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Introduction 
Part 1 introduced you to Quantum Shammas Polynomials. Part 1B introduced 

Quantum Shammas Polynomials with wider power ranges than for the ones in Part 

1. In this part we look at the second variant of these polynomials. The variation uses 

narrower ranges of random powers than those in Part 1.  Random values, drawn 

from these ranges, are selected to yield the least square-errors models for Quantum 

Shammas Polynomials. The general equation for Quantum Shammas Polynomials 

is: 
 

y(x) = a0 + a1*xr1 + a2*xr2 + … + an*xrn for x>=0    (1) 
 

In this study we have, 0.5 <= r1 <= 0.9, 1.0 <= r2 <= 1.4, …, and n*0.5 <= rn < 

0.9+(n-1)*0.5. Notice that the upper value of a random power is 0.1 less than the 

lower value of its successor. This gap ensures that no two random powers have the 

same exact value. These relatively narrow ranges of the random powers (ri) are 

chosen to minimize the sum of errors squared between some observed values of y(x) 

and the ones calculated using equation (1). This minimization process involves 

optimization using either an optimization algorithm or random search. The latter 

method is feasible in the case of Quantum Shammas Polynomials because the ranges 

for the random powers are relatively small. This study shows using an evolutionary 

optimization algorithm, randoms search optimization, and quasi-random sequence 

search optimization (using the Holton and Sobol sequences). 
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The Quantum Shammas Polynomial Function 
The Quantum Shammas Polynomial function in MATLAB is: 
 

function SSE = quantShammasPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

 

  n = length(xData); 

  order = length(pwr); 

  SSE = 0; 

  X = [1+zeros(n,1)]; 

  for j=1:order 

    X = [X xData.^pwr(j)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  SStot = 0; 

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 

  yCalc = zeros(n,1); 

  for i=1:n 

    yCalc(i) = QSPcoeff(1); 

    for j=1:order 

      yCalc(i) = yCalc(i) + QSPcoeff(j+1)*xData(i)^pwr(j); 

    end 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 

end 

 

The above function takes one input parameter, the array of random powers pwr. The 

function returns the sum of errors squared. The function builds the regression matrix 

and calls function regress() to obtain the regression coefficients. The function then 

calculates the projected y values and uses them to calculate the result. The function 

also calculates the total sum of squared differences between the observed values and 

their mean value. Finally, the function calculates the coefficient of determination and 

stores it in the global variable glbRsqr. The function also uses global variables to 

access the x and y data, return the calculated values of y, and return the coefficients 

of the fitted Quantum Shammas Polynomial. 

The PSO Function 
The next function implements the Particle Swarm Optimization (PSO) algorithm: 
 

function [bestX,bestFx] = psox(fx,Lb,Ub,MaxPop,MaxIters,bShow) 
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% PSOX implements particle swarm optimization. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxPop - maximum population of swarm. 

% MaxIters - maximum number of iterations 

% bShow - Boolean flag to request viewing intermediate results. 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

% 

% Example 

% ======= 

% 

% >>  

% 

  if nargin < 6, bShow = false; end 

  n = length(Lb); 

  m = n + 1; 

  pop = 1e+99+zeros(MaxPop,m); 

  pop2 = pop; 

  aPop = zeros(1,n); 

  vel = zeros(MaxPop,n); 

 

  % Initizialize population 

  for i=1:MaxPop 

    pop(i,1:n) = Lb + (Ub - Lb) .* rand(1,n); 

    vel(i,1:n) = (Ub - Lb) / 10 .* (2*rand(1,n)-1); 

    pop(i,m) = fx(pop(i,1:n)); 

    pop2(i,:) = pop(i,:); 

    aPop(1:n) = Lb + (Ub - Lb) .* rand(1,n); 

    f0 = fx(aPop); 

    if f0 < pop2(i,m) 

      pop2(i,1:n) = aPop(1:n); 

      pop2(i,m) = f0; 

    end 

  end 

 

  pop = sortrows(pop,m); 

  pop2 = pop; 

 

  if bShow 

    fprintf('Best X ='); 

    fprintf(' %f,', pop(1,1:n)); 

    fprintf('Best Fx = %e\n', pop(1,m)); 

  end 
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  bestFx = pop(1,m); 

 

  % pso loop 

  for iter = 1:MaxIters 

 

