
Quantum Shammas Polynomials 1C 1

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Quantum Shammas Polynomials
Part 1C

By

Namir Shammas

Contents
Introduction .. 2

The Quantum Shammas Polynomial Function .. 3

The PSO Function .. 3

The Random Search Function .. 6

The Halton Quasi Random Search Function ... 8

The Sobol Quasi Random Search Function ...10

Testing Quantum Shammas Polynomials ..12

Testing Bessel Function Fit with PSO-Run1 ...12

Testing Bessel Function Fit with PSO-Run2 ...16

Testing Bessel Function Fit with Random Search Optimization-Run121

Testing Bessel Function Fit with Random Search Optimization-Run225

Testing Bessel Function Fit with Halton Random Search Optimization-Run129

Testing Bessel Function Fit with Halton Random Search Optimization-Run233

Testing Bessel Function Fit with Sobol Random Search Optimization-Run137

Testing Bessel Function Fit with Sobol Random Search Optimization-Run241

Conclusion for Bessel Function Fitting ...45

Testing ln(x) Function Fit with PSO ..46

Testing ln(x) Function Fit with Random Search Optimization50

Testing ln(x) Function Fit with Halton Random Search Optimization54

Testing ln(x) Function Fit with Sobol Random Search Optimization58

Conclusion for fitting the ln(x) Function ...62

Testing the Right-Side Gauss-Bell Function Fit with PSO63

Quantum Shammas Polynomials 1C 2

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Testing the Right-Side Gauss-Bell Function Fit with Random Search Optimization

 ..66

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search

Optimization ...70

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search

Optimization ...74

Conclusion for fitting the Right-Side Normal Gaussian Function78

Conclusion for Part 1C ...79

Next is Part 1D ...79

Document History ..79

Introduction
Part 1 introduced you to Quantum Shammas Polynomials. Part 1B introduced

Quantum Shammas Polynomials with wider power ranges than for the ones in Part

1. In this part we look at the second variant of these polynomials. The variation uses

narrower ranges of random powers than those in Part 1. Random values, drawn

from these ranges, are selected to yield the least square-errors models for Quantum

Shammas Polynomials. The general equation for Quantum Shammas Polynomials

is:

y(x) = a0 + a1*xr1 + a2*xr2 + … + an*xrn for x>=0 (1)

In this study we have, 0.5 <= r1 <= 0.9, 1.0 <= r2 <= 1.4, …, and n*0.5 <= rn <

0.9+(n-1)*0.5. Notice that the upper value of a random power is 0.1 less than the

lower value of its successor. This gap ensures that no two random powers have the

same exact value. These relatively narrow ranges of the random powers (ri) are

chosen to minimize the sum of errors squared between some observed values of y(x)

and the ones calculated using equation (1). This minimization process involves

optimization using either an optimization algorithm or random search. The latter

method is feasible in the case of Quantum Shammas Polynomials because the ranges

for the random powers are relatively small. This study shows using an evolutionary

optimization algorithm, randoms search optimization, and quasi-random sequence

search optimization (using the Holton and Sobol sequences).

Quantum Shammas Polynomials 1C 3

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The Quantum Shammas Polynomial Function
The Quantum Shammas Polynomial function in MATLAB is:

function SSE = quantShammasPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 n = length(xData);

 order = length(pwr);

 SSE = 0;

 X = [1+zeros(n,1)];

 for j=1:order

 X = [X xData.^pwr(j)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 SStot = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

 yCalc = zeros(n,1);

 for i=1:n

 yCalc(i) = QSPcoeff(1);

 for j=1:order

 yCalc(i) = yCalc(i) + QSPcoeff(j+1)*xData(i)^pwr(j);

 end

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

end

The above function takes one input parameter, the array of random powers pwr. The

function returns the sum of errors squared. The function builds the regression matrix

and calls function regress() to obtain the regression coefficients. The function then

calculates the projected y values and uses them to calculate the result. The function

also calculates the total sum of squared differences between the observed values and

their mean value. Finally, the function calculates the coefficient of determination and

stores it in the global variable glbRsqr. The function also uses global variables to

access the x and y data, return the calculated values of y, and return the coefficients

of the fitted Quantum Shammas Polynomial.

The PSO Function
The next function implements the Particle Swarm Optimization (PSO) algorithm:

function [bestX,bestFx] = psox(fx,Lb,Ub,MaxPop,MaxIters,bShow)

Quantum Shammas Polynomials 1C 4

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

% PSOX implements particle swarm optimization.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxPop - maximum population of swarm.

% MaxIters - maximum number of iterations

% bShow - Boolean flag to request viewing intermediate results.

