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Core of this Study 
This study is about a new category of polynomials, Padé polynomials, and Fourier 

series. Their aim is to perform better least-squares curve fitting than classical 

polynomials, classical Padé polynomials, and classical Fourier series, respectively. 

Therefore, the purpose of these families of new functions is mainly statistical 

rather than mathematical. 

Map of the Study’s Documents 
 

This study spans over the following multiple documents, labeled as parts: 
 

• Part 1 is this document. It covers the basic Quantum Shammas Polynomials. 

The source code and output files for this part reside in the ZIP file qsp1.zip. 

• Part 1B covers the first variant of the Quantum Shammas Polynomials. The 

source code and output files for this part reside in the ZIP file qsp1b.zip. 

• Part 1C covers the second variant of the Quantum Shammas Polynomials. 

The source code and output files for this part reside in the ZIP file qsp1c.zip. 

• Part 1D covers the third variant of the Quantum Shammas Polynomials. The 

source code and output files for this part reside in the ZIP file qsp1d.zip. 

• Part 1E covers the fourth variant of the Quantum Shammas Polynomials. 

The source code and output files for this part reside in the ZIP file qsp1e.zip. 

• Part 2 covers the Quantum Shammas Padé Polynomials. The source code 

and output files for this part reside in the ZIP file qsp2.zip. 

• Part 3 covers the Quantum Shammas Fourier Series. The source code and 

output files for this part reside in the ZIP file qsp3.zip. 
 

The difference between the topics in Parts 1, 1B, 1C, 1D, and 1E concerns the 

operational parameters of the Quantum Shammas Polynomials. 

 

You can download the ZIP files mentioned above from the web page at 

www.namirshammas.com/NEW/qsp.html. Keep the files extracted from each 

ZIP file in separate folders, since they have files that share similar filenames.  

 

Introduction 
Quantum Shammas Polynomials are inspired by how quantum physics views the 

probabilistic orbits of the electrons in an atom. These non-orthogonal polynomials 

have nothing to do with the new art of quantum computing per se. Early on, 

http://www.namirshammas.com/NEW/qsp.html
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scientists assumed that the electrons in an atom had distinct orbits that were 

thought to be fixed. This concept parallels the fixed powers of classical 

polynomials. By contrast, the Heisenberg uncertainty principle suggests that the 

orbits of the electrons are more probabilistic than fixed. This is the inspiration for 

Quantum Shammas Polynomials. While classical polynomials have the familiar 

fixed integer powers, shown next: 
 

y(x) = a0 + a1*x + a2*x2 + … + an*xn       (1) 
 

The non-orthogonal Quantum Shammas Polynomials have random powers that 

typically vary around integer powers. For examples they can use ranges between (i 

– 1) + 0.5 to i + 0.4 where i is the term number. The general form of the Quantum 

Shammas Polynomial is: 
 

y(x) = a0 + a1*xr1 + a2*xr2 + … + an*xrn for x>=0    (2) 
 

Where 0.5 <= r1 <= 1.4, 1.5 <= r2 <= 2.4, …, and (n-1)+0.5 <= rn < n+0.4. Notice 

that the upper value of a random power is 0.1 less than the lower value of its 

successor. This gap ensures that no two random powers have the same exact value. 

I chose the above ranges for the random powers ri as arbitrary values (a kind of 

starting point or first run, if you will). The subsequent parts of this study show you 

how to use different schemes to calculate different ranges.  In all cases, the values 

of the random powers (ri) are chosen to minimize the sum of errors squared 

between some observed values of y(x) (this study uses mathematical functions to 

generate these values of y(x)) and the ones calculated using equation (2). This 

minimization process involves optimization using either an optimization algorithm 

or random search. The latter method is feasible in the case of Quantum Shammas 

Polynomials because the ranges for the random powers are relatively small. This 

study shows using an evolutionary optimization algorithm, randoms search 

optimization, and quasi-random sequence search optimization (using the Holton 

and Sobol sequences). 

