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Introduction 
Part 1 of this study introduced you to Quantum Shammas Polynomials. Parts 1B and 

1C showed you examples of using power ranges that are wider and narrower, 

respectively, that the one in Part 1. In this part, I present a version of the Quantum 

Shammas Polynomials that have power ranges that alternate between wide and 

narrow ranges. The equation for Quantum Shammas Polynomials is: 
 

y(x) = a0 + a1*xr1 + a2*xr2 + … + an*xrn for x>=0    (1) 
 

In this part, the odd-indexed ranges (r1, r3, etc) have certain values that are bigger 

than those of even-indexed ranges (r2, r4, etc). The values of these ranges, which I 

chose arbitrarily, for the first four polynomial terms are: 
 

1) The range for r1 is (0.5, 1.5) with a span of 1 within the range. 

2) The range for r1 is (1.7, 2.3) with a span of 0.6 within the range and a gap of 

0.2 with ranges r1 and r3. 

3) The range for r3 is (2.5, 3.5) with a span of 1 within the range and a gap of 0.2 

with ranges r2 and r4. 

4) The range for r4 is (3.7, 4.3) with a span of 0.6 within the range and a gap of 

0.2 with ranges r3. 
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The limits of these ranges never overlap and have a gap of 0.2 between them. This 

gap ensures that no two random powers have the same exact value. The values of 

the random powers (ri) are chosen to minimize the sum of errors squared between 

some observed values of y(x) and the ones calculated using equation (1). This 

minimization process involves optimization using either an optimization algorithm 

or random search. The latter method is feasible in the case of Quantum Shammas 

Polynomials because the ranges for the random powers are relatively small. This 

study shows using an evolutionary optimization algorithm, randoms search 

optimization, and quasi-random sequence search optimization (using the Holton and 

Sobol sequences). 

The Quantum Shammas Polynomial Function 
The Quantum Shammas Polynomial function in MATLAB is: 

 
function SSE = quantShammasPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

 

  n = length(xData); 

  order = length(pwr); 

  SSE = 0; 

  X = [1+zeros(n,1)]; 

  for j=1:order 

    X = [X xData.^pwr(j)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  SStot = 0; 

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 

  yCalc = zeros(n,1); 

  for i=1:n 

    yCalc(i) = QSPcoeff(1); 

    for j=1:order 

      yCalc(i) = yCalc(i) + QSPcoeff(j+1)*xData(i)^pwr(j); 

    end 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 

end 

 

The above function takes one input parameter, the array of random powers pwr. The 

function returns the sum of errors squared. The function builds the regression matrix 

and calls function regress() to obtain the regression coefficients. The function then 
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calculates the projected y values and uses them to calculate the result. The function 

also calculates the total sum of squared differences between the observed values and 

their mean value. Finally, the function calculates the coefficient of determination and 

stores it in the global variable glbRsqr. The function also uses global variables to 

access the x and y data, return the calculated values of y, and return the coefficients 

of the fitted Quantum Shammas Polynomial. 

The Quantum Padé Shammas Polynomial Function 
The Quantum Shammas Padé Polynomial function in MATLAB is: 
 

function SSE = quantShammasPadéPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

  global orderP orderQ 

 

  n = length(xData); 

  order = length(pwr); 

  SSE = 0; 

  X = [1+zeros(n,1)]; 

  for j=1:orderP 

    X = [X xData.^pwr(j)]; 

  end 

  for j=1:orderQ 

     k = orderP + j; 

     X = [X -yData.*xData.^pwr(k)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  SStot = 0; 

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 

  yCalc = zeros(n,1); 

  for i=1:n 

    sumP = QSPcoeff(1); 

    for j=1:orderP 

      sumP = sumP + QSPcoeff(j+1)*xData(i)^pwr(j); 

    end 

    sumQ = 1; 

    for j=1:orderQ 

      k = orderP + j; 

      sumQ = sumQ - QSPcoeff(k+1)*yData(i)*xData(i)^pwr(k); 

    end 

    yCalc(i) = sumP / sumQ; 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 
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end 

 

The above function resembles the quantShammasPoly() except it performs a Padé 

polynomial fit and calculations for the projected y data. The function returns the sum 

of errors squared. The function also calculates the coefficient of determination and 

stores it in the global variable glbRsqr. The function also uses global variables to 

access the x and y data, return the calculated values of y, and return the coefficients 

of the fitted Quantum Shammas Polynomial. 