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

%

% Example

% =======

%

% >>

%

 if nargin < 6, bShow = false; end

 n = length(Lb);

 m = n + 1;

 pop = 1e+99+zeros(MaxPop,m);

 pop2 = pop;

 aPop = zeros(1,n);

 vel = zeros(MaxPop,n);

 % Initizialize population

 for i=1:MaxPop

 pop(i,1:n) = Lb + (Ub - Lb) .* rand(1,n);

 vel(i,1:n) = (Ub - Lb) / 10 .* (2*rand(1,n)-1);

 pop(i,m) = fx(pop(i,1:n));

 pop2(i,:) = pop(i,:);

 aPop(1:n) = Lb + (Ub - Lb) .* rand(1,n);

 f0 = fx(aPop);

 if f0 < pop2(i,m)

 pop2(i,1:n) = aPop(1:n);

 pop2(i,m) = f0;

 end

 end

 pop = sortrows(pop,m);

 pop2 = pop;

 if bShow

 fprintf('Best X =');

 fprintf(' %f,', pop(1,1:n));

 fprintf('Best Fx = %e\n', pop(1,m));

 end

Quantum Shammas Polynomials 1C 5

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 bestFx = pop(1,m);

 % pso loop

 for iter = 1:MaxIters

 IterFactor = sqrt((iter - 1)/(MaxIters - 1));

 w = 1 - 0.3 * IterFactor;

 c1 = 2 - 1.9 * IterFactor;

 c2 = 2 - 1.9 * IterFactor;

 for i=2:MaxPop

 for j=1:n

 vel(i,j) = w*vel(i,j) + c1*rand*(pop(1,j) - pop(i,j)) + ...

 c2*rand*(pop2(i,j) - pop(i,j));

 p = pop(i,j) + vel(i,j);

 if p < Lb(j) || p > Ub(j)

 pop(i,j) = Lb(j) + (Ub(j) - Lb(j))*rand;

 else

 pop(i,j) = p;

 end

 end

 pop(i,m) = fx(pop(i,1:n));

 % find new global best?

 if pop(1,m) > pop(i,m)

 pop(1,:) = pop(i,:);

 % find new local best?

 elseif pop(i,m) < pop2(i,m)

 pop2(i,:) = pop(i,:);

 end

 end

 [pop,Idx] = sortrows(pop,m);

 pop2 = sortrows(pop2,m);

 vel = vel(Idx,:);

 if bestFx > pop(1,m)

 if bShow

 fprintf('%i: Best X = %i', iter);

 fprintf(' %f,', pop(1,1:n));

 fprintf('Best Fx = %e\n', pop(1,m));

 end

 bestFx = pop(1,m);

 end

 end

 bestFx = pop(1,m);

 bestX = pop(1,1:n);

end

Quantum Shammas Polynomials 1C 6

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The function has the following input parameters:

• The parameter fx is the handle of the optimized function.

• The parameter Lb is the row array of low bound values.

• The parameter Ub is the row array of upper bound values.

• The parameter MaxPop is the maximum population of swarm.

• The parameter MaxIters is the maximum number of iterations

• The parameter bShow is the Boolean flag to request viewing intermediate

results.

The output parameters are:

• The parameter bestX is the array of best solutions.

• The parameter bestFx is the best optimized function value.

The Random Search Function
The next function performs a random search optimization:

function [bestX,bestFx] = randomSearch(fx,Lb,Ub,MaxIters)

% RANDOMSEARCH performs random search optimization.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 for irun=1:2

 for iter = 1:MaxIters

 X = Lb + (Ub - Lb).*rand(1,n);

 f = fx(X);

 if f < bestFx

 bestFx = f;

Quantum Shammas Polynomials 1C 7

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The function has the following input parameters:

• The parameter fx is the handle of the optimized function.

Quantum Shammas Polynomials 1C 8

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

• The parameter Lb is the row array of low bound values.

• The parameter Ub is the row array of upper bound values.

• The parameter MaxIters is the maximum number of iterations

The output parameters are:

• The parameter bestX is the array of best solutions.

• The parameter bestFx is the best optimized function value.

The above function is easy to code and works well with Quantum Shammas

Polynomials since the range of each power is relatively small (<1). The above

improvement performs two passes for the random search. The first pass uses the

lower and upper ranges (in parameters Lb and Ub) that are supplied to the function.

The second pass narrows the values of arrays Lb and Ub to closely bracket the best

values of X obtained at the end of the first pass.