 

The study also looks at Padé and Fourier versions of the Quantum Shammas 

Polynomials. A Quantum Shammas Padé Polynomials looks like: 
 

y(x) = (a0 + a1*xr1 + a2*xr2 + … + anp*xrp)  / 

 (1 + b1*xs1 + b2*xs2 + … + bq*xsq) for x>=0    (3) 
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Where the values for ri and si follow the ranges of values that I discussed above. 

 

The study also looks at Fourier Quantum Shammas Series. They have the 

following general equation: 
 

y(x) = a0 + a*sin(s1* 𝜋 ∗x) + b1*cos(c1* 𝜋 ∗x) + … + 

 an*sin(sn * 𝜋 ∗x) + bn*cos(cn* 𝜋 ∗x)      (4) 
 

Where the values for si and ci follow the ranges of values that I discussed above. 
 

My goal is to see that the Quantum Shammas Polynomials/Series provide a better 

fit that using classical polynomials. My second goal is to see that Quantum 

Shammas Polynomials/Series provide fits that do not fall far behind those of 

classical polynomials. 

 

 The next sections (in this and subsequent parts) show you the listing for the 

numerous MATLAB files. I am including these files so that this document can be 

as self-sufficient as possible. Each set of source code files and output files comes 

in a separate ZIP file. 

The Quantum Shammas Polynomial Function 
The Quantum Shammas Polynomial function in MATLAB is: 
 

function SSE = quantShammasPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

 

  n = length(xData); 

  order = length(pwr); 

  SSE = 0; 

  X = [1+zeros(n,1)]; 

  for j=1:order 

    X = [X xData.^pwr(j)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  SStot = 0; 

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 

  yCalc = zeros(n,1); 

  for i=1:n 

    yCalc(i) = QSPcoeff(1); 

    for j=1:order 
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      yCalc(i) = yCalc(i) + QSPcoeff(j+1)*xData(i)^pwr(j); 

    end 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 

end 

 

The above function takes one input parameter, the array of random powers pwr. 

The function returns the sum of errors squared. The function builds the regression 

matrix and calls function regress() to obtain the regression coefficients. The 

function then calculates the projected y values and uses them to calculate the 

result. The function also calculates the total sum of squared differences between 

the observed values and their mean value. Finally, the function calculates the 

coefficient of determination and stores it in the global variable glbRsqr. The 

function also uses global variables to access the x and y data, return the calculated 

values of y, and return the coefficients of the fitted Quantum Shammas Polynomial. 

Why use global variables? This approach makes it easy for the function to be 

called by the particle swarm optimization which needs to return the value of the 

optimized function only. 

The Quantum Padé Shammas Polynomial Function 
The Quantum Shammas Padé Polynomial function in MATLAB is: 
 

function SSE = quantShammasPadéPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

  global orderP orderQ 

 

  n = length(xData); 

  order = length(pwr); 

  SSE = 0; 

  X = [1+zeros(n,1)]; 

  for j=1:orderP 

    X = [X xData.^pwr(j)]; 

  end 

  for j=1:orderQ 

     k = orderP + j; 

     X = [X -yData.*xData.^pwr(k)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  SStot = 0; 

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 
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  yCalc = zeros(n,1); 

  for i=1:n 

    sumP = QSPcoeff(1); 

    for j=1:orderP 

      sumP = sumP + QSPcoeff(j+1)*xData(i)^pwr(j); 

    end 

    sumQ = 1; 

    for j=1:orderQ 

      k = orderP + j; 

      sumQ = sumQ - QSPcoeff(k+1)*yData(i)*xData(i)^pwr(k); 

    end 

    yCalc(i) = sumP / sumQ; 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 

end 

 

The above function resembles the quantShammasPoly() except it performs a Padé 

polynomial fit and calculations for the projected y data. The function returns the 

sum of errors squared. The function also calculates the coefficient of determination 

and stores it in the global variable glbRsqr. The function also uses global variables 

to access the x and y data, return the calculated values of y, and return the 

coefficients of the fitted Quantum Shammas Polynomial. 