The Quantum Shammas Fourier Series Function 
The Quantum Shammas Fourier Series (Gen 1) function in MATLAB is: 
 

function SSE = quantShammasFourierPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

  n = length(xData); 

  order = length(pwr); 

  X = [1+zeros(n,1)]; 

  for j=1:2:order 

    X = [X sin(pwr(j)*xData) cos(pwr(j+1)*xData)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 

  yCalc = zeros(n,1); 

  for i=1:n 

    yCalc(i) = QSPcoeff(1); 

    for j=2:2:order 

      yCalc(i) = yCalc(i) + QSPcoeff(j)*sin(pwr(j-1)*xData(i)) + ... 

                            QSPcoeff(j+1)*cos(pwr(j)*xData(i)); 

    end 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 

end 

 

The above function resembles the quantShammasPoly() except it performs a Fourier 

series fit (with sine and cosine terms) and calculations for the projected y data. The 

function returns the sum of errors squared. The function also calculates the 

coefficient of determination and stores it in the global variable glbRsqr. 

The PSO Function 
The next function implements the Particle Swarm Optimization (PSO) algorithm: 
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function [bestX,bestFx] = psox(fx,Lb,Ub,MaxPop,MaxIters,bShow) 

% PSOX implements particle swarm optimization. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxPop - maximum population of swarm. 

% MaxIters - maximum number of iterations 

% bShow - Boolean flag to request viewing intermediate results. 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

% 

% Example 

% ======= 

% 

% >>  

% 

  if nargin < 6, bShow = false; end 

  n = length(Lb); 

  m = n + 1; 

  pop = 1e+99+zeros(MaxPop,m); 

  pop2 = pop; 

  aPop = zeros(1,n); 

  vel = zeros(MaxPop,n); 

 

  % Initizialize population 

  for i=1:MaxPop 

    pop(i,1:n) = Lb + (Ub - Lb) .* rand(1,n); 

    vel(i,1:n) = (Ub - Lb) / 10 .* (2*rand(1,n)-1); 

    pop(i,m) = fx(pop(i,1:n)); 

    pop2(i,:) = pop(i,:); 

    aPop(1:n) = Lb + (Ub - Lb) .* rand(1,n); 

    f0 = fx(aPop); 

    if f0 < pop2(i,m) 

      pop2(i,1:n) = aPop(1:n); 

      pop2(i,m) = f0; 

    end 

  end 

 

  pop = sortrows(pop,m); 

  pop2 = pop; 

 

  if bShow 

    fprintf('Best X ='); 

    fprintf(' %f,', pop(1,1:n)); 

    fprintf('Best Fx = %e\n', pop(1,m)); 
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  end 

  bestFx = pop(1,m); 

 

  % pso loop 

  for iter = 1:MaxIters 

 

    IterFactor = sqrt((iter - 1)/(MaxIters - 1)); 

    w = 1 - 0.3 * IterFactor; 

    c1 = 2 - 1.9 * IterFactor; 

    c2 = 2 - 1.9 * IterFactor; 

 

    for i=2:MaxPop 

      for j=1:n 

        vel(i,j) = w*vel(i,j) + c1*rand*(pop(1,j) - pop(i,j)) + ... 

          c2*rand*(pop2(i,j) - pop(i,j)); 

        p = pop(i,j) + vel(i,j); 

 

        if p < Lb(j) || p > Ub(j) 

          pop(i,j) = Lb(j) + (Ub(j) - Lb(j))*rand; 

        else 

          pop(i,j) = p; 

        end 

      end 

 

      pop(i,m) = fx(pop(i,1:n)); 