    IterFactor = sqrt((iter - 1)/(MaxIters - 1)); 

    w = 1 - 0.3 * IterFactor; 

    c1 = 2 - 1.9 * IterFactor; 

    c2 = 2 - 1.9 * IterFactor; 

 

    for i=2:MaxPop 

      for j=1:n 

        vel(i,j) = w*vel(i,j) + c1*rand*(pop(1,j) - pop(i,j)) + ... 

          c2*rand*(pop2(i,j) - pop(i,j)); 

        p = pop(i,j) + vel(i,j); 

 

        if p < Lb(j) || p > Ub(j) 

          pop(i,j) = Lb(j) + (Ub(j) - Lb(j))*rand; 

        else 

          pop(i,j) = p; 

        end 

      end 

 

      pop(i,m) = fx(pop(i,1:n)); 

 

      % find new global best? 

      if pop(1,m) > pop(i,m) 

        pop(1,:) = pop(i,:); 

        % find new local best? 

      elseif pop(i,m) < pop2(i,m) 

        pop2(i,:) = pop(i,:); 

      end 

    end 

     

    [pop,Idx] = sortrows(pop,m); 

    pop2 = sortrows(pop2,m); 

    vel = vel(Idx,:); 

 

    if bestFx > pop(1,m) 

      if bShow 

        fprintf('%i: Best X = %i', iter); 

        fprintf(' %f,', pop(1,1:n)); 

        fprintf('Best Fx = %e\n', pop(1,m)); 

      end 

      bestFx = pop(1,m); 

    end 

  end 

  bestFx = pop(1,m); 

  bestX = pop(1,1:n); 

end 
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The function has the following input parameters: 
 

• The parameter fx is the handle of the optimized function. 

• The parameter Lb is the row array of low bound values. 

• The parameter Ub is the row array of upper bound values. 

• The parameter MaxPop is the maximum population of swarm. 

• The parameter MaxIters is the maximum number of iterations 

• The parameter bShow is the Boolean flag to request viewing intermediate 

results. 
 

The output parameters are: 
 

• The parameter bestX is the array of best solutions. 

• The parameter bestFx is the best optimized function value. 

The Random Search Function 
The next function performs a random search optimization: 
 

function [bestX,bestFx] = randomSearch(fx,Lb,Ub,MaxIters) 

% RANDOMSEARCH performs random search optimization. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

  for irun=1:2 

    for iter = 1:MaxIters 

      X = Lb + (Ub - Lb).*rand(1,n); 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 
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        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The function has the following input parameters: 
 

• The parameter fx is the handle of the optimized function. 
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• The parameter Lb is the row array of low bound values. 

• The parameter Ub is the row array of upper bound values. 

• The parameter MaxIters is the maximum number of iterations 
 

The output parameters are: 
 

• The parameter bestX is the array of best solutions. 

• The parameter bestFx is the best optimized function value. 
 

The above function is easy to code and works well with Quantum Shammas 

Polynomials since the range of each power is relatively small (<1). The above 

improvement performs two passes for the random search. The first pass uses the 

lower and upper ranges (in parameters Lb and Ub) that are supplied to the function. 

The second pass narrows the values of arrays Lb and Ub to closely bracket the best 

values of X obtained at the end of the first pass. 

The Halton Quasi Random Search Function 
The next function performs random-search optimization using the Halton quasi-

random sequences: 
 

function [bestX,bestFx] = haltonRandomSearch(fx,Lb,Ub,MaxIters) 

% HALTONRANDOMSEARCH performs optimization using the Halton 

quasi-random sequence. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

 

  % set up halton sequences 
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  p = haltonset(n,'Skip',1e3,'Leap',1e2); 

  p = scramble(p,'RR2'); 

  rando = net(p,MaxIters); 

  for irun=1:2 

    for iter = 1:MaxIters 

      for i=1:n 

        X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i); 

      end 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 
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    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The above function has the same input and output parameters as the randomSearch() 

function. The above code shows lines in red that highlight the statements that 

generate multiple columns of the Halton sequence and stores them in the matrix 

rando. The function accesses the various elements of matrix rando as pseudo-random 

numbers are needed. 