The Halton Quasi Random Search Function
The next function performs random-search optimization using the Halton quasi-

random sequences:

function [bestX,bestFx] = haltonRandomSearch(fx,Lb,Ub,MaxIters)

% HALTONRANDOMSEARCH performs optimization using the Halton

quasi-random sequence.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 % set up halton sequences

Quantum Shammas Polynomials 1C 9

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 p = haltonset(n,'Skip',1e3,'Leap',1e2);

 p = scramble(p,'RR2');

 rando = net(p,MaxIters);

 for irun=1:2

 for iter = 1:MaxIters

 for i=1:n

 X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i);

 end

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

Quantum Shammas Polynomials 1C 10

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The above function has the same input and output parameters as the randomSearch()

function. The above code shows lines in red that highlight the statements that

generate multiple columns of the Halton sequence and stores them in the matrix

rando. The function accesses the various elements of matrix rando as pseudo-random

numbers are needed.

The Sobol Quasi Random Search Function
The next function performs random-search optimization using the Sobol quasi-

random sequences:

function [bestX,bestFx] = sobolRandomSearch(fx,Lb,Ub,MaxIters)

% SOBOLRANDOMSEARCH performs optimization using the Sobol quasi-

random sequence.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 % set up Sobol sequences

 p = sobolset(n,'Skip',1e3,'Leap',1e2);

 p = scramble(p,'MatousekAffineOwen');

 rando = net(p,MaxIters);

 for irun=1:2

 for iter = 1:MaxIters

Quantum Shammas Polynomials 1C 11

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 for i=1:n

 X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i);

 end

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

 Ub

Quantum Shammas Polynomials 1C 12

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 end

end

The above function has the same input and output parameters as the randomSearch()

function. The above code shows lines in red that highlight the statements that

generate multiple columns of the Sobol sequence and store them in the matrix rando.

The function accesses the various elements of matrix rando as pseudo-random

numbers are needed.

Testing Quantum Shammas Polynomials
The next subsections show examples of using the Quantum Shammas Polynomials

to fit a selection of arbitrary functions. The results of the Quantum Shammas

Polynomials are compared with those of classical polynomials as well as multiple-

half-power classical polynomials (i.e. with power of 0.5, 1, 1.5, 2, 2.5, and so on).

The adjusted coefficient of determinations are good indicators of how he two types

of polynomial stack up against each other.

Testing Bessel Function Fit with PSO-Run1
The next MATLAB script, found in file testBessel1pso.m, tests fitting Bessel J(0, x)

for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order

Quantum Shammas Polynomials, a fourth order classical polynomial, and a fourth

order multiple-half-power classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf(sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

Quantum Shammas Polynomials 1C 13

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

Quantum Shammas Polynomials 1C 14

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above code copies the console output to a diary text file. It also writes the

summary results to an Excel table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

0.894946875 1.899347914 2.898896383 3.896754167

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.974235737 0.178553538 -0.49445042 0.114456798 -0.006675031

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

Quantum Shammas Polynomials 1C 15

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655

r_sqr1 r_sqr2 r_sqr3

0.999653281 0.999803041 0.999393195

Table 1. Summary of the results appearing in file besselj_0_x_run1.xlsx.

The second row shows the powers for the fitted Quantum Shammas Polynomial.

Notice that the second to the fifth powers have a common fractional part that begins

with 0.39. The fifth row shows the intercept (below QSPcoeff1) and to its right the

coefficients for the various Quantum Shammas Polynomial. The eighth row shows

the intercept and coefficients for the classical polynomial. The eleventh row shows

the intercept and coefficients for the multiple-half-power polynomial. The cell under

r_sqr1 shows the adjusted coefficient of determination for the fitted Quantum

Shammas Polynomial. The cell under r_sqr2 shows the adjusted coefficient of

determination for the fitted multiple-half-power classical polynomial. The cell under

r_sqr3 shows the adjusted coefficient of determination for the fitted multiple-half-

power classical polynomial. The adjusted coefficient of determination for the fitted

Quantum Shammas Polynomial is less than the one for the classical polynomial, but

higher than the multiple-half-power classical polynomial.

Quantum Shammas Polynomials 1C 16

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_run1.jpg) for the Bessel function and the

two fitted polynomials:

Figure 1. The graph from file besselj_0_x_run1.jpg.

The above graph shows a fairly acceptable fit for all polynomials.