The Quantum Shammas Fourier Series Function 
The Quantum Shammas Fourier Series function in MATLAB is: 
 

function SSE = quantShammasFourierPoly(pwr) 

  global xData yData yCalc glbRsqr QSPcoeff 

  n = length(xData); 

  order = length(pwr); 

  X = [1+zeros(n,1)]; 

  for j=1:2:order 

    X = [X sin(pwr(j)*pi*xData) cos(pwr(j+1)*pIxData)]; 

  end 

  [QSPcoeff] = regress(yData,X); 

  SSE = 0;   

  ymean = mean(yData); 

  SStot = sum((yData - ymean).^2); 

  yCalc = zeros(n,1); 

  for i=1:n 

    yCalc(i) = QSPcoeff(1); 

    for j=2:2:order 

      yCalc(i) = yCalc(i) + QSPcoeff(j)*sin(pwr(j-1)*pi*xData(i)) + 

... 

                            QSPcoeff(j+1)*cos(pwr(j)*pi*xData(i)); 
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    end 

    SSE = SSE + (yCalc(i) - yData(i))^2; 

  end 

  glbRsqr = 1 - SSE / SStot; 

end 

 

The above function resembles the quantShammasPoly() except it performs a 

Fourier series fit (with sine and cosine terms) and calculations for the projected y 

data. The function returns the sum of errors squared. The function also calculates 

the coefficient of determination and stores it in the global variable glbRsqr. The 

function also uses global variables to access the x and y data, return the calculated 

values of y, and return the coefficients of the fitted Quantum Shammas Fourier 

Series. 

The PSO Function 
The next function implements the Particle Swarm Optimization (PSO) algorithm: 
 

function [bestX,bestFx] = psox(fx,Lb,Ub,MaxPop,MaxIters,bShow) 

% PSOX implements particle swarm optimization. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxPop - maximum population of swarm. 

% MaxIters - maximum number of iterations 

% bShow - Boolean flag to request viewing intermediate results. 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

% 

% Example 

% ======= 

% 

% >>  

% 

  if nargin < 6, bShow = false; end 

  n = length(Lb); 

  m = n + 1; 

  pop = 1e+99+zeros(MaxPop,m); 

  pop2 = pop; 

  aPop = zeros(1,n); 

  vel = zeros(MaxPop,n); 
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  % Initizialize population 

  for i=1:MaxPop 

    pop(i,1:n) = Lb + (Ub - Lb) .* rand(1,n); 

    vel(i,1:n) = (Ub - Lb) / 10 .* (2*rand(1,n)-1); 

    pop(i,m) = fx(pop(i,1:n)); 

    pop2(i,:) = pop(i,:); 

    aPop(1:n) = Lb + (Ub - Lb) .* rand(1,n); 

    f0 = fx(aPop); 

    if f0 < pop2(i,m) 

      pop2(i,1:n) = aPop(1:n); 

      pop2(i,m) = f0; 

    end 

  end 

 

  pop = sortrows(pop,m); 

  pop2 = pop; 

 

  if bShow 

    fprintf('Best X ='); 

    fprintf(' %f,', pop(1,1:n)); 

    fprintf('Best Fx = %e\n', pop(1,m)); 

  end 

  bestFx = pop(1,m); 

 

  % pso loop 

  for iter = 1:MaxIters 

 

    IterFactor = sqrt((iter - 1)/(MaxIters - 1)); 

    w = 1 - 0.3 * IterFactor; 

    c1 = 2 - 1.9 * IterFactor; 

    c2 = 2 - 1.9 * IterFactor; 

 

    for i=2:MaxPop 

      for j=1:n 

        vel(i,j) = w*vel(i,j) + c1*rand*(pop(1,j) - pop(i,j)) + ... 

          c2*rand*(pop2(i,j) - pop(i,j)); 

        p = pop(i,j) + vel(i,j); 

 

        if p < Lb(j) || p > Ub(j) 

          pop(i,j) = Lb(j) + (Ub(j) - Lb(j))*rand; 

        else 

          pop(i,j) = p; 

        end 

      end 

 

      pop(i,m) = fx(pop(i,1:n)); 

 

      % find new global best? 

      if pop(1,m) > pop(i,m) 

        pop(1,:) = pop(i,:); 

        % find new local best? 