The Sobol Quasi Random Search Function 
The next function performs random-search optimization using the Sobol quasi-

random sequences: 
 

function [bestX,bestFx] = sobolRandomSearch(fx,Lb,Ub,MaxIters) 

% SOBOLRANDOMSEARCH performs optimization using the Sobol quasi-

random sequence. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

 

  % set up Sobol sequences 

  p = sobolset(n,'Skip',1e3,'Leap',1e2); 

  p = scramble(p,'MatousekAffineOwen'); 

  rando = net(p,MaxIters); 

  for irun=1:2 

    for iter = 1:MaxIters 
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      for i=1:n 

        X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i); 

      end 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 
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  end 

end 

 

The above function has the same input and output parameters as the randomSearch() 

function. The above code shows lines in red that highlight the statements that 

generate multiple columns of  the Sobol sequence and store them in the matrix rando. 

The function accesses the various elements of matrix rando as pseudo-random 

numbers are needed. 

Testing Quantum Shammas Polynomials 
The next subsections show examples of using the Quantum Shammas Polynomials 

to fit a selection of arbitrary functions. The results of the Quantum Shammas 

Polynomials are compared with those of classical polynomials as well as multiple-

half-power classical polynomials (i.e. with power of 0.5, 1, 1.5, 2, 2.5, and so on). 

The adjusted coefficient of determinations are good indicators of how he two types 

of polynomial stack up against each other. 

Testing Bessel Function Fit with PSO-Run1 
The next MATLAB script, found in file testBessel1pso.m, tests fitting Bessel J(0, x) 

for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order 

Quantum Shammas Polynomials, a fourth order classical polynomial, and a fourth 

order multiple-half-power classical polynomial.  

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 
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order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 
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writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above code copies the console output to a diary text file. It also writes the 

summary results to an Excel table, shown below: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 
 

0.894946875 1.899347914 2.898896383 3.896754167 
 

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.974235737 0.178553538 -0.49445042 0.114456798 -0.006675031 
     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 
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HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655 
     

r_sqr1 r_sqr2 r_sqr3 
  

0.999653281 0.999803041 0.999393195 
  

Table 1. Summary of the results appearing in file besselj_0_x_run1.xlsx. 

 

The second row shows the powers for the fitted Quantum Shammas Polynomial. 

Notice that the second to the fifth powers have a common fractional part that begins 

with 0.39. The fifth row shows the intercept (below QSPcoeff1) and to its right the 

coefficients for the various Quantum Shammas Polynomial. The eighth row shows 

the intercept and coefficients for the classical polynomial. The eleventh row shows 

the intercept and coefficients for the multiple-half-power polynomial. The cell under 

r_sqr1 shows the adjusted coefficient of determination for the fitted Quantum 

Shammas Polynomial. The cell under r_sqr2 shows the adjusted coefficient of 

determination for the fitted multiple-half-power classical polynomial. The cell under 

r_sqr3 shows the adjusted coefficient of determination for the fitted multiple-half-

power classical polynomial. The adjusted coefficient of determination for the fitted 

Quantum Shammas Polynomial is less than the one for the classical polynomial, but 

higher than the multiple-half-power classical polynomial.   
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Here is the graph (from file besselj_0_x_run1.jpg) for the Bessel function and the 

two fitted polynomials: 

 

Figure 1. The graph from file besselj_0_x_run1.jpg. 

 

The above graph shows a fairly acceptable fit for all polynomials.  

Testing Bessel Function Fit with PSO-Run2 
The next MATLAB script, found in file testBessel2pso.m, tests fitting Bessel J(0,x) 

for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order 

Quantum Shammas Polynomials, a sixth order classical polynomial, and a sixth 

order multiple-half-power classical polynomial.  
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 
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xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox()) performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code copies the 
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console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

0.830212731 1.203662296 2.025147845 3.004348865 4.004122713 5.001415585  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

1.013564998 
-

0.714290491 1.292552049 
-

1.069089103 0.285281824 
-

0.030366974 0.001142974 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 
-

0.688054603 0.203338833 
-

0.020739115 0.000528234 1.54357E-05 

       

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7 

1.074934616 
-

3.913080473 14.34688996 
-

18.70343239 10.34218791 
-

2.548257178 0.230499745 

       

r_sqr1 r_sqr2 r_sqr3     

0.997798241 0.996718149 0.964226335     

Table 2. Summary of the results appearing in file besselj_0_x_run2.xlsx. 