Testing Bessel Function Fit with PSO-Run2
The next MATLAB script, found in file testBessel2pso.m, tests fitting Bessel J(0,x)

for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order

Quantum Shammas Polynomials, a sixth order classical polynomial, and a sixth

order multiple-half-power classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1C 17

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf(sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

Quantum Shammas Polynomials 1C 18

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox()) performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code copies the

Quantum Shammas Polynomials 1C 19

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

0.830212731 1.203662296 2.025147845 3.004348865 4.004122713 5.001415585

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

1.013564998
-

0.714290491 1.292552049
-

1.069089103 0.285281824
-

0.030366974 0.001142974

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161
-

0.688054603 0.203338833
-

0.020739115 0.000528234 1.54357E-05

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7

1.074934616
-

3.913080473 14.34688996
-

18.70343239 10.34218791
-

2.548257178 0.230499745

r_sqr1 r_sqr2 r_sqr3

0.997798241 0.996718149 0.964226335

Table 2. Summary of the results appearing in file besselj_0_x_run2.xlsx.

The second row shows the powers for the fitted Quantum Shammas Polynomial. The

fifth row shows the intercept (below QSPcoeff1) and to its right the coefficients for

the various Quantum Shammas Polynomial. The eighth row shows the intercept and

coefficients for the classical polynomial. The eleventh row shows the intercept and

coefficients for the multiple-half-power polynomial. The cell under r_sqr1 shows the

adjusted coefficient of determination for the fitted Quantum Shammas Polynomial.

The cell under r_sqr2 shows the adjusted coefficient of determination for the fitted

classical polynomial. The cell under r_sqr3 shows the adjusted coefficient of

determination for the fitted multiple-half-power classical polynomial. The adjusted

coefficient of determination for the fitted Quantum Shammas Polynomial is slightly

higher than the one for the classical polynomial. The adjusted coefficient of

determination for the classical polynomial is higher than the one for the multiple-

half-power classical polynomial. This condition indicates that the Quantum

Shammas Polynomial performs a better fit for the above example.

Quantum Shammas Polynomials 1C 20

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Quantum Shammas Polynomials 1C 21

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_run2.jpg) for the Bessel function and the

two fitted polynomials:

Figure 2. The graph from file besselj_0_x_run2.jpg .

The above graphs let you detect some significant deviations between the Bessel

function and the fitted multiple-half-power classical polynomials. The classical

polynomial shows lesser deviation from the Bessel function. This is not unexpected

since I have doubled the upper limit of the range of x from 5 to 10.

Testing Bessel Function Fit with Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Random.m) tests fitting Bessel

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth

order Quantum Shammas Polynomials, a fourth order classical polynomial, and a

fourth order multiple-half-power classical polynomial.

Quantum Shammas Polynomials 1C 22

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf(sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 23

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 24

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code copies the

console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.966140966 2.08507617 3.174835719 4.280727045

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.987688042 0.070207861 -0.369616522 0.083855597 -0.0048699

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655

r_sqr1 r_sqr2 r_sqr3

0.999918258 0.999803041 0.999393195

Table 3. Summary of the results appearing in file besselj_0_x_random_run1.xlsx.

The above table shows that the adjusted coefficient of determination for the

Quantum Shammas Polynomial is higher than that for the other two types of classical

polynomials. All three coefficients are good values.

Quantum Shammas Polynomials 1C 25

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_random_run1.jpg) for the Bessel function

and the two fitted polynomials:

Figure 3. The graph from file besselj_0_x_random_run1.jpg.

The figure shows that all three types of polynomials fit the Bessel function

reasonably well.

Testing Bessel Function Fit with Random Search Optimization-Run2
The next MATLAB script (found in file testBessel2Random.m) tests fitting Bessel

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth

order Quantum Shammas Polynomials, a sixth order classical polynomial, and a

sixth order multiple-half-power classical polynomial.

Quantum Shammas Polynomials 1C 26

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clc

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n", sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 27

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 28

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code is very

similar to the one before it. The differences are in the names of the output files and

the range of x. The above code copies the console output to a diary text file. It also

writes the summary results to an Excel table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

0.938293714 1.143704647 2.223731032 3.152367553 3.641705601 4.526376943

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

1.025178913
-

1.826474903 2.362804318
-

1.196586576 0.62068766
-

0.209598363 0.006517932

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161
-

0.688054603 0.203338833
-

0.020739115 0.000528234 1.54357E-05

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7

1.074934616
-

3.913080473 14.34688996
-

18.70343239 10.34218791
-

2.548257178 0.230499745

r_sqr1 r_sqr2 r_sqr3

0.99816932 0.996718149 0.964226335

 Table 4. Summary of the results appearing in file besselj_0_x_random_run2.xlsx.

The above table shows similar types of results as the ones in Table 3, albeit lower

values for the adjusted coefficients of determination. These lower values are due to

the extended range of the x values..

Quantum Shammas Polynomials 1C 29

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_random_run2.jpg) for the Bessel function

and the two fitted polynomials:

Figure 4. The graph from file besselj_0_x_random_run2.jpg.