      elseif pop(i,m) < pop2(i,m) 
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        pop2(i,:) = pop(i,:); 

      end 

    end 

     

    [pop,Idx] = sortrows(pop,m); 

    pop2 = sortrows(pop2,m); 

    vel = vel(Idx,:); 

 

    if bestFx > pop(1,m) 

      if bShow 

        fprintf('%i: Best X = %i', iter); 

        fprintf(' %f,', pop(1,1:n)); 

        fprintf('Best Fx = %e\n', pop(1,m)); 

      end 

      bestFx = pop(1,m); 

    end 

  end 

  bestFx = pop(1,m); 

  bestX = pop(1,1:n); 

end 

  

The function has the following input parameters: 
 

• The parameter fx is the handle of the optimized function. 

• The parameter Lb is the row array of low bound values. 

• The parameter Ub is the row array of upper bound values. 

• The parameter MaxPop is the maximum population of swarm. 

• The parameter MaxIters is the maximum number of iterations 

• The parameter bShow is the Boolean flag to request viewing intermediate 

results. 
 

The output parameters are: 
 

• The parameter bestX is the array of best solutions. 

• The parameter bestFx is the best optimized function value. 

The Random Search Function 
The next function performs a random search optimization: 
 

function [bestX,bestFx] = randomSearch(fx,Lb,Ub,MaxIters) 

% RANDOMSEARCH performs random search optimization. 

% 

% 

% INPUT 
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% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

  for irun=1:2 

    for iter = 1:MaxIters 

      X = Lb + (Ub - Lb).*rand(1,n); 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 
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          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The function has the following input parameters: 
 

• The parameter fx is the handle of the optimized function. 

• The parameter Lb is the row array of low bound values. 

• The parameter Ub is the row array of upper bound values. 

• The parameter MaxIters is the maximum number of iterations. 
 

The output parameters are: 
 

• The parameter bestX is the array of best solutions. 

• The parameter bestFx is the best optimized function value. 
 

The above function is easy to code and works well with Quantum Shammas 

Polynomials since the range of each power is relatively small (<1). The above 

improvement performs two passes for the random search. The first pass uses the 

lower and upper ranges (in parameters Lb and Ub) that are supplied to the function. 

The second pass narrows the values of arrays Lb and Ub to closely bracket the best 

values of X obtained at the end of the first pass. 

The Halton Quasi Random Search Function 
The next function performs random-search optimization using the Halton quasi-

random sequences: 
 

function [bestX,bestFx] = haltonRandomSearch(fx,Lb,Ub,MaxIters) 
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% HALTONRANDOMSEARCH performs optimization using the Halton 

quasi-random sequence. 

% 

% 

% INPUT 

% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

 

  % set up halton sequences 

  p = haltonset(n,'Skip',1e3,'Leap',1e2); 

  p = scramble(p,'RR2'); 

  rando = net(p,MaxIters); 

  for irun=1:2 

    for iter = 1:MaxIters 

      for i=1:n 

        X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i); 

      end 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 
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          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         

        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The above function has the same input and output parameters as the 

randomSearch() function. The above code shows lines in red that highlight the 

statements that generate multiple columns of the Halton sequence and stores them 

in the matrix rando. The function accesses the elements of matrix rando as pseudo-

random numbers are needed. 

The Sobol Quasi Random Search Function 
The next function performs random-search optimization using the Sobol quasi-

random sequences: 
 

function [bestX,bestFx] = sobolRandomSearch(fx,Lb,Ub,MaxIters) 

% SOBOLRANDOMSEARCH performs optimization using the Sobol quasi-

random sequence. 

% 

% 

% INPUT 
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% ====== 

% fx - handle of optimized function. 

% Lb - array of low bound values. 

% Ub - array of upper bound values. 

% MaxIters - maximum number of iterations 

% 

% OUTPUT 

% ====== 

% bestX - array of best solutions. 

% bestFx - best optimized function value. 