 

The second row shows the powers for the fitted Quantum Shammas Polynomial. The 

fifth row shows the intercept (below QSPcoeff1) and to its right the coefficients for 

the various Quantum Shammas Polynomial. The eighth row shows the intercept and 

coefficients for the classical polynomial. The eleventh row shows the intercept and 

coefficients for the multiple-half-power polynomial. The cell under r_sqr1 shows the 

adjusted coefficient of determination for the fitted Quantum Shammas Polynomial. 

The cell under r_sqr2 shows the adjusted coefficient of determination for the fitted 

classical polynomial. The cell under r_sqr3 shows the adjusted coefficient of 

determination for the fitted multiple-half-power classical polynomial. The adjusted 

coefficient of determination for the fitted Quantum Shammas Polynomial is slightly 

higher than the one for the classical polynomial. The adjusted coefficient of 

determination for the classical polynomial is higher than the one for the multiple-

half-power classical polynomial. This condition indicates that the Quantum 

Shammas Polynomial performs a better fit for the above example. 
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Here is the graph (from file besselj_0_x_run2.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 2. The graph from file besselj_0_x_run2.jpg . 

The above graphs let you detect some significant deviations between the Bessel 

function and the fitted multiple-half-power classical polynomials. The classical 

polynomial shows lesser deviation from the Bessel function. This is not unexpected 

since I have doubled the upper limit of the range of x from 5 to 10. 

Testing Bessel Function Fit with Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Random.m) tests fitting Bessel 

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth 

order Quantum Shammas Polynomials, a fourth order classical polynomial, and a 

fourth order multiple-half-power classical polynomial. 
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clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code copies the 

console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.966140966 2.08507617 3.174835719 4.280727045  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.987688042 0.070207861 -0.369616522 0.083855597 -0.0048699 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655 

     

r_sqr1 r_sqr2 r_sqr3   

0.999918258 0.999803041 0.999393195   

Table 3. Summary of the results appearing in file besselj_0_x_random_run1.xlsx. 

 

The above table shows that the adjusted coefficient of determination for the 

Quantum Shammas Polynomial is higher than that for the other two types of classical 

polynomials. All three coefficients are good values. 
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Here is the graph (from file besselj_0_x_random_run1.jpg) for the Bessel function 

and the two fitted polynomials: 

 

Figure 3. The graph from file besselj_0_x_random_run1.jpg. 

 

The figure shows that all three types of polynomials fit the Bessel function 

reasonably well. 

Testing Bessel Function Fit with Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel2Random.m) tests fitting Bessel 

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth 

order Quantum Shammas Polynomials, a sixth order classical polynomial, and a 

sixth order multiple-half-power classical polynomial. 
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clc 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n", sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code is very 

similar to the one before it. The differences are in the names of the output files and 

the range of x. The above code copies the console output to a diary text file. It also 

writes the summary results to an Excel table, shown below: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

0.938293714 1.143704647 2.223731032 3.152367553 3.641705601 4.526376943  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

1.025178913 
-

1.826474903 2.362804318 
-

1.196586576 0.62068766 
-

0.209598363 0.006517932 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 
-

0.688054603 0.203338833 
-

0.020739115 0.000528234 1.54357E-05 

       

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7 

1.074934616 
-

3.913080473 14.34688996 
-

18.70343239 10.34218791 
-

2.548257178 0.230499745 

       

r_sqr1 r_sqr2 r_sqr3     

0.99816932 0.996718149 0.964226335     

 Table 4. Summary of the results appearing in file besselj_0_x_random_run2.xlsx. 

 

The above table shows similar types of results as the ones in Table 3, albeit lower 

values for the adjusted coefficients of determination. These lower values are due to 

the extended range of the x values.. 
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Here is the graph (from file besselj_0_x_random_run2.jpg) for the Bessel function 

and the two fitted polynomials: 

Figure 4. The graph from file besselj_0_x_random_run2.jpg. 

 

The above graphs let you detect some slight deviations between the Bessel function 

and the two fitted polynomials. This is not unexpected since I have doubled the upper 

limit of the range of x from 5 to 10. 

