
Quantum Shammas Polynomials 1

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Quantum Shammas Polynomials
Part 1

By

Namir Shammas

Math is the Chemistry of Numbers--NS

Contents
Core of this Study .. 3

Map of the Study’s Documents .. 3

Introduction .. 3

The Quantum Shammas Polynomial Function .. 5

The Quantum Padé Shammas Polynomial Function ... 6

The Quantum Shammas Fourier Series Function .. 7

The PSO Function .. 8

The Random Search Function ..10

The Halton Quasi Random Search Function ...12

The Sobol Quasi Random Search Function ...14

Testing Quantum Shammas Polynomials ..16

Testing Bessel Function Fit with PSO-Run1 ...17

Testing Bessel Function Fit with PSO-Run2 ...20

Testing Bessel Function Fit with Random Search Optimization-Run124

Testing Bessel Function Fit with Random Search Optimization-Run228

Testing Bessel Function Fit with Halton Random Search Optimization-Run132

Testing Bessel Function Fit with Halton Random Search Optimization-Run236

Testing Bessel Function Fit with Sobol Random Search Optimization-Run140

Testing Bessel Function Fit with Sobol Random Search Optimization-Run244

Conclusion for Bessel Function Fitting ...48

Testing ln(x) Function Fit with PSO ..49

Quantum Shammas Polynomials 2

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Testing ln(x) Function Fit with Random Search Optimization52

Testing ln(x) Function Fit with Halton Random Search Optimization56

Testing ln(x) Function Fit with Sobol Random Search Optimization60

Conclusion for Fitting the ln(x) Function ..64

Testing the Right-Side Gauss-Bell Function Fit with PSO65

Testing the Right-Side Gauss-Bell Function Fit with Random Search Optimization

 ..68

Testing the Right-Side Gauss-Bell Function Fit with Halton Random Search

Optimization ...72

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search

Optimization ...76

Conclusion for Fitting the Right-Side Normal Gaussian Function80

Conclusion for Part 1 ...81

Next is Part 1B ...81

Document History ..81

Quantum Shammas Polynomials 3

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Core of this Study
This study is about a new category of polynomials, Padé polynomials, and Fourier

series. Their aim is to perform better least-squares curve fitting than classical

polynomials, classical Padé polynomials, and classical Fourier series, respectively.

Therefore, the purpose of these families of new functions is mainly statistical

rather than mathematical.

Map of the Study’s Documents

This study spans over the following multiple documents, labeled as parts:

• Part 1 is this document. It covers the basic Quantum Shammas Polynomials.

The source code and output files for this part reside in the ZIP file qsp1.zip.

• Part 1B covers the first variant of the Quantum Shammas Polynomials. The

source code and output files for this part reside in the ZIP file qsp1b.zip.

• Part 1C covers the second variant of the Quantum Shammas Polynomials.

The source code and output files for this part reside in the ZIP file qsp1c.zip.

• Part 1D covers the third variant of the Quantum Shammas Polynomials. The

source code and output files for this part reside in the ZIP file qsp1d.zip.

• Part 1E covers the fourth variant of the Quantum Shammas Polynomials.

The source code and output files for this part reside in the ZIP file qsp1e.zip.

• Part 2 covers the Quantum Shammas Padé Polynomials. The source code

and output files for this part reside in the ZIP file qsp2.zip.

• Part 3 covers the Quantum Shammas Fourier Series. The source code and

output files for this part reside in the ZIP file qsp3.zip.

The difference between the topics in Parts 1, 1B, 1C, 1D, and 1E concerns the

operational parameters of the Quantum Shammas Polynomials.

You can download the ZIP files mentioned above from the web page at

www.namirshammas.com/NEW/qsp.html. Keep the files extracted from each

ZIP file in separate folders, since they have files that share similar filenames.

Introduction
Quantum Shammas Polynomials are inspired by how quantum physics views the

probabilistic orbits of the electrons in an atom. These non-orthogonal polynomials

have nothing to do with the new art of quantum computing per se. Early on,

http://www.namirshammas.com/NEW/qsp.html

Quantum Shammas Polynomials 4

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

scientists assumed that the electrons in an atom had distinct orbits that were

thought to be fixed. This concept parallels the fixed powers of classical

polynomials. By contrast, the Heisenberg uncertainty principle suggests that the

orbits of the electrons are more probabilistic than fixed. This is the inspiration for

Quantum Shammas Polynomials. While classical polynomials have the familiar

fixed integer powers, shown next:

y(x) = a0 + a1*x + a2*x2 + … + an*xn (1)

The non-orthogonal Quantum Shammas Polynomials have random powers that

typically vary around integer powers. For examples they can use ranges between (i

– 1) + 0.5 to i + 0.4 where i is the term number. The general form of the Quantum

Shammas Polynomial is:

y(x) = a0 + a1*xr1 + a2*xr2 + … + an*xrn for x>=0 (2)

Where 0.5 <= r1 <= 1.4, 1.5 <= r2 <= 2.4, …, and (n-1)+0.5 <= rn < n+0.4. Notice

that the upper value of a random power is 0.1 less than the lower value of its

successor. This gap ensures that no two random powers have the same exact value.

I chose the above ranges for the random powers ri as arbitrary values (a kind of

starting point or first run, if you will). The subsequent parts of this study show you

how to use different schemes to calculate different ranges. In all cases, the values

of the random powers (ri) are chosen to minimize the sum of errors squared

between some observed values of y(x) (this study uses mathematical functions to

generate these values of y(x)) and the ones calculated using equation (2). This

minimization process involves optimization using either an optimization algorithm

or random search. The latter method is feasible in the case of Quantum Shammas

Polynomials because the ranges for the random powers are relatively small. This

study shows using an evolutionary optimization algorithm, randoms search

optimization, and quasi-random sequence search optimization (using the Holton

and Sobol sequences).