 

      % find new global best? 

      if pop(1,m) > pop(i,m) 

        pop(1,:) = pop(i,:); 

        % find new local best? 

      elseif pop(i,m) < pop2(i,m) 

        pop2(i,:) = pop(i,:); 

      end 

    end 

     

    [pop,Idx] = sortrows(pop,m); 

    pop2 = sortrows(pop2,m); 

    vel = vel(Idx,:); 

 

    if bestFx > pop(1,m) 

      if bShow 

        fprintf('%i: Best X = %i', iter); 

        fprintf(' %f,', pop(1,1:n)); 

        fprintf('Best Fx = %e\n', pop(1,m)); 

      end 

      bestFx = pop(1,m); 

    end 

  end 

  bestFx = pop(1,m); 

  bestX = pop(1,1:n); 

end 
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The function has the following input parameters: 
 

• The parameter fx is the handle of the optimized function. 

• The parameter Lb is the row array of low bound values. 

• The parameter Ub is the row array of upper bound values. 

• The parameter MaxPop is the maximum population of swarm. 

• The parameter MaxIters is the maximum number of iterations 

• The parameter bShow is the Boolean flag to request viewing intermediate 

results. 
 

The output parameters are: 
 

• The parameter bestX is the array of best solutions. 

• The parameter bestFx is the best optimized function value. 

The Random Search Function 
The next function performs a random search optimization: 
 

function [bestX,bestFx] = randomSearch(fx,Lb,Ub,MaxIters) 

% RANDOMSEARCH performs random search optimization. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

  for irun=1:2 

    for iter = 1:MaxIters 

      X = Lb + (Ub - Lb).*rand(1,n); 

      f = fx(X); 

      if f < bestFx 
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        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The function has the following input parameters: 
 



Quantum Shammas Polynomials 1D  10 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

• The parameter fx is the handle of the optimized function. 

• The parameter Lb is the row array of low bound values. 

• The parameter Ub is the row array of upper bound values. 

• The parameter MaxIters is the maximum number of iterations 
 

The output parameters are: 
 

• The parameter bestX is the array of best solutions. 

• The parameter bestFx is the best optimized function value. 
 

The above function is easy to code and works well with Quantum Shammas 

Polynomials since the range of each power is relatively small (<2). The above 

improvement performs two passes for the random search. The first pass uses the 

lower and upper ranges (in parameters Lb and Ub) that are supplied to the function. 

The second pass narrows the values of arrays Lb and Ub to closely bracket the best 

values of X obtained at the end of the first pass. 

The Halton Quasi Random Search Function 
The next function performs random-search optimization using the Halton quasi-

random sequences: 
 

function [bestX,bestFx] = haltonRandomSearch(fx,Lb,Ub,MaxIters) 

% HALTONRANDOMSEARCH performs optimization using the Halton 

quasi-random sequence. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 
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  % set up halton sequences 

  p = haltonset(n,'Skip',1e3,'Leap',1e2); 

  p = scramble(p,'RR2'); 

  rando = net(p,MaxIters); 

  for irun=1:2 

    for iter = 1:MaxIters 

      for i=1:n 

        X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i); 

      end 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  
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      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The above function has the same input and output parameters as the randomSearch() 

function. The above code shows lines in red that highlight the statements that 

generate multiple columns of the Halton sequence and stores them in the matrix 

rando. The function accesses the various elements of matrix rando as pseudo-random 

numbers are needed. 

The Sobol Quasi Random Search Function 
The next function performs random-search optimization using the Sobol quasi-

random sequences: 
 

function [bestX,bestFx] = sobolRandomSearch(fx,Lb,Ub,MaxIters) 

% SOBOLRANDOMSEARCH performs optimization using the Sobol quasi-

random sequence. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

 

  % set up Sobol sequences 

  p = sobolset(n,'Skip',1e3,'Leap',1e2); 

  p = scramble(p,'MatousekAffineOwen'); 

  rando = net(p,MaxIters); 

  for irun=1:2 
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    for iter = 1:MaxIters 

      for i=1:n 

        X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i); 

      end 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 
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    Ub 

  end 

end 

 

The above function has the same input and output parameters as the randomSearch() 

function. The above code shows lines in red that highlight the statements that 

generate multiple columns of  the Sobol sequence and store them in the matrix rando. 