Testing Bessel Function Fit with Halton Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Halton.m) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order 

Quantum Shammas Polynomials, a fourth order classical polynomial, and a fourth 

order multiple-half-power classical polynomial. 
  

clc 
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clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_halton_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code is 

like the one in first random search optimization program. The main difference is that 

the above code uses functions that involve the Halton quasi-random sequence.  

Running the above code produces the following Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.961070739 2.085481583 3.174494039 4.222714445  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.987265315 0.072372796 -0.373183773 0.08657281 -0.005726002 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655 

     

r_sqr1 r_sqr2 r_sqr3   

0.999911452 0.999803041 0.999393195   

Table 5. Summary of the results appearing in file 

besselj_0_x_halton_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 3. Again, the 

adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than that for the other two classical polynomials. All coefficients are good 

values. Using the Halton sequence gives surprisingly good results. I suspect using 

one million iterations has something to do with it. 
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Here is the graph (from file besselj_0_x_halton_random_run1.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 5. The graph from file besselj_0_x_halton_random_run1.jpg. 

 

The figure shows that all types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Halton Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel2Halton.m) tests fitting Bessel J(0, 

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order 

Quantum Shammas Polynomials, a sixth order classical polynomial, and a sixth 

order multiple-half-power classical polynomial. 
  

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_halton_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 
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title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code is 
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very similar to the one before it. The differences are the names of the files and the 

range for x. The above code produces the following Excel table: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

0.703217617 1.608058724 2.224142644 3.098984635 3.658793373 4.512667872  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

1.020227385 -0.303961534 1.176835744 -1.618136179 0.691040016 -0.192050096 0.00710033 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7 

1.074934616 -3.913080473 14.34688996 -18.70343239 10.34218791 -2.548257178 0.230499745 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

r_sqr1 r_sqr2 r_sqr3     

0.998210559 0.996718149 0.964226335     

Table 6. Summary of the results appearing in file 

besselj_0_x_halton_random_run2.xlsx. 

 

The above table shows similar types of results as the ones in Table 4. Again, the 

adjusted coefficient of determination for the Quantum Shammas Polynomial is 

slightly higher than those for the classical polynomials.  

 

  



Quantum Shammas Polynomials 1C  37 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

Here is the graph (from file besselj_0_x_halton_random_run2.jpg) for the Bessel 

function and the two fitted polynomials: 

 

Figure 6. The graph from file besselj_0_x_halton_random_run2.jpg. 

 

The curves in the above figure show some deviations between the three polynomials 

and the curve for the Bessel function. 

Testing Bessel Function Fit with Sobol Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Sobol.m) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order 

Quantum Shammas Polynomials, a fourth order classical polynomial, and a fourth 

order multiple-half-power classical polynomial. 

 
clc 
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clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_sobol_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code is 

like the one in first random search optimization program. The main difference is that 

the above code uses functions that involve the Sobol quasi-random sequence.  

Running the above code produces the following Excel table: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.93445719 2.079889698 3.167459654 4.282865413  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.987160687 0.070815854 -0.369757668 0.08368228 -0.004728475 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655 

     

r_sqr1 r_sqr2 r_sqr3   

0.999912041 0.999803041 0.999393195   

Table 7. Summary of the results appearing in file 

besselj_0_x_sobol_random_run1.xlsx. 

 

The above table shows similar types of results as the ones in Table 5. Again, the 

adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than those for the classical polynomials. All three coefficients have good 

values. Using the Sobol sequence gives surprisingly good results. I also suspect 

using one million iterations has something to do with it. 
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Here is the graph (from file besselj_0_x_sobol_random_run1.jpg) for the Bessel 

function and the two fitted polynomials: 

 

Figure 7. The graph from file besselj_0_x_sobol_random_run1.jpg. 

 

The figure shows that all three polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Sobol Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel1Sobo2.m) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a sixth order 

Quantum Shammas Polynomials, a sixth order classical polynomial, and a sixth 

order multiple-half-power classical polynomial. 

 
clc 

clear 



Quantum Shammas Polynomials 1C  42 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_sobol_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselj(0,x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code is 

very similar to the Halton version. The difference is in the filenames and the use of 

the Sobol-version of the random search optimization function. The above code 

generates the following Excel table. 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

0.944691194 1.370798537 2.189795949 3.181299055 3.607044555 4.528852968  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

1.020940681 
-

0.867125201 1.607687299 
-

1.402568459 0.677565943 
-

0.262294621 0.006464675 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 
-

0.688054603 0.203338833 
-

0.020739115 0.000528234 1.54357E-05 

       

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7 

1.074934616 
-

3.913080473 14.34688996 
-

18.70343239 10.34218791 
-

2.548257178 0.230499745 

       

r_sqr1 r_sqr2 r_sqr3     

0.998224675 0.996718149 0.964226335     

Table 8. Summary of the results appearing in file 

besselj_0_x_sobol_random_run2.xlsx. 
 