The above graphs let you detect some slight deviations between the Bessel function

and the two fitted polynomials. This is not unexpected since I have doubled the upper

limit of the range of x from 5 to 10.

Testing Bessel Function Fit with Halton Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Halton.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order

Quantum Shammas Polynomials, a fourth order classical polynomial, and a fourth

order multiple-half-power classical polynomial.

clc

Quantum Shammas Polynomials 1C 30

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_halton_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 31

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 32

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code is

like the one in first random search optimization program. The main difference is that

the above code uses functions that involve the Halton quasi-random sequence.

Running the above code produces the following Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.961070739 2.085481583 3.174494039 4.222714445

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.987265315 0.072372796 -0.373183773 0.08657281 -0.005726002

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655

r_sqr1 r_sqr2 r_sqr3

0.999911452 0.999803041 0.999393195

Table 5. Summary of the results appearing in file

besselj_0_x_halton_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 3. Again, the

adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than that for the other two classical polynomials. All coefficients are good

values. Using the Halton sequence gives surprisingly good results. I suspect using

one million iterations has something to do with it.

Quantum Shammas Polynomials 1C 33

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_halton_random_run1.jpg) for the Bessel

function and the two fitted polynomials:

Figure 5. The graph from file besselj_0_x_halton_random_run1.jpg.

The figure shows that all types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Halton Random Search Optimization-Run2
The next MATLAB script (found in file testBessel2Halton.m) tests fitting Bessel J(0,

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order

Quantum Shammas Polynomials, a sixth order classical polynomial, and a sixth

order multiple-half-power classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 1C 34

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_halton_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

Quantum Shammas Polynomials 1C 35

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code is

Quantum Shammas Polynomials 1C 36

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

very similar to the one before it. The differences are the names of the files and the

range for x. The above code produces the following Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

0.703217617 1.608058724 2.224142644 3.098984635 3.658793373 4.512667872

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

1.020227385 -0.303961534 1.176835744 -1.618136179 0.691040016 -0.192050096 0.00710033

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7

1.074934616 -3.913080473 14.34688996 -18.70343239 10.34218791 -2.548257178 0.230499745

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2 r_sqr3

0.998210559 0.996718149 0.964226335

Table 6. Summary of the results appearing in file

besselj_0_x_halton_random_run2.xlsx.

The above table shows similar types of results as the ones in Table 4. Again, the

adjusted coefficient of determination for the Quantum Shammas Polynomial is

slightly higher than those for the classical polynomials.

Quantum Shammas Polynomials 1C 37

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_halton_random_run2.jpg) for the Bessel

function and the two fitted polynomials:

Figure 6. The graph from file besselj_0_x_halton_random_run2.jpg.

The curves in the above figure show some deviations between the three polynomials

and the curve for the Bessel function.

Testing Bessel Function Fit with Sobol Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Sobol.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order

Quantum Shammas Polynomials, a fourth order classical polynomial, and a fourth

order multiple-half-power classical polynomial.

clc

Quantum Shammas Polynomials 1C 38

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_sobol_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 39

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 40

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code is

like the one in first random search optimization program. The main difference is that

the above code uses functions that involve the Sobol quasi-random sequence.

Running the above code produces the following Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.93445719 2.079889698 3.167459654 4.282865413

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.987160687 0.070815854 -0.369757668 0.08368228 -0.004728475

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

1.007829532 -0.516126123 1.902850569 -2.256654906 0.628649655

r_sqr1 r_sqr2 r_sqr3

0.999912041 0.999803041 0.999393195

Table 7. Summary of the results appearing in file

besselj_0_x_sobol_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 5. Again, the

adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than those for the classical polynomials. All three coefficients have good

values. Using the Sobol sequence gives surprisingly good results. I also suspect

using one million iterations has something to do with it.

Quantum Shammas Polynomials 1C 41

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_sobol_random_run1.jpg) for the Bessel

function and the two fitted polynomials:

Figure 7. The graph from file besselj_0_x_sobol_random_run1.jpg.

The figure shows that all three polynomials fit the Bessel function well.

Testing Bessel Function Fit with Sobol Random Search Optimization-Run2
The next MATLAB script (found in file testBessel1Sobo2.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a sixth order

Quantum Shammas Polynomials, a sixth order classical polynomial, and a sixth

order multiple-half-power classical polynomial.

clc

clear

Quantum Shammas Polynomials 1C 42

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_sobol_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselj(0,x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 43

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 44

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code is

very similar to the Halton version. The difference is in the filenames and the use of

the Sobol-version of the random search optimization function. The above code

generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

0.944691194 1.370798537 2.189795949 3.181299055 3.607044555 4.528852968

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

1.020940681
-

0.867125201 1.607687299
-

1.402568459 0.677565943
-

0.262294621 0.006464675

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161
-

0.688054603 0.203338833
-

0.020739115 0.000528234 1.54357E-05

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5 HalfCoeff6 HalfCoeff7

1.074934616
-

3.913080473 14.34688996
-

18.70343239 10.34218791
-

2.548257178 0.230499745

r_sqr1 r_sqr2 r_sqr3

0.998224675 0.996718149 0.964226335

Table 8. Summary of the results appearing in file

besselj_0_x_sobol_random_run2.xlsx.