The function accesses the various elements of matrix rando as pseudo-random 

numbers are needed. 

Testing Quantum Shammas Polynomials 
The next sections show examples of using the Quantum Shammas Polynomials to 

fit a selection of arbitrary functions. The results of the Quantum Shammas 

Polynomials are compared with those of classical polynomials. The adjusted 

coefficient of determinations are good indicators of how the two types of polynomial 

stack up against each other. 

Testing Bessel Function Fit with PSO-Run1 
The next MATLAB script (found in file testBessel1pso.m) tests fitting Bessel J(0, x) 

for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order 

Quantum Shammas Polynomial and a fourth order classical polynomial.  
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 



Quantum Shammas Polynomials 1D  15 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 
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  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above code copies the console output to a diary text file. It also writes the 

summary results to an Excel table, shown below: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.766113533 2.299726913 3.498583136 4.294254393  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

1.001265312 -0.020919321 -0.276014328 0.071689049 -0.00988616 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999997844 0.999803041    

Table 1. Summary of the results appearing in file besselj_0_x_run1.xlsx. 
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The second row shows the powers for the fitted Quantum Shammas Polynomial. The 

fifth row shows the intercept (below QSPcoeff1) and to its right the coefficients for 

the other coefficients of the Quantum Shammas Polynomial. The eighth row shows 

the intercept and coefficients for the classical polynomial. The cell under r_sqr1 

shows the adjusted coefficient of determination for the fitted Quantum Shammas 

Polynomial. The cell under r_sqr2 shows the adjusted coefficient of determination 

for the fitted classical polynomial. The adjusted coefficient of determination for the 

fitted Quantum Shammas Polynomial is higher than the one for the classical 

polynomial. This condition indicates that the Quantum Shammas Polynomial 

performs a better fit for the above example. 
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Here is the graph (from file besselj_0_x_run1.jpg) for the Bessel function and the 

two fitted polynomials: 

 

 

Figure 1. The graph from file besselj_0_x_run1.jpg. 

 

The above graph shows a reasonably good fit for both polynomials. Keep in mind 

that the Quantum Shammas Polynomial is slightly better than the one for the 

classical polynomial 

Testing Bessel Function Fit with PSO-Run2 
The next MATLAB script (found in file testBessel2pso.m ) tests fitting Bessel J(0, 

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order 

Quantum Shammas Polynomial and a sixth order classical polynomial. 
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clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 



Quantum Shammas Polynomials 1D  20 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox()) performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code copies the 
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console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  
1.496676211 2.296721037 3.499666852 4.2368365 5.464643311 6.278845477  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.967697087 0.222450939 
-

0.543360839 0.181328362 
-

0.043681228 0.001401985 -6.76896E-05 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 
-

0.688054603 0.203338833 
-

0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.998806149 0.996718149      

Table 2. Summary of the results appearing in file besselj_0_x_run2.xlsx. 

 

The second row shows the powers for the fitted Quantum Shammas Polynomial. The 

fifth row shows the intercept (below QSPcoeff1) and to its right the coefficients for 

the rest of the coefficients of the Quantum Shammas Polynomial. The eighth row 

shows the intercept and coefficients for the classical polynomial. The cell under 

r_sqr1 shows the adjusted coefficient of determination for the fitted Quantum 

Shammas Polynomial. The cell under r_sqr2 shows the adjusted coefficient of 

determination for the fitted classical polynomial. The adjusted coefficient of 

determination for the fitted Quantum Shammas Polynomial is slightly higher than 

the one for the classical polynomial. This condition indicates that the Quantum 

Shammas Polynomial performs a better fit for the above example. 