As expected, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is slightly higher than the ones for classical polynomials.  
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Here is the graph (from file besselj_0_x_sobol_random_run2.jpg) for the Bessel 

function and the two fitted polynomials: 

 

Figure 8. The graph from file besselj_0_x_sobol_random_run2.jpg 
 

Again, the above curves show some deviations between the three types of fitted 

polynomials and the curve for the Bessel function. 

Conclusion for Bessel Function Fitting 
The results for the Bessel curve fitting show that all the applied methods yield better 

fittings using the Quantum Shammas Polynomials than the classical polynomials. 

 

The next four subsections look at the curve fitting of ln(x) with values of (x-1) in the 

range of (1, 7). 
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Testing ln(x) Function Fit with PSO 
The next MATLAB script (found in file testLog1pso.m) tests fitting ln(x) vs (x-1) 

for x in the range (1, 7) and samples at 0.1 steps, and using the PSO method. The 

curve fits use a fourth order Quantum Shammas Polynomials, a fourth order classical 

polynomial, and a fourth order multiple-half-power classical polynomial. 

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_pso"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 
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fprintf("Adjusted Rsqr = %f\n", r); 

 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 



Quantum Shammas Polynomials 1C  48 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code is very 

similar to the previous versions. The difference is in the filenames and the fitted 

function ln(x) vs (x-1). The above code generates the following Excel table. 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  

0.899984012 1.897240263 2.725123225 3.044743814  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.005624187 0.853854947 -0.202435017 0.068650455 -0.022782971 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

-0.004531013 0.046083384 1.061031303 -0.485458483 0.07253001 

     

r_sqr1 r_sqr2 r_sqr3   

0.999993563 0.99989954 0.999977288   
Table 9. Summary of the results appearing in file Ln_x_pso.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the ones for classical polynomials.  Also, the adjusted coefficient of 
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determination for the multiple-half-power classical polynomial is higher than the 

one for classical polynomial.   
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Here is the graph (from file ln_x.jpg) for the ln(x) function and the two fitted 

polynomials: 

 

Figure 9. The graph from file Ln_x_pso.jpg. 

 

The above graph shows that the three types of polynomials fit the ln(x) function well. 

Testing ln(x) Function Fit with Random Search Optimization 
The next MATLAB script (found in file testLog1Random.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the random search 

optimization. The curve fits use a fourth order Quantum Shammas Polynomials, a 

fourth order classical polynomial, and a fourth order multiple-half-power classical 

polynomial. 

 
clc 
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clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code is similar 

to testLog1pso.m except it uses different output filenames and calls the 

randomSearch() function for the curve fit optimization. The above code generates 

the following summary Excel table: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.980498795 1.707571371 2.457725889 2.729662457  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.00119309 1.013632733 -0.411909225 0.143763625 -0.051841352 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

-0.004531013 0.046083384 1.061031303 -0.485458483 0.07253001 

     

r_sqr1 r_sqr2 r_sqr3   

0.999998199 0.99989954 0.999977288   

Table 10. Summary of the results appearing in file Ln_x_rand.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the ones for classical polynomials.  Also, the adjusted coefficient of 

determination for the multiple-half-power classical polynomial is higher than the 

one for classical polynomial.   
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Here is the graph (from file ln_x_rand.jpg) for the Bessel function and the two fitted 

polynomials: 

Figure 10. The graph from file ln_x_rand.jpg 

 

The above graph shows that the three types of polynomials fit the ln(x) function well. 