The study also looks at Padé and Fourier versions of the Quantum Shammas

Polynomials. A Quantum Shammas Padé Polynomials looks like:

y(x) = (a0 + a1*xr1 + a2*xr2 + … + anp*xrp) /

 (1 + b1*xs1 + b2*xs2 + … + bq*xsq) for x>=0 (3)

Quantum Shammas Polynomials 5

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Where the values for ri and si follow the ranges of values that I discussed above.

The study also looks at Fourier Quantum Shammas Series. They have the

following general equation:

y(x) = a0 + a*sin(s1* 𝜋 ∗x) + b1*cos(c1* 𝜋 ∗x) + … +

 an*sin(sn * 𝜋 ∗x) + bn*cos(cn* 𝜋 ∗x) (4)

Where the values for si and ci follow the ranges of values that I discussed above.

My goal is to see that the Quantum Shammas Polynomials/Series provide a better

fit that using classical polynomials. My second goal is to see that Quantum

Shammas Polynomials/Series provide fits that do not fall far behind those of

classical polynomials.

 The next sections (in this and subsequent parts) show you the listing for the

numerous MATLAB files. I am including these files so that this document can be

as self-sufficient as possible. Each set of source code files and output files comes

in a separate ZIP file.

The Quantum Shammas Polynomial Function
The Quantum Shammas Polynomial function in MATLAB is:

function SSE = quantShammasPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 n = length(xData);

 order = length(pwr);

 SSE = 0;

 X = [1+zeros(n,1)];

 for j=1:order

 X = [X xData.^pwr(j)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 SStot = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

 yCalc = zeros(n,1);

 for i=1:n

 yCalc(i) = QSPcoeff(1);

 for j=1:order

Quantum Shammas Polynomials 6

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 yCalc(i) = yCalc(i) + QSPcoeff(j+1)*xData(i)^pwr(j);

 end

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

end

The above function takes one input parameter, the array of random powers pwr.

The function returns the sum of errors squared. The function builds the regression

matrix and calls function regress() to obtain the regression coefficients. The

function then calculates the projected y values and uses them to calculate the

result. The function also calculates the total sum of squared differences between

the observed values and their mean value. Finally, the function calculates the

coefficient of determination and stores it in the global variable glbRsqr. The

function also uses global variables to access the x and y data, return the calculated

values of y, and return the coefficients of the fitted Quantum Shammas Polynomial.

Why use global variables? This approach makes it easy for the function to be

called by the particle swarm optimization which needs to return the value of the

optimized function only.

The Quantum Padé Shammas Polynomial Function
The Quantum Shammas Padé Polynomial function in MATLAB is:

function SSE = quantShammasPadéPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 global orderP orderQ

 n = length(xData);

 order = length(pwr);

 SSE = 0;

 X = [1+zeros(n,1)];

 for j=1:orderP

 X = [X xData.^pwr(j)];

 end

 for j=1:orderQ

 k = orderP + j;

 X = [X -yData.*xData.^pwr(k)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 SStot = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

Quantum Shammas Polynomials 7

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 yCalc = zeros(n,1);

 for i=1:n

 sumP = QSPcoeff(1);

 for j=1:orderP

 sumP = sumP + QSPcoeff(j+1)*xData(i)^pwr(j);

 end

 sumQ = 1;

 for j=1:orderQ

 k = orderP + j;

 sumQ = sumQ - QSPcoeff(k+1)*yData(i)*xData(i)^pwr(k);

 end

 yCalc(i) = sumP / sumQ;

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

end

The above function resembles the quantShammasPoly() except it performs a Padé

polynomial fit and calculations for the projected y data. The function returns the

sum of errors squared. The function also calculates the coefficient of determination

and stores it in the global variable glbRsqr. The function also uses global variables

to access the x and y data, return the calculated values of y, and return the

coefficients of the fitted Quantum Shammas Polynomial.

The Quantum Shammas Fourier Series Function
The Quantum Shammas Fourier Series function in MATLAB is:

function SSE = quantShammasFourierPoly(pwr)

 global xData yData yCalc glbRsqr QSPcoeff

 n = length(xData);

 order = length(pwr);

 X = [1+zeros(n,1)];

 for j=1:2:order

 X = [X sin(pwr(j)*pi*xData) cos(pwr(j+1)*pIxData)];

 end

 [QSPcoeff] = regress(yData,X);

 SSE = 0;

 ymean = mean(yData);

 SStot = sum((yData - ymean).^2);

 yCalc = zeros(n,1);

 for i=1:n

 yCalc(i) = QSPcoeff(1);

 for j=2:2:order

 yCalc(i) = yCalc(i) + QSPcoeff(j)*sin(pwr(j-1)*pi*xData(i)) +

...

 QSPcoeff(j+1)*cos(pwr(j)*pi*xData(i));

Quantum Shammas Polynomials 8

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 end

 SSE = SSE + (yCalc(i) - yData(i))^2;

 end

 glbRsqr = 1 - SSE / SStot;

end

The above function resembles the quantShammasPoly() except it performs a

Fourier series fit (with sine and cosine terms) and calculations for the projected y

data. The function returns the sum of errors squared. The function also calculates

the coefficient of determination and stores it in the global variable glbRsqr. The

function also uses global variables to access the x and y data, return the calculated

values of y, and return the coefficients of the fitted Quantum Shammas Fourier

Series.