 

  bestFx = 1e99; 

  n = length(Lb); 

  bestX = 1e+99+zeros(n,1); 

 

  % set up Sobol sequences 

  p = sobolset(n,'Skip',1e3,'Leap',1e2); 

  p = scramble(p,'MatousekAffineOwen'); 

  rando = net(p,MaxIters); 

  for irun=1:2 

    for iter = 1:MaxIters 

      for i=1:n 

        X(i) = Lb(i) + (Ub(i) - Lb(i))*rando(iter,i); 

      end 

      f = fx(X); 

      if f < bestFx 

        bestFx = f; 

        bestX = X; 

        k = iter + (irun-1) *MaxIters; 

        fprintf("%7i: Fx = %e, X=[", k, bestFx); 

        fprintf("%f, ", X) 

        fprintf("]\n"); 

      end 

    end 

   

    delta = 0.15; 

    deltaMin = 0.05; 

    bExit = false; 

    bChanged = true; 

    while delta >= deltaMin && bChanged  

      for i=1:n 

        if bestX(i) > 0 

          Lb(i) = (1-delta)*bestX(i); 

          Ub(i) = (1+delta)*bestX(i); 

        else 

          Lb(i) = (1+delta)*bestX(i); 

          Ub(i) = (1-delta)*bestX(i);         
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        end 

      end 

      % check if neighboring bounds are too close 

      bChanged = false; 

      for i=1:n-1 

        d = round(Lb(i+1),0)- round(Ub(i),0); 

        if d == 0 

          delta = delta - deltaMin; 

          bChanged = true; 

          break; 

        end 

      end 

      if delta == 0  

        bChanged = false; 

        bExit = true;  

      end 

    end 

   

    if bExit, break; end 

    Lb 

    Ub 

  end 

end 

 

The above function has the same input and output parameters as the 

randomSearch() function. The above code shows lines in red that highlight the 

statements that generate multiple columns of the Sobol sequence and store them in 

the matrix rando. The function accesses the elements of matrix rando as pseudo-

random numbers are needed. 

 

 Using the Halton and Sobol quasi-random sets in MATALB establishes a matrix 

of pseudo-random numbers. You can reuse the same matrix but wish to have a 

different sequence of pseudo-random numbers. To do this, you use the MATLAB 

function randperm() to generate an array of random row numbers. You rearrange 

the matrix rows using this array of random row numbers. The result is a modified 

matrix with the same values but ordered in a different random sequence. 

Testing Quantum Shammas Polynomials 
The next sections show examples of using the Quantum Shammas Polynomials to 

fit a selection of arbitrary functions. The results of the Quantum Shammas 

Polynomials are compared with those of classical polynomials. The adjusted 
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coefficient of determinations are good indicators of how the two types of 

polynomial stack up against each other. 

Testing Bessel Function Fit with PSO-Run1 
The next MATLAB script (found in file testBessel1pso.m ) tests fitting Bessel J(0, 

x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth 

order Quantum Shammas Polynomial and a fourth order classical polynomial.  
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 
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r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 
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In the above code, each calls to function psox() performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code copies the 

console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.146890335 2.397874445 3.396232875 4.399816833  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

1.001049628 -0.041962343 -0.269894175 0.083187401 -0.006548292 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999998599 0.999803041    

Table 1. Summary of the results appearing in file besselj_0_x_run1.xlsx. 
 

The second row shows the powers for the fitted Quantum Shammas Polynomial. 

The fifth row shows the intercept (below QSPcoeff1) and to its right the rest of the 

coefficients of the Quantum Shammas Polynomial. The eighth row shows the 

intercept and coefficients for the classical polynomial. The cell under r_sqr1 shows 

the adjusted coefficient of determination for the fitted Quantum Shammas 

Polynomial. The cell under r_sqr2 shows the adjusted coefficient of determination 

for the fitted classical polynomial. The adjusted coefficient of determination for the 

fitted Quantum Shammas Polynomial is higher than the one for the classical 

polynomial. This condition indicates that the Quantum Shammas Polynomial 

performs a better fit for the above example. 
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Here is the graph (from file besselj_0_x_run1.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 1. The graph from file besselj_0_x_run1.jpg. 
 

The above graph shows a reasonably good fit for both polynomials. Keep in mind 

that the Quantum Shammas Polynomial is slightly better than the one for the 

classical polynomial. 