Testing ln(x) Function Fit with Halton Random Search Optimization 
The next MATLAB script (found in file testLog1Halton.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial. 

 
clc 

clear 
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close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_halton_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

haltonlRandomSearch() and requests a million random searches. The above file 

generates the following Excel table summary. 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  

0.974525856 1.718234604 2.521890735 2.741571108  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.001223902 0.99536169 -0.382992382 0.146609323 -0.06534608 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

-0.004531013 0.046083384 1.061031303 -0.485458483 0.07253001 

     

r_sqr1 r_sqr2 r_sqr3   

0.999997924 0.99989954 0.999977288   
Table 11. Summary of the results appearing in file Ln_x_halton_rand.xlsx. 

 

The results in Table 11 agree with those in Table 10. The Quantum Shammas 

Polynomial has the highest adjusted coefficient of determination. 
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Here is the graph (from file ln_x_halton_rand.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 11. The graph from file ln_x_halton_rand.jpg 
 

The above graph shows that the three types of polynomials fit the ln(x) function well. 

Testing ln(x) Function Fit with Sobol Random Search Optimization 
The next MATLAB script (found in file testLog1Sobol.m) tests fitting ln(x) vs (x-1) 

for x in the range (1, 7) and samples at 0.1 steps, and using the Sobol quasi-random 

search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial. 

 
clc 

clear 
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close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_sobol_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 
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figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above file 

generates the following Excel table summary. 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.973254289 1.719141588 2.381499582 2.829155211  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.001802469 0.9999281 -0.402983718 0.119298669 -0.022064167 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

-0.004531013 0.046083384 1.061031303 
-

0.485458483 0.07253001 

     

r_sqr1 r_sqr2 r_sqr3   

0.999998136 0.99989954 0.999977288   
Table 12. Summary of the results appearing in file Ln_x_sobol_rand.xlsx. 

 

The results in Table 12 agree with those in Table 10. The Quantum Shammas 

Polynomial has the highest adjusted coefficient of determination. 
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Here is the graph (from file ln_x_sobol_rand.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 12. The graph from file ln_x_sobol_rand.jpg 
 

The above graph shows that the three types of polynomials fit the ln(x) function well. 

Conclusion for fitting the ln(x) Function 
The above four subsections show that fitting the ln(x) vs (x-1) for the range of (1, 7) 

using the Quantum Shammas Polynomial is a success. These polynomials yield 

adjusted coefficients of determination that are higher than the corresponding 

classical polynomials. 

 

The next four subsections in Part 1C look at fitting the right side of the standard 

Gaussian bell, where x>= 0. To calculate values for x<0, use the symmetry of y(x) 

= y(-x). 
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Testing the Right-Side Gauss-Bell Function Fit with PSO 
The next MATLAB script (found in file testGauss1pso.m) tests fitting normal N(0, 

1) for x in the range (0, 3) and samples at 0.1 steps, and using the PSO method. The 

curve fits use a fourth order Quantum Shammas Polynomials, a fourth order classical 

polynomial, and a fourth order multiple-half-power classical polynomial. 

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 
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fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 
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function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 50 and 500 maximum iterations. The above code is very similar 

to the previous versions. The difference is in the filenames and the fitted normal 

Gaussian function. The above code generates the following Excel table. 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.896636535 1.899929816 2.893178186 3.898574975  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.396102099 0.04764752 -0.327132974 0.142274653 -0.01791295 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369 

     

r_sqr1 r_sqr2 r_sqr3   

0.999933723 0.999967249 0.998959391   

Table 13. Summary of the results appearing in file Right_GaussBell_x.xlsx. 

 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

slightly less than the one for classical polynomial, but higher than that of the 

multiple-half-power classical polynomial.  
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Here is the graph (from file Right_GaussBell_x.jpg) for the right normal Gauss 

function and the two fitted polynomials: 

 

Figure 13. The graph from file Right_GaussBell_x.jpg. 

 

The above graph shows that the Quantum Shammas Polynomial and the classical 

polynomial fit the right normal Gauss function well. The multiple-half-power 

classical polynomial shows more deviation from the Gauss bell curve. 

Testing the Right-Side Gauss-Bell Function Fit with Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Random.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the random search 

optimization. The curve fits use a fourth order Quantum Shammas Polynomials, a 
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fourth order classical polynomial, and a fourth order multiple-half-power classical 

polynomial. 