The PSO Function
The next function implements the Particle Swarm Optimization (PSO) algorithm:

function [bestX,bestFx] = psox(fx,Lb,Ub,MaxPop,MaxIters,bShow)

% PSOX implements particle swarm optimization.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxPop - maximum population of swarm.

% MaxIters - maximum number of iterations

% bShow - Boolean flag to request viewing intermediate results.

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

%

% Example

% =======

%

% >>

%

 if nargin < 6, bShow = false; end

 n = length(Lb);

 m = n + 1;

 pop = 1e+99+zeros(MaxPop,m);

 pop2 = pop;

 aPop = zeros(1,n);

 vel = zeros(MaxPop,n);

Quantum Shammas Polynomials 9

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 % Initizialize population

 for i=1:MaxPop

 pop(i,1:n) = Lb + (Ub - Lb) .* rand(1,n);

 vel(i,1:n) = (Ub - Lb) / 10 .* (2*rand(1,n)-1);

 pop(i,m) = fx(pop(i,1:n));

 pop2(i,:) = pop(i,:);

 aPop(1:n) = Lb + (Ub - Lb) .* rand(1,n);

 f0 = fx(aPop);

 if f0 < pop2(i,m)

 pop2(i,1:n) = aPop(1:n);

 pop2(i,m) = f0;

 end

 end

 pop = sortrows(pop,m);

 pop2 = pop;

 if bShow

 fprintf('Best X =');

 fprintf(' %f,', pop(1,1:n));

 fprintf('Best Fx = %e\n', pop(1,m));

 end

 bestFx = pop(1,m);

 % pso loop

 for iter = 1:MaxIters

 IterFactor = sqrt((iter - 1)/(MaxIters - 1));

 w = 1 - 0.3 * IterFactor;

 c1 = 2 - 1.9 * IterFactor;

 c2 = 2 - 1.9 * IterFactor;

 for i=2:MaxPop

 for j=1:n

 vel(i,j) = w*vel(i,j) + c1*rand*(pop(1,j) - pop(i,j)) + ...

 c2*rand*(pop2(i,j) - pop(i,j));

 p = pop(i,j) + vel(i,j);

 if p < Lb(j) || p > Ub(j)

 pop(i,j) = Lb(j) + (Ub(j) - Lb(j))*rand;

 else

 pop(i,j) = p;

 end

 end

 pop(i,m) = fx(pop(i,1:n));

 % find new global best?

 if pop(1,m) > pop(i,m)

 pop(1,:) = pop(i,:);

 % find new local best?

 elseif pop(i,m) < pop2(i,m)

Quantum Shammas Polynomials 10

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 pop2(i,:) = pop(i,:);

 end

 end

 [pop,Idx] = sortrows(pop,m);

 pop2 = sortrows(pop2,m);

 vel = vel(Idx,:);

 if bestFx > pop(1,m)

 if bShow

 fprintf('%i: Best X = %i', iter);

 fprintf(' %f,', pop(1,1:n));

 fprintf('Best Fx = %e\n', pop(1,m));

 end

 bestFx = pop(1,m);

 end

 end

 bestFx = pop(1,m);

 bestX = pop(1,1:n);

end

The function has the following input parameters:

• The parameter fx is the handle of the optimized function.

• The parameter Lb is the row array of low bound values.

• The parameter Ub is the row array of upper bound values.

• The parameter MaxPop is the maximum population of swarm.

• The parameter MaxIters is the maximum number of iterations

• The parameter bShow is the Boolean flag to request viewing intermediate

results.

The output parameters are:

• The parameter bestX is the array of best solutions.

• The parameter bestFx is the best optimized function value.

The Random Search Function
The next function performs a random search optimization:

function [bestX,bestFx] = randomSearch(fx,Lb,Ub,MaxIters)

% RANDOMSEARCH performs random search optimization.

%

%

% INPUT

Quantum Shammas Polynomials 11

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 for irun=1:2

 for iter = 1:MaxIters

 X = Lb + (Ub - Lb).*rand(1,n);

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

Quantum Shammas Polynomials 12

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The function has the following input parameters:

• The parameter fx is the handle of the optimized function.

• The parameter Lb is the row array of low bound values.

• The parameter Ub is the row array of upper bound values.

• The parameter MaxIters is the maximum number of iterations.

The output parameters are:

• The parameter bestX is the array of best solutions.

• The parameter bestFx is the best optimized function value.

The above function is easy to code and works well with Quantum Shammas

Polynomials since the range of each power is relatively small (<1). The above

improvement performs two passes for the random search. The first pass uses the

lower and upper ranges (in parameters Lb and Ub) that are supplied to the function.

The second pass narrows the values of arrays Lb and Ub to closely bracket the best

values of X obtained at the end of the first pass.

The Halton Quasi Random Search Function
The next function performs random-search optimization using the Halton quasi-

random sequences:

function [bestX,bestFx] = haltonRandomSearch(fx,Lb,Ub,MaxIters)

Quantum Shammas Polynomials 13

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

% HALTONRANDOMSEARCH performs optimization using the Halton

quasi-random sequence.

%

%

% INPUT

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 % set up halton sequences

 p = haltonset(n,'Skip',1e3,'Leap',1e2);

 p = scramble(p,'RR2');

 rando = net(p,MaxIters);

 for irun=1:2

 for iter = 1:MaxIters

 for i=1:n

 X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i);

 end

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

Quantum Shammas Polynomials 14

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The above function has the same input and output parameters as the

randomSearch() function. The above code shows lines in red that highlight the

statements that generate multiple columns of the Halton sequence and stores them

in the matrix rando. The function accesses the elements of matrix rando as pseudo-

random numbers are needed.