As expected, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is slightly higher than the ones for classical polynomials.

Quantum Shammas Polynomials 1C 45

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_sobol_random_run2.jpg) for the Bessel

function and the two fitted polynomials:

Figure 8. The graph from file besselj_0_x_sobol_random_run2.jpg

Again, the above curves show some deviations between the three types of fitted

polynomials and the curve for the Bessel function.

Conclusion for Bessel Function Fitting
The results for the Bessel curve fitting show that all the applied methods yield better

fittings using the Quantum Shammas Polynomials than the classical polynomials.

The next four subsections look at the curve fitting of ln(x) with values of (x-1) in the

range of (1, 7).

Quantum Shammas Polynomials 1C 46

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Testing ln(x) Function Fit with PSO
The next MATLAB script (found in file testLog1pso.m) tests fitting ln(x) vs (x-1)

for x in the range (1, 7) and samples at 0.1 steps, and using the PSO method. The

curve fits use a fourth order Quantum Shammas Polynomials, a fourth order classical

polynomial, and a fourth order multiple-half-power classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_pso";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

Quantum Shammas Polynomials 1C 47

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

Quantum Shammas Polynomials 1C 48

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox() performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code is very

similar to the previous versions. The difference is in the filenames and the fitted

function ln(x) vs (x-1). The above code generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

0.899984012 1.897240263 2.725123225 3.044743814

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.005624187 0.853854947 -0.202435017 0.068650455 -0.022782971

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

-0.004531013 0.046083384 1.061031303 -0.485458483 0.07253001

r_sqr1 r_sqr2 r_sqr3

0.999993563 0.99989954 0.999977288
Table 9. Summary of the results appearing in file Ln_x_pso.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the ones for classical polynomials. Also, the adjusted coefficient of

Quantum Shammas Polynomials 1C 49

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

determination for the multiple-half-power classical polynomial is higher than the

one for classical polynomial.

Quantum Shammas Polynomials 1C 50

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x.jpg) for the ln(x) function and the two fitted

polynomials:

Figure 9. The graph from file Ln_x_pso.jpg.

The above graph shows that the three types of polynomials fit the ln(x) function well.

Testing ln(x) Function Fit with Random Search Optimization
The next MATLAB script (found in file testLog1Random.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the random search

optimization. The curve fits use a fourth order Quantum Shammas Polynomials, a

fourth order classical polynomial, and a fourth order multiple-half-power classical

polynomial.

clc

Quantum Shammas Polynomials 1C 51

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 52

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 53

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code is similar

to testLog1pso.m except it uses different output filenames and calls the

randomSearch() function for the curve fit optimization. The above code generates

the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.980498795 1.707571371 2.457725889 2.729662457

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.00119309 1.013632733 -0.411909225 0.143763625 -0.051841352

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

-0.004531013 0.046083384 1.061031303 -0.485458483 0.07253001

r_sqr1 r_sqr2 r_sqr3

0.999998199 0.99989954 0.999977288

Table 10. Summary of the results appearing in file Ln_x_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the ones for classical polynomials. Also, the adjusted coefficient of

determination for the multiple-half-power classical polynomial is higher than the

one for classical polynomial.

Quantum Shammas Polynomials 1C 54

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_rand.jpg) for the Bessel function and the two fitted

polynomials:

Figure 10. The graph from file ln_x_rand.jpg

The above graph shows that the three types of polynomials fit the ln(x) function well.

Testing ln(x) Function Fit with Halton Random Search Optimization
The next MATLAB script (found in file testLog1Halton.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas

Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial.

clc

clear

Quantum Shammas Polynomials 1C 55

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_halton_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 56

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 57

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

haltonlRandomSearch() and requests a million random searches. The above file

generates the following Excel table summary.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

0.974525856 1.718234604 2.521890735 2.741571108

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.001223902 0.99536169 -0.382992382 0.146609323 -0.06534608

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

-0.004531013 0.046083384 1.061031303 -0.485458483 0.07253001

r_sqr1 r_sqr2 r_sqr3

0.999997924 0.99989954 0.999977288
Table 11. Summary of the results appearing in file Ln_x_halton_rand.xlsx.