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 
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% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 
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  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code generates 

the following summary Excel table: 

 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.973670568 2.087118867 3.165850956 3.620544949  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.39792387 0.018065735 -0.310054896 0.220335359 -0.084565043 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369 

     

r_sqr1 r_sqr2 r_sqr3   

0.999972658 0.999967249 0.998959391   

Table 14. Summary of the results appearing in file 

Right_GaussBell_x_random.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials, and higher than 

the one for the multiple-half-power classical polynomial. 
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Here is the graph (from file Right_GaussBell_x _random.jpg) for the right normal 

Gauss function and the two fitted polynomials: 

 

Figure 14. The graph from file Right_GaussBell_x_random.jpg. 
 

The above graph shows that the Quantum Shammas Polynomial and the classical 

polynomial fit the right normal Gauss function well. The multiple-half-power 

classical polynomial shows more deviation from the Gauss bell curve. 

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Halton.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas 
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Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_halton_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 

r2 = rsqr(yData,yPoly2); 
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% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 
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  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code 

generates the following summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.984425916 2.088389501 3.172752238 3.574004836  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.397847548 0.019473417 -0.315059691 0.243246354 -0.103843917 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369 

     

r_sqr1 r_sqr2 r_sqr3   

0.9999729 0.999967249 0.998959391   

Table 15. Summary of the results appearing in file 

Right_GaussBell_x_halton_random.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials, and higher than 

the one for the multiple-half-power classical polynomial. 
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Here is the graph (from file Right_GaussBell_x_halton_random.jpg) for the right 

normal Gauss function and the two fitted polynomials: 

 

Figure 15. The graph from file Right_GaussBell_x_halton_random.jpg. 
 

The above graph shows that the Quantum Shammas Polynomial and the classical 

polynomial fit the right normal Gauss function well. The multiple-half-power 

classical polynomial shows more deviation from the Gauss bell curve. 

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Sobol.m) tests fitting normal N(0, 

1) for x in the range (0, 3) and samples at 0.1 steps, and using the Sobol quasi-random 

search optimization. The curve fits use a fourth order Quantum Shammas 
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Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial. 

 
clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_sobol_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

fprintf("\nMultiple-half-power  polynomial fit\n"); 

c2 = polyfit(sqrt(xData),yData,order) 

yPoly2 = polyval(c2,sqrt(xData)); 
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r2 = rsqr(yData,yPoly2); 

% calculate adjusted value of the coefficient of determination 

r2 = 1 - (1 - r2)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r2); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

HalfCoeff = flip(c2); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

T4 = array2table(HalfCoeff); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

r_sqr = [glbRsqr r r2]; 

T5 = array2table(r_sqr); 

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = Ub(i-1)+diffPwr; 

    Ub(i) = Lb(i) + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 
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  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code 

generates the following summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.982618236 2.084156284 3.175713414 3.612630613  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.397927187 0.018480133 -0.309172965 0.223734882 -0.089262375 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369 

     

r_sqr1 r_sqr2 r_sqr3   

0.999972712 0.999967249 0.998959391   

Table 16. Summary of the results appearing in file 

Right_GaussBell_x_soboln_random.xlsx. 
 

Table 16 affirms the same conclusions as in Tables 14 and 15. The Quantum 

Shammas Polynomial has the highest adjusted coefficient of determination. 
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Here is the graph (from file Right_GaussBell_x_sobol_random.jpg) for the right 

normal Gauss function and the two fitted polynomials: 

 

Figure 16. The graph from file Right_GaussBell_x_sobol_random.jpg. 

 

The above graph shows that the Quantum Shammas Polynomial and the classical 

polynomial fit the right normal Gauss function well. The multiple-half-power 

classical polynomial shows more deviation from the Gauss bell curve. 

Conclusion for fitting the Right-Side Normal Gaussian Function 
The above four subsections show that fitting the right-side normal N(0, 1) Gaussian 

function in the range of (0, 3) using the Quantum Shammas Polynomial is a success. 

These polynomials yield adjusted coefficients of determination that are slightly 

higher than the corresponding classical polynomials. 
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Conclusion for Part 1C 
The Quantum Shammas Polynomials, with narrower power ranges, did well in 

fitting the sample test cases. One should keep in mind that these polynomials (as 

well as the classical ones) may not always perform well for every single math 

function and for any/all ranges—that would be a very tall order! The results so far 

are encouraging. 

Next is Part 1D 
Part 1D of this study looks at the Quantum Shammas Polynomials with a special 

varying pattern for the polynomial powers. 
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