The Sobol Quasi Random Search Function
The next function performs random-search optimization using the Sobol quasi-

random sequences:

function [bestX,bestFx] = sobolRandomSearch(fx,Lb,Ub,MaxIters)

% SOBOLRANDOMSEARCH performs optimization using the Sobol quasi-

random sequence.

%

%

% INPUT

Quantum Shammas Polynomials 15

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

% ======

% fx - handle of optimized function.

% Lb - array of low bound values.

% Ub - array of upper bound values.

% MaxIters - maximum number of iterations

%

% OUTPUT

% ======

% bestX - array of best solutions.

% bestFx - best optimized function value.

 bestFx = 1e99;

 n = length(Lb);

 bestX = 1e+99+zeros(n,1);

 % set up Sobol sequences

 p = sobolset(n,'Skip',1e3,'Leap',1e2);

 p = scramble(p,'MatousekAffineOwen');

 rando = net(p,MaxIters);

 for irun=1:2

 for iter = 1:MaxIters

 for i=1:n

 X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i);

 end

 f = fx(X);

 if f < bestFx

 bestFx = f;

 bestX = X;

 k = iter + (irun-1) *MaxIters;

 fprintf("%7i: Fx = %e, X=[", k, bestFx);

 fprintf("%f, ", X)

 fprintf("]\n");

 end

 end

 delta = 0.15;

 deltaMin = 0.05;

 bExit = false;

 bChanged = true;

 while delta >= deltaMin && bChanged

 for i=1:n

 if bestX(i) > 0

 Lb(i) = (1-delta)*bestX(i);

 Ub(i) = (1+delta)*bestX(i);

 else

 Lb(i) = (1+delta)*bestX(i);

 Ub(i) = (1-delta)*bestX(i);

Quantum Shammas Polynomials 16

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

 end

 end

 % check if neighboring bounds are too close

 bChanged = false;

 for i=1:n-1

 d = round(Lb(i+1),0)- round(Ub(i),0);

 if d == 0

 delta = delta - deltaMin;

 bChanged = true;

 break;

 end

 end

 if delta == 0

 bChanged = false;

 bExit = true;

 end

 end

 if bExit, break; end

 Lb

 Ub

 end

end

The above function has the same input and output parameters as the

randomSearch() function. The above code shows lines in red that highlight the

statements that generate multiple columns of the Sobol sequence and store them in

the matrix rando. The function accesses the elements of matrix rando as pseudo-

random numbers are needed.

 Using the Halton and Sobol quasi-random sets in MATALB establishes a matrix

of pseudo-random numbers. You can reuse the same matrix but wish to have a

different sequence of pseudo-random numbers. To do this, you use the MATLAB

function randperm() to generate an array of random row numbers. You rearrange

the matrix rows using this array of random row numbers. The result is a modified

matrix with the same values but ordered in a different random sequence.

Testing Quantum Shammas Polynomials
The next sections show examples of using the Quantum Shammas Polynomials to

fit a selection of arbitrary functions. The results of the Quantum Shammas

Polynomials are compared with those of classical polynomials. The adjusted

Quantum Shammas Polynomials 17

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

coefficient of determinations are good indicators of how the two types of

polynomial stack up against each other.

Testing Bessel Function Fit with PSO-Run1
The next MATLAB script (found in file testBessel1pso.m) tests fitting Bessel J(0,

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth

order Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf(sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

Quantum Shammas Polynomials 18

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 19

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

In the above code, each calls to function psox() performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code copies the

console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.146890335 2.397874445 3.396232875 4.399816833

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

1.001049628 -0.041962343 -0.269894175 0.083187401 -0.006548292

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998599 0.999803041

Table 1. Summary of the results appearing in file besselj_0_x_run1.xlsx.

The second row shows the powers for the fitted Quantum Shammas Polynomial.

The fifth row shows the intercept (below QSPcoeff1) and to its right the rest of the

coefficients of the Quantum Shammas Polynomial. The eighth row shows the

intercept and coefficients for the classical polynomial. The cell under r_sqr1 shows

the adjusted coefficient of determination for the fitted Quantum Shammas

Polynomial. The cell under r_sqr2 shows the adjusted coefficient of determination

for the fitted classical polynomial. The adjusted coefficient of determination for the

fitted Quantum Shammas Polynomial is higher than the one for the classical

polynomial. This condition indicates that the Quantum Shammas Polynomial

performs a better fit for the above example.

Quantum Shammas Polynomials 20

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_run1.jpg) for the Bessel function and the

two fitted polynomials:

Figure 1. The graph from file besselj_0_x_run1.jpg.

The above graph shows a reasonably good fit for both polynomials. Keep in mind

that the Quantum Shammas Polynomial is slightly better than the one for the

classical polynomial.

Testing Bessel Function Fit with PSO-Run2
The next MATLAB script (found in file testBessel2pso.m) tests fitting Bessel J(0,

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth

order Quantum Shammas Polynomial and a sixth order classical polynomial.

clc

clear

Quantum Shammas Polynomials 21

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf(sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Quantum Shammas Polynomials 22

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Coeff = flip©;

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox() performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code copies the

console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.372668606 2.399039191 3.399926574 4.383467985 5.376741393 6.367827374

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

Quantum Shammas Polynomials 23

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

0.968868841 0.151620345
-

0.498803777 0.190722161
-

0.029173579 0.001897274 -4.50257E-05

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161
-
0.688054603 0.203338833

-
0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.998859829 0.996718149

Table 2. Summary of the results appearing in file besselj_0_x_run2.xlsx.