The results in Table 11 agree with those in Table 10. The Quantum Shammas

Polynomial has the highest adjusted coefficient of determination.

Quantum Shammas Polynomials 1C 58

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_halton_rand.jpg) for the Bessel function and the

two fitted polynomials:

Figure 11. The graph from file ln_x_halton_rand.jpg

The above graph shows that the three types of polynomials fit the ln(x) function well.

Testing ln(x) Function Fit with Sobol Random Search Optimization
The next MATLAB script (found in file testLog1Sobol.m) tests fitting ln(x) vs (x-1)

for x in the range (1, 7) and samples at 0.1 steps, and using the Sobol quasi-random

search optimization. The curve fits use a fourth order Quantum Shammas

Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial.

clc

clear

Quantum Shammas Polynomials 1C 59

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_sobol_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

Quantum Shammas Polynomials 1C 60

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly,xData0,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 1C 61

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above file

generates the following Excel table summary.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.973254289 1.719141588 2.381499582 2.829155211

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.001802469 0.9999281 -0.402983718 0.119298669 -0.022064167

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

-0.004531013 0.046083384 1.061031303
-

0.485458483 0.07253001

r_sqr1 r_sqr2 r_sqr3

0.999998136 0.99989954 0.999977288
Table 12. Summary of the results appearing in file Ln_x_sobol_rand.xlsx.

The results in Table 12 agree with those in Table 10. The Quantum Shammas

Polynomial has the highest adjusted coefficient of determination.

Quantum Shammas Polynomials 1C 62

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_sobol_rand.jpg) for the Bessel function and the

two fitted polynomials:

Figure 12. The graph from file ln_x_sobol_rand.jpg

The above graph shows that the three types of polynomials fit the ln(x) function well.

Conclusion for fitting the ln(x) Function
The above four subsections show that fitting the ln(x) vs (x-1) for the range of (1, 7)

using the Quantum Shammas Polynomial is a success. These polynomials yield

adjusted coefficients of determination that are higher than the corresponding

classical polynomials.

The next four subsections in Part 1C look at fitting the right side of the standard

Gaussian bell, where x>= 0. To calculate values for x<0, use the symmetry of y(x)

= y(-x).

Quantum Shammas Polynomials 1C 63

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Testing the Right-Side Gauss-Bell Function Fit with PSO
The next MATLAB script (found in file testGauss1pso.m) tests fitting normal N(0,

1) for x in the range (0, 3) and samples at 0.1 steps, and using the PSO method. The

curve fits use a fourth order Quantum Shammas Polynomials, a fourth order classical

polynomial, and a fourth order multiple-half-power classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

Quantum Shammas Polynomials 1C 64

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

Quantum Shammas Polynomials 1C 65

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox() performs a PSO search using a

population size of 50 and 500 maximum iterations. The above code is very similar

to the previous versions. The difference is in the filenames and the fitted normal

Gaussian function. The above code generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.896636535 1.899929816 2.893178186 3.898574975

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.396102099 0.04764752 -0.327132974 0.142274653 -0.01791295

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369

r_sqr1 r_sqr2 r_sqr3

0.999933723 0.999967249 0.998959391

Table 13. Summary of the results appearing in file Right_GaussBell_x.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

slightly less than the one for classical polynomial, but higher than that of the

multiple-half-power classical polynomial.

Quantum Shammas Polynomials 1C 66

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x.jpg) for the right normal Gauss

function and the two fitted polynomials:

Figure 13. The graph from file Right_GaussBell_x.jpg.

The above graph shows that the Quantum Shammas Polynomial and the classical

polynomial fit the right normal Gauss function well. The multiple-half-power

classical polynomial shows more deviation from the Gauss bell curve.

Testing the Right-Side Gauss-Bell Function Fit with Random Search

Optimization
The next MATLAB script (found in file testGauss1Random.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the random search

optimization. The curve fits use a fourth order Quantum Shammas Polynomials, a

Quantum Shammas Polynomials 1C 67

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

fourth order classical polynomial, and a fourth order multiple-half-power classical

polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

Quantum Shammas Polynomials 1C 68

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

Quantum Shammas Polynomials 1C 69

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code generates

the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.973670568 2.087118867 3.165850956 3.620544949

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.39792387 0.018065735 -0.310054896 0.220335359 -0.084565043

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369

r_sqr1 r_sqr2 r_sqr3

0.999972658 0.999967249 0.998959391

Table 14. Summary of the results appearing in file

Right_GaussBell_x_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials, and higher than

the one for the multiple-half-power classical polynomial.