 

Note that the adjusted coefficient of determination for the fitted Quantum Shammas 

Polynomial in Table 2 is slightly higher than the one in Table 1. Since both methods 

used involve random numbers, I do not consider the difference as significant. It does 

show that the random search method surprisingly performs as well as the PSO 

method! 
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Here is the graph (from file besselj_0_x_run2.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 2. The graph from file besselj_0_x_run2.jpg . 

The above graphs let you detect some slight deviations between the Bessel 

function and the two fitted polynomials. This is not unexpected since I have 

doubled the upper limit of the range of x from 5 to 10. 

Testing Bessel Function Fit with Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Random.m) tests fitting Bessel 

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth 

order Quantum Shammas Polynomial and a fourth order classical polynomial. 
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 
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writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code copies the 

console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.91709331 2.240315179 3.81358442 4.121911307  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

1.001100624 -0.022892391 -0.255085298 0.081079599 -0.038437534 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999998535 0.999803041    

Table 3. Summary of the results appearing in file besselj_0_x_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 2. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is higher than that for the classical polynomial. Both are good values. 
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Here is the graph (from file besselj_0_x_random_run1.jpg) for the Bessel function 

and the two fitted polynomials: 

 

Figure 3. The graph from file besselj_0_x_random_run1.jpg. 
 

The figure shows that both types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel2Random.m) tests fitting Bessel 

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth 

order Quantum Shammas Polynomial and a sixth order classical polynomial. 
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n", sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 
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writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code is very 

similar to the one before it. The differences are in the names of the output files and 

the range of x. The above code copies the console output to a diary text file. It also 

writes the summary results to an Excel table, shown below: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.471129989 2.490811225 3.789273019 4.670677265 5.975886814 6.783246831  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.985939304 -0.001890649 -0.278459568 0.08785271 -0.017568416 0.000630699 -3.7781E-05 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.999738603 0.996718149      

 Table 4. Summary of the results appearing in file besselj_0_x_random_run2.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 2. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is slightly higher than that for the classical polynomial.  
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Here is the graph (from file besselj_0_x_random_run2.jpg) for the Bessel function 

and the two fitted polynomials: 

Figure 4. The graph from file besselj_0_x_random_run2.jpg. 
 

The above graphs let you detect some slight deviations between the Bessel function 

and the two fitted polynomials. This is not unexpected since I have doubled the upper 

limit of the range of x from 5 to 10. 

Testing Bessel Function Fit with Halton Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Halton.m) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order 

Quantum Shammas Polynomial and a fourth order classical polynomial.   
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_halton_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

QSPpwr = bestX; 

Coeff = flip(c); 
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T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code is 

like the one in first random search optimization program. The main difference is that 

the above code uses functions that involve the Halton quasi-random sequence.  

Running the above code produces the following Excel table: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.838502519 2.223110895 3.814380804 4.146430872  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

1.001161815 -0.019630073 -0.256923923 0.074714453 -0.033552986 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999998466 0.999803041    

Table 5. Summary of the results appearing in file 

besselj_0_x_halton_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 2. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is higher than that for the classical polynomial. Both are good values. 

Using the Halton sequence gives surprisingly good results. I suspect using one 

million iterations has something to do with it. 
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Here is the graph (from file besselj_0_x_halton_random_run1.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 5. The graph from file besselj_0_x_halton_random_run1.jpg. 
 

The figure shows that both types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Halton Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel2Halton.m) tests fitting Bessel J(0, 

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order 

Quantum Shammas Polynomial and a sixth order classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 
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zFilename = "besselj_0_x_halton_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 
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writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code is 

very similar to the one before it. The differences are the names of the files and the 

range for x. The above code produces the following Excel table: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.345272192 2.515237649 3.805536898 4.662782744 5.99095649 6.703197674  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.987239028 -0.010214761 -0.272434219 0.089617199 -0.018782304 0.000674102 -5.55858E-05 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.999747391 0.996718149      

Table 6. Summary of the results appearing in file 

besselj_0_x_halton_random_run2.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 2. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is slightly higher than that for the classical polynomial.  
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Here is the graph (from file besselj_0_x_halton_random_run2.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 6. The graph from file besselj_0_x_halton_random_run2.jpg. 