The second row shows the powers for the fitted Quantum Shammas Polynomial.

The fifth row shows the intercept (below QSPcoeff1) and to its right the rest of the

coefficients for the Quantum Shammas Polynomial. The eighth row shows the

intercept and coefficients for the classical polynomial. The cell under r_sqr1 shows

the adjusted coefficient of determination for the fitted Quantum Shammas

Polynomial. The cell under r_sqr2 shows the adjusted coefficient of determination

for the fitted classical polynomial. The adjusted coefficient of determination for the

fitted Quantum Shammas Polynomial is slightly higher than the one for the

classical polynomial. This condition indicates that the Quantum Shammas

Polynomial performs a better fit for the above example.

Quantum Shammas Polynomials 24

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_run2.jpg) for the Bessel function and the

two fitted polynomials:

Figure 2. The graph from file besselj_0_x_run2.jpg .

The above graphs let you detect some slight deviations between the Bessel

function and the two fitted polynomials. This is not unexpected since I have

doubled the upper limit of the range of x from 5 to 10.

Testing Bessel Function Fit with Random Search Optimization-Run1
The next MATLAB file (testBessel1Random.m) tests fitting Bessel J(0, x) for x in

the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order Quantum

Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 25

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf(sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

Quantum Shammas Polynomials 26

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code copies

the console output to a diary text file. It also writes the summary results to an Excel

table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.208689038 2.371067669 3.718770338 4.06371166

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

Quantum Shammas Polynomials 27

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

1.001175343 -0.047546135 -0.244256987 0.097610148 -0.041227247

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998761 0.999803041

Table 3. Summary of the results appearing in file besselj_0_x_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 1. Again, the

adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than that for the classical polynomial. Both are good values.

Quantum Shammas Polynomials 28

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_random_run1.jpg) for the Bessel function

and the two fitted polynomials:

Figure 3. The graph from file besselj_0_x_random_run1.jpg.

The figure shows that both types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Random Search Optimization-Run2
The next MATLAB file (testBessel2Random.m) tests fitting Bessel J(0, x) for x in

the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order Quantum

Shammas Polynomial and a sixth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

Quantum Shammas Polynomials 29

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf("%s\n", sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

Quantum Shammas Polynomials 30

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code is very

similar to the one before it. The differences are in the names of the output files and

the range of x. The above code copies the console output to a diary text file. It also

writes the summary results to an Excel table, shown below:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.397547017 2.593639063 3.709482101 4.76430442 5.77300541 6.977559527

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.988172455 -0.02442091 -0.273333587 0.099097337 -0.014912172 0.001014028 -1.42798E-05

Quantum Shammas Polynomials 31

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.999775144 0.996718149

 Table 4. Summary of the results appearing in file besselj_0_x_random_run2.xlsx.

The above table shows similar types of results as the ones in Table 2. Again, the

adjusted coefficient of determination for the Quantum Shammas Polynomial is

slightly higher than that for the classical polynomial.

Quantum Shammas Polynomials 32

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_random_run2.jpg) for the Bessel function

and the two fitted polynomials:

Figure 4. The graph from file besselj_0_x_random_run2.jpg.

The above graphs let you detect some slight deviations between the Bessel

function and the two fitted polynomials. This is not unexpected since I have

doubled the upper limit of the range of x from 5 to 10.

Testing Bessel Function Fit with Halton Random Search Optimization-

Run1
The next MATLAB script (found in file testBessel1Halton.m) tests fitting Bessel

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth

order Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

Quantum Shammas Polynomials 33

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_halton_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 34

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code is

like the one in the first random search optimization program. The main difference

is that the above code uses functions that involve the Halton quasi-random

sequence. Running the above code produces the following Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.200216709 2.367505269 3.718058169 4.063405016

Quantum Shammas Polynomials 35

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

1.001146739 -0.046446745 -0.245212153 0.097382774 -0.041099665

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998756 0.999803041

Table 5. Summary of the results appearing in file

besselj_0_x_halton_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 3.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is higher than that for the classical polynomial. Both are good values.

Using the Halton sequence gives surprisingly good results. I suspect using one

million iterations has something to do with it.

Quantum Shammas Polynomials 36

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_halton_random_run1.jpg) for the Bessel

function and the two fitted polynomials:

Figure 5. The graph from file besselj_0_x_halton_random_run1.jpg.

The figure shows that both types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Halton Random Search Optimization-

Run2
The next MATLAB script (found in file testBessel2Halton.m) tests fitting Bessel

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth

order Quantum Shammas Polynomial and a sixth order classical polynomial.

clc

clear

close all

Quantum Shammas Polynomials 37

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "besselj_0_x_halton_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Quantum Shammas Polynomials 38

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code is

very similar to the one before it. The differences are the names of the files and the

range for x. The above code produces the following Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.255957298 2.619854083 3.698932578 4.745875281 5.884304742 6.755610054

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.989599539 -0.027639685 -0.276898654 0.104683677 -0.015261174 0.0008695 -3.94588E-05

Quantum Shammas Polynomials 39

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.999774454 0.996718149

Table 6. Summary of the results appearing in file

besselj_0_x_halton_random_run2.xlsx.

The above table shows similar types of results as the ones in Table 2 and Table 4.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is slightly higher than that for the classical polynomial.

Quantum Shammas Polynomials 40

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_halton_random_run2.jpg) for the Bessel

function and the two fitted polynomials:

Figure 6. The graph from file besselj_0_x_halton_random_run2.jpg.

