantum Shammas Polynomials 1D 53

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.004420082 1.53678095 2.271238281 3.347183885

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.001660656 1.143567181 -0.512039957 0.064208762 -0.001713871

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.999998347 0.99989954

Table 10. Summary of the results appearing in file Ln_x_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the adjusted coefficient

of determination for the random search is also slightly higher than that of the PSO

method!

Quantum Shammas Polynomials 1D 54

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_rand.jpg) for the Bessel function and the two fitted

polynomials:

Figure 10. The graph from file ln_x_rand.jpg

The above graph shows that the two types of polynomials fit the ln(x) function well.

Testing ln(x) Function Fit with Halton Random Search Optimization
The next MATLAB script (found in file testLog1Halton.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1D 55

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_halton_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 1D 56

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above file

generates the following Excel table summary.

Quantum Shammas Polynomials 1D 57

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.009828148 1.545275769 2.262748001 3.34245549

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.001021003 1.150679812 -0.525074732 0.069667134 -0.001824848

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.99999833 0.99989954

Table 11. Summary of the results appearing in file Ln_x_halton_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the adjusted coefficient

of determination for the random search is also slightly higher than that of the PSO

method! This is a bit surprinting, given that the Halton sequence is a quasi-random

sequence!

Quantum Shammas Polynomials 1D 58

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_halton_rand.jpg) for the Bessel function and the

two fitted polynomials:

Figure 11. The graph from file ln_x_halton_rand.jpg

The above graph shows that the two types of polynomials fit the ln(x) function well.

Testing ln(x) Function Fit with Sobol Random Search Optimization
The next MATLAB script (found in file testLog1Sobol.m) tests fitting ln(x) vs (x-1)

for x in the range (1, 7) and samples at 0.1 steps, and using the Sobol quasi-random

search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial..

clc

clear

close all

Quantum Shammas Polynomials 1D 59

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_sobol_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 1D 60

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above file

generates the following Excel table summary.

Quantum Shammas Polynomials 1D 61

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.006807557 1.53255124 2.280341574 3.399303283

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.001362983 1.149561517 -0.515853033 0.061519146 -0.001492128

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.99999827 0.99989954

Table 12. Summary of the results appearing in file Ln_x_soboln_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the adjusted coefficient

of determination for the random search is also slightly higher than that of the PSO

method! This is a bit surprinting, given that the Sobol sequence is a quasi-random

sequence!

Quantum Shammas Polynomials 1D 62

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_sobol_rand.jpg) for the Bessel function and the

two fitted polynomials:

Figure 12. The graph from file ln_x_sobol_rand.jpg

The above graph shows that the two types of polynomials fit the ln(x) function well.

Conclusion for fitting the ln(x) Function
The above four subsections show that fitting the ln(x) vs (x-1) for the range of (1, 7)

using the Quantum Shammas Polynomial is a success. These polynomials yield

adjusted coefficients of determination that are higher than the corresponding

classical polynomials.

Quantum Shammas Polynomials 1D 63

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The next four subsections in Part 1 look at fitting the right side of the standard

Gaussian bell, where x>= 0. To calculate values for x<0, use the symmetry of y(x)

= y(-x).

Testing the Right-Side Gauss-Bell Function Fit with PSO
The next MATLAB script (found in file testGauss1pso.m) tests fitting normal N(0,

1) for x in the range (0, 3) and samples at 0.1 steps, and using the PSO method. The

curve fits use a fourth order Quantum Shammas Polynomial and a fourth order

classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

Quantum Shammas Polynomials 1D 64

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

Quantum Shammas Polynomials 1D 65

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox() performs a PSO search using a

population size of 50 and 500 maximum iterations. The above code is very similar

to the previous versions. The difference is in the filenames and the fitted normal

Gaussian function. The above code generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

1.499340193 2.299416753 2.69245979 3.700593842

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.39810409 0.044258867 -0.693425929 0.529710131 -0.036961318

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999978519 0.999967249

Table 13. Summary of the results appearing in file Right_GaussBell_x.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. Since the PSO

method uses random numbers, I consider the difference between the two results as

statistically insignificant.

Quantum Shammas Polynomials 1D 66

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x.jpg) for the right normal Gauss

function and the two fitted polynomials:

Figure 13. The graph from file Right_GaussBell_x.jpg.