 

The curves in the above figure shows some deviations between the two polynomials 

and the curve for the Bessel function. 

Testing Bessel Function Fit with Sobol Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Sobol.m) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order 

Quantum Shammas Polynomial and a fourth order classical polynomial. 
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_sobol_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 



Quantum Shammas Polynomials 1D  40 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code is 

like the one in first random search optimization program. The main difference is that 

the above code uses functions that involve the Sobol quasi-random sequence.  

Running the above code produces the following Excel table: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.796215397 2.213924021 3.80804616 4.167893  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

1.001161421 -0.017916299 -0.257919168 0.069826481 -0.029381273 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999998426 0.999803041    

Table 7. Summary of the results appearing in file 

besselj_0_x_sobol_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 2. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is higher than that for the classical polynomial. Both are good values. 

Using the Sobol sequence gives surprisingly good results. I also suspect using one 

million iterations has something to do with it. 
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Here is the graph (from file besselj_0_x_sobol_random_run1.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 7. The graph from file besselj_0_x_sobol_random_run1.jpg. 
 

The figure shows that both types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Sobol Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel1Sobo2.m) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a sixth order 

Quantum Shammas Polynomial and a sixth order classical polynomial.   

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 
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zFilename = "besselj_0_x_sobol_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 
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T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code is 

very similar to the Halton version. The difference is in the filenames and the use of 

the Sobol-version of the random search optimization function. The above code 

generates the following Excel table. 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.581084402 2.504505821 3.762496947 4.63588809 5.953390774 6.74527333  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.984583706 0.004758179 -0.28940728 0.09570202 -0.019051264 0.000658717 -4.14767E-05 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.999707577 0.996718149      

Table 8. Summary of the results appearing in file 

besselj_0_x_sobol_random_run2.xlsx. 
 

As expected, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is slightly higher than the one for classical polynomials.  
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Here is the graph (from file besselj_0_x_sobol_random_run2.jpg) for the Bessel 

function and the two fitted polynomials: 

 

Figure 8. The graph from file besselj_0_x_sobol_random_run2.jpg 
 

Again, the above curves show some deviations between the two types of fitted 

polynomials and the curve for the Bessel function. 

Conclusion for Bessel Function Fitting 
The results for the Bessel curve fitting show that all the applied methods yield better 

fittings than the classical polynomials. 

 

The next four subsections look at the curve fitting of ln(x) with values of (x-1) in the 

range of (1, 7). 
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Testing ln(x) Function Fit with PSO 
The next MATLAB script (found in file testLog1pso.m) tests fitting ln(x) vs (x-1) 

for x in the range (1, 7) and samples at 0.1 steps, and using the PSO method. The 

curve fits use a fourth order Quantum Shammas Polynomial and a fourth order 

classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 
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figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 
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  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 50 and 500 maximum iterations. The above code is very similar 

to the previous versions. The difference is in the filenames and the fitted function 

ln(x) vs (x-1). The above code generates the following Excel table. 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.939289561 1.700234372 2.500929602 3.709431112  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.002964267 0.929047739 -0.271126431 0.037786471 -0.000890851 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.99999546 0.99989954    

Table 9. Summary of the results appearing in file Ln_x.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials.  
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Here is the graph (from file ln_x.jpg) for the ln(x) function and the two fitted 

polynomials: 

Figure 9. The graph from file ln_x.jpg 
 

The above graph shows that the two types of polynomials fit the ln(x) function well. 