The curves in the above figure show some deviations between the two polynomials

and the curve for the Bessel function.

Testing Bessel Function Fit with Sobol Random Search Optimization-Run1
The next MATLAB script (found in file testBessel1Sobol.m) tests fitting Bessel

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth

order Quantum Shammas Polynomial and a fourth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

Quantum Shammas Polynomials 41

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

zFilename = "besselj_0_x_sobol_random_run1";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:5\n")

xData= 0:0.1:5;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

Quantum Shammas Polynomials 42

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code is

like the one in the first random search optimization program. The main difference

is that the above code uses functions that involve the Sobol quasi-random

sequence. Running the above code produces the following Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

1.178198979 2.36532478 3.725169921 4.043021325

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

Quantum Shammas Polynomials 43

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

1.001148744 -0.044716538 -0.247344388 0.10343606 -0.04671253

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698

r_sqr1 r_sqr2

0.999998736 0.999803041

Table 7. Summary of the results appearing in file

besselj_0_x_sobol_random_run1.xlsx.

The above table shows similar types of results as the ones in Table 1 and Table 3.

Again, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is higher than that for the classical polynomial. Both are good values.

Using the Sobol sequence gives surprisingly good results. I also suspect using one

million iterations has something to do with it.

Quantum Shammas Polynomials 44

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_sobol_random_run1.jpg) for the Bessel

function and the two fitted polynomials:

Figure 7. The graph from file besselj_0_x_sobol_random_run1.jpg.

The figure shows that both types of polynomials fit the Bessel function well.

Testing Bessel Function Fit with Sobol Random Search Optimization-Run2
The next MATLAB script (found in file testBessel1Sobo2.m) tests fitting Bessel

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth

order Quantum Shammas Polynomial and a sixth order classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

Quantum Shammas Polynomials 45

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

zFilename = "besselj_0_x_sobol_random_run2";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "besselJ(0, x)";

fprintf("%s\n",sEqn);

fprintf("x=0:0.1:10\n")

xData= 0:0.1:10;

xData = xData';

n = length(xData);

yData = besselj(0,xData);

order = 6;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

Quantum Shammas Polynomials 46

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code is

very similar to the Halton version. The difference is in the filenames and the use of

the Sobol-version of the random search optimization function. The above code

generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6

1.268741613 2.578664106 3.729051957 4.764721434 5.858709457 6.788366254

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7

0.989034301 -0.022449843 -0.272906993 0.095821571 -0.014955846 0.000922222 -3.36858E-05

Quantum Shammas Polynomials 47

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05

r_sqr1 r_sqr2

0.99977086 0.996718149

Table 8. Summary of the results appearing in file

besselj_0_x_sobol_random_run2.xlsx.

As expected, the adjusted coefficient of determination for the Quantum Shammas

Polynomial is slightly higher than the one for classical polynomials.

Quantum Shammas Polynomials 48

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file besselj_0_x_sobol_random_run2.jpg) for the Bessel

function and the two fitted polynomials:

Figure 8. The graph from file besselj_0_x_sobol_random_run2.jpg

Again, the above curves show some deviations between the two types of fitted

polynomials and the curve for the Bessel function.

Conclusion for Bessel Function Fitting
The results for the Bessel curve fitting show that all the applied methods yield

better fittings than the classical polynomials.

The next four subsections look at the curve fitting of ln(x) with values of (x-1) in

the range of (1, 7).

Quantum Shammas Polynomials 49

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Testing ln(x) Function Fit with PSO
The next MATLAB script (found in file testLog1pso.m) tests fitting ln(x) vs (x-1)

for x in the range (1, 7) and samples at 0.1 steps, and using the PSO method. The

curve fits use a fourth order Quantum Shammas Polynomial and a fourth order

classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

Quantum Shammas Polynomials 50

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

In the above code, each calls to function psox() performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code is very

Quantum Shammas Polynomials 51

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

similar to the previous versions. The difference is in the filenames and the fitted

function ln(x) vs (x-1). The above code generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
0.991657635 1.500666526 2.500431764 3.500318656

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.002091573 1.11534981 -0.450466363 0.030771063 -0.001385417

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.999997545 0.99989954

Table 9. Summary of the results appearing in file Ln_x.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the powers of the fitted

Quantum Shammas Polynomial are approximately 1, 1.5, 2.5, and 3.5.

Quantum Shammas Polynomials 52

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x.jpg) for the ln(x) function and the two fitted

polynomials:

Figure 9. The graph from file ln_x.jpg

The above graph shows that the two types of polynomials fit the ln(x) function

well.

Testing ln(x) Function Fit with Random Search Optimization
The next MATLAB script (found in file testLog1Random.m) tests fitting ln(x) vs

(x-1) for x in the range (1, 7) and samples at 0.1 steps, and using the random search

optimization. The curve fits use a fourth order Quantum Shammas Polynomial and

a fourth order classical polynomial.

clc

clear

Quantum Shammas Polynomials 53

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 54

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code is similar

to ln_x,m except it uses different output filenames and calls the randomSearch()

function for the curve fit optimization. The above code generates the following

summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.072746617 1.370767319 2.264574192 3.194799892

Quantum Shammas Polynomials 55

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.001048818 1.660775415 -1.020626427 0.055841245 -0.002403173

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.999999108 0.99989954

Table 10. Summary of the results appearing in file Ln_x_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the adjusted coefficient

of determination for the random search is also slightly higher than that of the PSO

method!

Quantum Shammas Polynomials 56

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_rand.jpg) for the Bessel function and the two

fitted polynomials:

Figure 10. The graph from file ln_x_rand.jpg

The above graph shows that the two types of polynomials fit the ln(x) function

well.