Quantum Shammas Polynomials 1C 70

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x _random.jpg) for the right normal

Gauss function and the two fitted polynomials:

Figure 14. The graph from file Right_GaussBell_x_random.jpg.

The above graph shows that the Quantum Shammas Polynomial and the classical

polynomial fit the right normal Gauss function well. The multiple-half-power

classical polynomial shows more deviation from the Gauss bell curve.

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search

Optimization
The next MATLAB script (found in file testGauss1Halton.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas

Quantum Shammas Polynomials 1C 71

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_halton_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

r2 = rsqr(yData,yPoly2);

Quantum Shammas Polynomials 1C 72

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

Quantum Shammas Polynomials 1C 73

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code

generates the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.984425916 2.088389501 3.172752238 3.574004836

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.397847548 0.019473417 -0.315059691 0.243246354 -0.103843917

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369

r_sqr1 r_sqr2 r_sqr3

0.9999729 0.999967249 0.998959391

Table 15. Summary of the results appearing in file

Right_GaussBell_x_halton_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials, and higher than

the one for the multiple-half-power classical polynomial.

Quantum Shammas Polynomials 1C 74

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x_halton_random.jpg) for the right

normal Gauss function and the two fitted polynomials:

Figure 15. The graph from file Right_GaussBell_x_halton_random.jpg.

The above graph shows that the Quantum Shammas Polynomial and the classical

polynomial fit the right normal Gauss function well. The multiple-half-power

classical polynomial shows more deviation from the Gauss bell curve.

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search

Optimization
The next MATLAB script (found in file testGauss1Sobol.m) tests fitting normal N(0,

1) for x in the range (0, 3) and samples at 0.1 steps, and using the Sobol quasi-random

search optimization. The curve fits use a fourth order Quantum Shammas

Quantum Shammas Polynomials 1C 75

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Polynomials, a fourth order classical polynomial, and a fourth order multiple-half-

power classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_sobol_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 0.9, 0.1);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

fprintf("\nMultiple-half-power polynomial fit\n");

c2 = polyfit(sqrt(xData),yData,order)

yPoly2 = polyval(c2,sqrt(xData));

Quantum Shammas Polynomials 1C 76

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

r2 = rsqr(yData,yPoly2);

% calculate adjusted value of the coefficient of determination

r2 = 1 - (1 - r2)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r2);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly,xData,yPoly2);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

HalfCoeff = flip(c2);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

T4 = array2table(HalfCoeff);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

r_sqr = [glbRsqr r r2];

T5 = array2table(r_sqr);

writetable(T5,xlFile,"Sheet","Sheet1","Range","A13");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr, diffPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = Ub(i-1)+diffPwr;

 Ub(i) = Lb(i) + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

Quantum Shammas Polynomials 1C 77

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code

generates the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.982618236 2.084156284 3.175713414 3.612630613

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.397927187 0.018480133 -0.309172965 0.223734882 -0.089262375

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

HalfCoeff1 HalfCoeff2 HalfCoeff3 HalfCoeff4 HalfCoeff5

0.396918876 0.000134222 0.215508152 -0.60968181 0.237656369

r_sqr1 r_sqr2 r_sqr3

0.999972712 0.999967249 0.998959391

Table 16. Summary of the results appearing in file

Right_GaussBell_x_soboln_random.xlsx.

Table 16 affirms the same conclusions as in Tables 14 and 15. The Quantum

Shammas Polynomial has the highest adjusted coefficient of determination.

Quantum Shammas Polynomials 1C 78

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x_sobol_random.jpg) for the right

normal Gauss function and the two fitted polynomials:

Figure 16. The graph from file Right_GaussBell_x_sobol_random.jpg.

The above graph shows that the Quantum Shammas Polynomial and the classical

polynomial fit the right normal Gauss function well. The multiple-half-power

classical polynomial shows more deviation from the Gauss bell curve.

Conclusion for fitting the Right-Side Normal Gaussian Function
The above four subsections show that fitting the right-side normal N(0, 1) Gaussian

function in the range of (0, 3) using the Quantum Shammas Polynomial is a success.

These polynomials yield adjusted coefficients of determination that are slightly

higher than the corresponding classical polynomials.

Quantum Shammas Polynomials 1C 79

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Conclusion for Part 1C
The Quantum Shammas Polynomials, with narrower power ranges, did well in

fitting the sample test cases. One should keep in mind that these polynomials (as

well as the classical ones) may not always perform well for every single math

function and for any/all ranges—that would be a very tall order! The results so far

are encouraging.

Next is Part 1D
Part 1D of this study looks at the Quantum Shammas Polynomials with a special

varying pattern for the polynomial powers.

Document History

Date Version Comments

6/15/2023 1.0.0 Initial release.