Testing ln(x) Function Fit with Random Search Optimization 
The next MATLAB script (found in file testLog1Random.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the random search 

optimization. The curve fits use a fourth order Quantum Shammas Polynomial and 

a fourth order classical polynomial. 
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 
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T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code is similar 

to ln_x,m except it uses different output filenames and calls the randomSearch() 

function for the curve fit optimization. The above code generates the following 

summary Excel table: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.004420082 1.53678095 2.271238281 3.347183885  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.001660656 1.143567181 -0.512039957 0.064208762 -0.001713871 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.999998347 0.99989954    

Table 10. Summary of the results appearing in file Ln_x_rand.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the adjusted coefficient 

of determination for the random search is also slightly higher than that of the PSO 

method!  
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Here is the graph (from file ln_x_rand.jpg) for the Bessel function and the two fitted 

polynomials: 

Figure 10. The graph from file ln_x_rand.jpg 

 

The above graph shows that the two types of polynomials fit the ln(x) function well. 

Testing ln(x) Function Fit with Halton Random Search Optimization 
The next MATLAB script (found in file testLog1Halton.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial.   

 
clc 

clear 

close all 



Quantum Shammas Polynomials 1D  55 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_halton_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above file 

generates the following Excel table summary. 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.009828148 1.545275769 2.262748001 3.34245549  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.001021003 1.150679812 -0.525074732 0.069667134 -0.001824848 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.99999833 0.99989954    

Table 11. Summary of the results appearing in file Ln_x_halton_rand.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the adjusted coefficient 

of determination for the random search is also slightly higher than that of the PSO 

method! This is a bit surprinting, given that the Halton sequence is a quasi-random 

sequence! 
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Here is the graph (from file ln_x_halton_rand.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 11. The graph from file ln_x_halton_rand.jpg 
 

The above graph shows that the two types of polynomials fit the ln(x) function well. 

Testing ln(x) Function Fit with Sobol Random Search Optimization 
The next MATLAB script (found in file testLog1Sobol.m) tests fitting ln(x) vs (x-1) 

for x in the range (1, 7) and samples at 0.1 steps, and using the Sobol quasi-random 

search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial..  

 
clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_sobol_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above file 

generates the following Excel table summary. 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.006807557 1.53255124 2.280341574 3.399303283  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.001362983 1.149561517 -0.515853033 0.061519146 -0.001492128 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.99999827 0.99989954    

Table 12. Summary of the results appearing in file Ln_x_soboln_rand.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the adjusted coefficient 

of determination for the random search is also slightly higher than that of the PSO 

method! This is a bit surprinting, given that the Sobol sequence is a quasi-random 

sequence! 
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Here is the graph (from file ln_x_sobol_rand.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 12. The graph from file ln_x_sobol_rand.jpg 
 

The above graph shows that the two types of polynomials fit the ln(x) function well. 

Conclusion for fitting the ln(x) Function 
The above four subsections show that fitting the ln(x) vs (x-1) for the range of (1, 7) 

using the Quantum Shammas Polynomial is a success. These polynomials yield 

adjusted coefficients of determination that are higher than the corresponding 

classical polynomials. 

 



Quantum Shammas Polynomials 1D  63 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

The next four subsections in Part 1 look at fitting the right side of the standard 

Gaussian bell, where x>= 0. To calculate values for x<0, use the symmetry of y(x) 

= y(-x). 

Testing the Right-Side Gauss-Bell Function Fit with PSO 
The next MATLAB script (found in file testGauss1pso.m) tests fitting normal N(0, 

1) for x in the range (0, 3) and samples at 0.1 steps, and using the PSO method. The 

curve fits use a fourth order Quantum Shammas Polynomial and a fourth order 

classical polynomial. 

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 
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r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 
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function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 50 and 500 maximum iterations. The above code is very similar 

to the previous versions. The difference is in the filenames and the fitted normal 

Gaussian function. The above code generates the following Excel table. 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  

1.499340193 2.299416753 2.69245979 3.700593842  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.39810409 0.044258867 -0.693425929 0.529710131 -0.036961318 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999978519 0.999967249    

Table 13. Summary of the results appearing in file Right_GaussBell_x.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. Since the PSO 

method uses random numbers, I consider the difference between the two results as 

statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x.jpg) for the right normal Gauss 

function and the two fitted polynomials: 

Figure 13. The graph from file Right_GaussBell_x.jpg. 