Testing ln(x) Function Fit with Halton Random Search Optimization
The next MATLAB script (found in file testLog1Halton.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and uses the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial.

clc

clear

Quantum Shammas Polynomials 57

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_halton_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 58

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonlRandomSearch() and requests a million random searches. The above file

generates the following Excel table summary.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.078905121 1.358732431 2.293725799 3.171709765

Quantum Shammas Polynomials 59

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.000878781 1.733473319 -1.089988947 0.052705316 -0.002753426

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.99999911 0.99989954

Table 11. Summary of the results appearing in file Ln_x_halton_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the adjusted coefficient

of determination for the random search is also slightly higher than that of the PSO

method! This is a bit surprinting, given that the Halton sequence is a quasi-random

sequence!

Quantum Shammas Polynomials 60

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_halton_rand.jpg) for the Bessel function and the

two fitted polynomials:

Figure 11. The graph from file ln_x_halton_rand.jpg

The above graph shows that the two types of polynomials fit the ln(x) function

well.

Testing ln(x) Function Fit with Sobol Random Search Optimization
The next MATLAB script (found in file testLog1Sobol.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the Sobol quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial.

clc

clear

Quantum Shammas Polynomials 61

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Ln_x_sobol_rand";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "ln(x)";

fprintf(sEqn);

fprintf("x=1:0.1:7\n")

xData0= 1:0.1:7;

xData0 = xData0';

n = length(xData0);

yData = log(xData0);

xData = xData0 - 1;

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData0,yData,xData0,yCalc,xData0,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

Quantum Shammas Polynomials 62

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above file

generates the following Excel table summary.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.080320451 1.359033836 2.264753342 3.184459235

Quantum Shammas Polynomials 63

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

-0.000919835 1.747824814 -1.107690334 0.055834617 -0.002490127

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825

r_sqr1 r_sqr2

0.999999145 0.99989954

Table 12. Summary of the results appearing in file Ln_x_sobol_rand.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher than the one for classical polynomials. Interestingly, the adjusted coefficient

of determination for the random search is also slightly higher than that of the PSO

method! This is a bit surprinting, given that the Sobol sequence is a quasi-random

sequence!

Quantum Shammas Polynomials 64

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file ln_x_sobol_rand.jpg) for the Bessel function and the

two fitted polynomials:

Figure 12. The graph from file ln_x_sobol_rand.jpg

The above graph shows that the two types of polynomials fit the ln(x) function

well.

Conclusion for Fitting the ln(x) Function
The above four subsections show that fitting the ln(x) vs (x-1) for the range of (1,

7) using the Quantum Shammas Polynomial is a success. These polynomials yield

adjusted coefficients of determination that are higher than the corresponding

classical polynomials.

Quantum Shammas Polynomials 65

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

The next four subsections in Part 1 look at fitting the right side of the standard

Gaussian bell, where x>= 0. To calculate values for x<0, use the symmetry of y(x)

= y(-x).

Testing the Right-Side Gauss-Bell Function Fit with PSO
The next MATLAB script (found in file testGauss1pso.m) tests fitting normal N(0,

1) for x in the range (0, 3) and samples at 0.1 steps, and using the PSO method.

The curve fits use a fourth order Quantum Shammas Polynomial and a fourth order

classical polynomial.

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

Quantum Shammas Polynomials 66

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

Quantum Shammas Polynomials 67

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

In the above code, each calls to function psox() performs a PSO search using a

population size of 1000 and 5000 maximum iterations. The above code is very

similar to the previous versions. The difference is in the filenames and the fitted

normal Gaussian function. The above code generates the following Excel table.

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.393926502 2.399814573 2.753140127 3.501134201

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398167858 0.02153673 -0.795788677 0.697814433 -0.080041643

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.99997989 0.999967249

Table 13. Summary of the results appearing in file Right_GaussBell_x.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. Since the PSO

method uses random numbers, I consider the difference between the two results as

statistically insignificant.

Quantum Shammas Polynomials 68

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x.jpg) for the right normal Gauss

function and the two fitted polynomials:

Figure 13. The graph from file Right_GaussBell_x.jpg.

The above graph shows that the two types of polynomials fit the right normal

Gauss function well.

Testing the Right-Side Gauss-Bell Function Fit with Random Search

Optimization
The next MATLAB script (found in file testGauss1Random.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the random

search optimization. The curve fits use a fourth order Quantum Shammas

Polynomial and a fourth order classical polynomial.

Quantum Shammas Polynomials 69

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

exportgraphics(ax,gFile);

Quantum Shammas Polynomials 70

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

randomSearch() and requests a million random searches. The above code generates

the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.529806485 2.606558356 2.790378427 3.157518428

Quantum Shammas Polynomials 71

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398237661 0.014630588 -2.179238898 2.510018944 -0.501968366

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999982158 0.999967249

Table 14. Summary of the results appearing in file

Right_GaussBell_x_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. Since the

random search method uses random numbers, I consider the difference between the

two results as statistically insignificant.

Quantum Shammas Polynomials 72

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x _random.jpg) for the right normal

Gauss function and the two fitted polynomials:

Figure 14. The graph from file Right_GaussBell_x_random.jpg.

The above graph shows that the two types of polynomials fit the right normal

Gauss function well.

Testing the Right-Side Gauss-Bell Function Fit with Halton Random

Search Optimization
The next MATLAB script (found in file testGauss1Halton.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Halton

quasi-random search optimization. The curve fits use a fourth order Quantum

Shammas Polynomial and a fourth order classical polynomial.