The above graph shows that the two types of polynomials fit the right normal Gauss

function well.

Testing the Right-Side Gauss-Bell Function Fit with Random Search

Optimization
The next MATLAB script (found in file testGauss1Random.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the random search

optimization. The curve fits use a fourth order Quantum Shammas Polynomial and

a fourth order classical polynomial.

clc

Quantum Shammas Polynomials 1D 67

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 1D 68

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code generates

the following summary Excel table:

Quantum Shammas Polynomials 1D 69

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.632767848 2.517817764 2.693684321 3.335701501

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398161785 0.03480119 -1.813454929 1.776987199 -0.154834019

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999981566 0.999967249

Table 14. Summary of the results appearing in file

Right_GaussBell_x_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. Since the random

search method uses random numbers, I consider the difference between the two

results as statistically insignificant.

Quantum Shammas Polynomials 1D 70

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x _random.jpg) for the right normal

Gauss function and the two fitted polynomials:

Figure 14. The graph from file Right_GaussBell_x_random.jpg.

The above graph shows that the two types of polynomials fit the right normal Gauss

function well.

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search

Optimization
The next MATLAB script (found in file testGauss1Halton.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial.

clc

Quantum Shammas Polynomials 1D 71

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_halton_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 1D 72

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1D 73

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code

generates the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.636774847 2.526358417 2.690384538 3.335998859

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398177902 0.033590214 -1.938398451 1.903880975 -0.155583034

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999981583 0.999967249

Table 15. Summary of the results appearing in file

Right_GaussBell_x_halton_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. I consider the

difference between the two results as statistically insignificant.

Quantum Shammas Polynomials 1D 74

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x_halton_random.jpg) for the right

normal Gauss function and the two fitted polynomials:

Figure 15. The graph from file Right_GaussBell_x_halton_random.jpg.

The above graph shows that the two types of polynomials fit the right normal Gauss

function well.

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search

Optimization
The next MATLAB script (found in file testGauss1Sobol.m) tests fitting normal N(0,

1) for x in the range (0, 3) and samples at 0.1 steps, and using the Sobol quasi-random

search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial.
clc

clear

Quantum Shammas Polynomials 1D 75

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_sobol_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 1D 76

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2,

maxPwr2)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 delta1 = maxPwr1 - minPwr1;

 delta2 = maxPwr2 - minPwr2;

 gap = minPwr2 - maxPwr1;

 Lb(1) = minPwr1;

 Ub(1) = maxPwr1;

 for i=2:order

 if mod(i,2)>0

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta1;

 else

 Lb(i) = Ub(i-1) + gap;

 Ub(i) = Lb(i) + delta2;

 end

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code

generates the following summary Excel table:

Quantum Shammas Polynomials 1D 77

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

1.643997697 2.524161076 2.668369565 3.345187112

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398140007 0.038520119 -2.190418893 2.139941619 -0.144530318

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999981547 0.999967249

Table 16. Summary of the results appearing in file

Right_GaussBell_x_soboln_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. I consider the

difference between the two results as statistically insignificant.

Quantum Shammas Polynomials 1D 78

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x_sobol_random.jpg) for the right

normal Gauss function and the two fitted polynomials:

Figure 16. The graph from file Right_GaussBell_x_sobol_random.jpg.

The above graph shows that the two types of polynomials fit the right normal Gauss

function well.

Conclusion for fitting the Right-Side Normal Gaussian Function
The above four subsections show that fitting the right-side normal Gaussian function

in the range of (0, 3) using the Quantum Shammas Polynomial is a success. These

polynomials yield adjusted coefficients of determination that are slightly higher than

the corresponding classical polynomials.

Quantum Shammas Polynomials 1D 79

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Conclusion for Part 1D
The Quantum Shammas Polynomials (with its special power range pattern) did well

in fitting the sample test cases. One should keep in mind that these polynomials (as

well as the classical ones) may not always perform well for every single math

function and for any/all ranges—that would be a very tall order! The results so far

are encouraging.

Next is Part 1E
Part 1E of this study looks at the Optimum Quantum Shammas Polynomials that .

Document History

Date Version Comments

6/15/2023 1.0.0 Initial release.