 

The above graph shows that the two types of polynomials fit the right normal Gauss 

function well. 

Testing the Right-Side Gauss-Bell Function Fit with Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Random.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the random search 

optimization. The curve fits use a fourth order Quantum Shammas Polynomial and 

a fourth order classical polynomial.   

 
clc 
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clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code generates 

the following summary Excel table: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.632767848 2.517817764 2.693684321 3.335701501  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398161785 0.03480119 -1.813454929 1.776987199 -0.154834019 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999981566 0.999967249    

Table 14. Summary of the results appearing in file 

Right_GaussBell_x_random.xlsx. 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. Since the random 

search method uses random numbers, I consider the difference between the two 

results as statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x _random.jpg) for the right normal 

Gauss function and the two fitted polynomials: 

Figure 14. The graph from file Right_GaussBell_x_random.jpg. 

 

The above graph shows that the two types of polynomials fit the right normal Gauss 

function well. 

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Halton.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial. 

 
clc 
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clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_halton_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 



Quantum Shammas Polynomials 1D  72 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code 

generates the following summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.636774847 2.526358417 2.690384538 3.335998859  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398177902 0.033590214 -1.938398451 1.903880975 -0.155583034 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999981583 0.999967249    

Table 15. Summary of the results appearing in file 

Right_GaussBell_x_halton_random.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. I consider the 

difference between the two results as statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x_halton_random.jpg) for the right 

normal Gauss function and the two fitted polynomials: 

Figure 15. The graph from file Right_GaussBell_x_halton_random.jpg. 

 

The above graph shows that the two types of polynomials fit the right normal Gauss 

function well. 

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Sobol.m) tests fitting normal N(0, 

1) for x in the range (0, 3) and samples at 0.1 steps, and using the Sobol quasi-random 

search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial. 
clc 

clear 
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close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_sobol_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.5, 1.7, 2.3); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr1, maxPwr1, minPwr2, 

maxPwr2) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  delta1 = maxPwr1 - minPwr1; 

  delta2 = maxPwr2 - minPwr2; 

  gap = minPwr2 - maxPwr1; 

  Lb(1) = minPwr1; 

  Ub(1) = maxPwr1; 

  for i=2:order 

    if mod(i,2)>0 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta1; 

    else 

      Lb(i) = Ub(i-1) + gap; 

      Ub(i) = Lb(i) + delta2; 

    end 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code 

generates the following summary Excel table: 
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QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  

1.643997697 2.524161076 2.668369565 3.345187112  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398140007 0.038520119 -2.190418893 2.139941619 -0.144530318 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999981547 0.999967249    

Table 16. Summary of the results appearing in file 

Right_GaussBell_x_soboln_random.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. I consider the 

difference between the two results as statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x_sobol_random.jpg) for the right 

normal Gauss function and the two fitted polynomials: 

Figure 16. The graph from file Right_GaussBell_x_sobol_random.jpg. 

 

The above graph shows that the two types of polynomials fit the right normal Gauss 

function well. 

Conclusion for fitting the Right-Side Normal Gaussian Function 
The above four subsections show that fitting the right-side normal Gaussian function 

in the range of (0, 3) using the Quantum Shammas Polynomial is a success. These 

polynomials yield adjusted coefficients of determination that are slightly higher than 

the corresponding classical polynomials. 
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Conclusion for Part 1D 
The Quantum Shammas Polynomials (with its special power range pattern) did well 

in fitting the sample test cases. One should keep in mind that these polynomials (as 

well as the classical ones) may not always perform well for every single math 

function and for any/all ranges—that would be a very tall order! The results so far 

are encouraging. 

Next is Part 1E 
Part 1E of this study looks at the Optimum Quantum Shammas Polynomials that . 
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