Quantum Shammas Polynomials 73

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_halton_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

Quantum Shammas Polynomials 74

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

haltonRandomSearch() and requests a million random searches. The above code

generates the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4
1.514658887 2.631929252 2.752323399 3.168725289

Quantum Shammas Polynomials 75

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398228945 0.014349079 -3.286588632 3.56247719 -0.446790579

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999982146 0.999967249

Table 15. Summary of the results appearing in file

Right_GaussBell_x_halton_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. I consider the

difference between the two results as statistically insignificant.

Quantum Shammas Polynomials 76

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x_halton_random.jpg) for the right

normal Gauss function and the two fitted polynomials:

Figure 15. The graph from file Right_GaussBell_x_halton_random.jpg.

The above graph shows that the two types of polynomials fit the right normal

Gauss function well.

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search

Optimization
The next MATLAB script (found in file testGauss1Sobol.m) tests fitting normal

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Sobol

quasi-random search optimization. The curve fits use a fourth order Quantum

Shammas Polynomial and a fourth order classical polynomial.

Quantum Shammas Polynomials 77

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

clc

clear

close all

global xData yData yCalc glbRsqr QSPcoeff

zFilename = "Right_GaussBell_x_sobol_random";

txtFile = strcat(zFilename, ".txt");

xlFile = strcat(zFilename, ".xlsx");

diary(txtFile)

gFile = strcat(zFilename, ".jpg");

fprintf("%s\n", datetime(now,'ConvertFrom','datenum'));

format longE

sEqn = "exp(-x^2/2)/sqrt(2*pi)";

fprintf(sEqn);

fprintf("x=0:0.1:3\n")

xData= 0:0.1:3;

xData = xData';

n = length(xData);

yData = exp(-xData.^2/2)/sqrt(2*pi);

order = 4;

[Lb,Ub] = makeLimits(order, 0.5, 1.4);

[bestX,bestFx] =

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000);

SSE = quantShammasPoly(bestX);

% calculate adjusted value of the coefficient of determination

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", glbRsqr);

fprintf("Quantum Shammas Polynomial Powers\n");

bestX

fprintf("Quantum Shammas Polynomial Coefficients\n");

QSPcoeff = QSPcoeff'

fprintf("\nRegular polynomial fit\n");

c = polyfit(xData,yData,order)

yPoly = polyval(c,xData);

r = rsqr(yData,yPoly);

% calculate adjusted value of the coefficient of determination

r = 1 - (1 - r)*(n-1)/(n-order-1);

fprintf("Adjusted Rsqr = %f\n", r);

figure(1)

plot(xData,yData,xData,yCalc,xData,yPoly);

title(sEqn)

xlabel("X")

ylabel("Y");

grid;

ax = gca;

Quantum Shammas Polynomials 78

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

exportgraphics(ax,gFile);

QSPpwr = bestX;

Coeff = flip(c);

T1 = array2table(QSPpwr);

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1");

T2 = array2table(QSPcoeff);

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4");

T3 = array2table(Coeff);

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7");

r_sqr = [glbRsqr r];

T4 = array2table(r_sqr);

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10");

format short

diary off

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr)

 Lb = zeros(1,order);

 Ub = zeros(1,order);

 Lb(1) = minPwr;

 Ub(1) = maxPwr;

 for i=2:order

 j = i - 1;

 Lb(i) = j + minPwr;

 Ub(i) = j + maxPwr;

 end

end

function r = rsqr(y,ycalc)

 n = length(y);

 ymean = mean(y);

 SStot = sum((y - ymean).^2);

 SSE = sum((y - ycalc).^2);

 r = 1 - SSE / SStot;

end

The above script uses random search optimization by calling function

sobolRandomSearch() and requests a million random searches. The above code

generates the following summary Excel table:

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4

1.522003875 2.598938314 2.788477382 3.160692568

Quantum Shammas Polynomials 79

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5

0.398216639 0.015665411 -2.095319336 2.406124769 -0.483016053

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075

r_sqr1 r_sqr2

0.999982135 0.999967249

Table 16. Summary of the results appearing in file

Right_GaussBell_x_sobol_random.xlsx.

The adjusted coefficient of determination for the Quantum Shammas Polynomial is

higher (by a proverbial hair) than the one for classical polynomials. I consider the

difference between the two results statistically insignificant.

Quantum Shammas Polynomials 80

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Here is the graph (from file Right_GaussBell_x_sobol_random.jpg) for the right

normal Gauss function and the two fitted polynomials:

Figure 16. The graph from file Right_GaussBell_x_sobol_random.jpg.

The above graph shows that the two types of polynomials fit the right normal

Gauss function well.

Conclusion for Fitting the Right-Side Normal Gaussian Function
The above four subsections show that fitting the right-side normal Gaussian

function in the range of (0, 3) using the Quantum Shammas Polynomial is a

success. These polynomials yield adjusted coefficients of determination that are

slightly higher than the corresponding classical polynomials.

Quantum Shammas Polynomials 81

Copyright © 2023 by Namir Clement Shammas Version 1.0.0

Conclusion for Part 1
The Quantum Shammas Polynomials did well in fitting the sample test cases. One

should keep in mind that these polynomials (as well as the classical ones) may not

always perform well for every single math function and for any/all ranges—that

would be a very tall order! The results so far are encouraging.

Next is Part 1B
Part 1B of this study looks at the Quantum Shammas Polynomials with wider

ranges of random powers for most of the test cases presented in this part.

Document History

Date Version Comments

6/15/2023 1.0.0 Initial release.