Testing Bessel Function Fit with PSO-Run2 
The next MATLAB script (found in file testBessel2pso.m) tests fitting Bessel J(0, 

x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth 

order Quantum Shammas Polynomial and a sixth order classical polynomial. 
 

clc 

clear 
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close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 
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Coeff = flip©; 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code copies the 

console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.372668606 2.399039191 3.399926574 4.383467985 5.376741393 6.367827374  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 
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0.968868841 0.151620345 
-

0.498803777 0.190722161 
-

0.029173579 0.001897274 -4.50257E-05 

       

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 
-
0.688054603 0.203338833 

-
0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.998859829 0.996718149      

Table 2. Summary of the results appearing in file besselj_0_x_run2.xlsx. 
 

The second row shows the powers for the fitted Quantum Shammas Polynomial. 

The fifth row shows the intercept (below QSPcoeff1) and to its right the rest of the 

coefficients for the Quantum Shammas Polynomial. The eighth row shows the 

intercept and coefficients for the classical polynomial. The cell under r_sqr1 shows 

the adjusted coefficient of determination for the fitted Quantum Shammas 

Polynomial. The cell under r_sqr2 shows the adjusted coefficient of determination 

for the fitted classical polynomial. The adjusted coefficient of determination for the 

fitted Quantum Shammas Polynomial is slightly higher than the one for the 

classical polynomial. This condition indicates that the Quantum Shammas 

Polynomial performs a better fit for the above example. 

 

  



Quantum Shammas Polynomials  24 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

Here is the graph (from file besselj_0_x_run2.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 2. The graph from file besselj_0_x_run2.jpg . 

The above graphs let you detect some slight deviations between the Bessel 

function and the two fitted polynomials. This is not unexpected since I have 

doubled the upper limit of the range of x from 5 to 10. 

Testing Bessel Function Fit with Random Search Optimization-Run1 
The next MATLAB file (testBessel1Random.m) tests fitting Bessel J(0, x) for x in 

the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth order Quantum 

Shammas Polynomial and a fourth order classical polynomial. 
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 
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T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code copies 

the console output to a diary text file. It also writes the summary results to an Excel 

table, shown below: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.208689038 2.371067669 3.718770338 4.06371166  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 
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1.001175343 -0.047546135 -0.244256987 0.097610148 -0.041227247 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999998761 0.999803041    

Table 3. Summary of the results appearing in file besselj_0_x_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 1. Again, the 

adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than that for the classical polynomial. Both are good values. 
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Here is the graph (from file besselj_0_x_random_run1.jpg) for the Bessel function 

and the two fitted polynomials: 

Figure 3. The graph from file besselj_0_x_random_run1.jpg. 
 

The figure shows that both types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Random Search Optimization-Run2 
The next MATLAB file (testBessel2Random.m) tests fitting Bessel J(0, x) for x in 

the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth order Quantum 

Shammas Polynomial and a sixth order classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 
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gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf("%s\n", sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 
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r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code is very 

similar to the one before it. The differences are in the names of the output files and 

the range of x. The above code copies the console output to a diary text file. It also 

writes the summary results to an Excel table, shown below: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.397547017 2.593639063 3.709482101 4.76430442 5.77300541 6.977559527  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.988172455 -0.02442091 -0.273333587 0.099097337 -0.014912172 0.001014028 -1.42798E-05 
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Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.999775144 0.996718149      

 Table 4. Summary of the results appearing in file besselj_0_x_random_run2.xlsx. 
 

The above table shows similar types of results as the ones in Table 2. Again, the 

adjusted coefficient of determination for the Quantum Shammas Polynomial is 

slightly higher than that for the classical polynomial.  
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Here is the graph (from file besselj_0_x_random_run2.jpg) for the Bessel function 

and the two fitted polynomials: 

Figure 4. The graph from file besselj_0_x_random_run2.jpg. 
 

The above graphs let you detect some slight deviations between the Bessel 

function and the two fitted polynomials. This is not unexpected since I have 

doubled the upper limit of the range of x from 5 to 10. 

Testing Bessel Function Fit with Halton Random Search Optimization-

Run1 
The next MATLAB script (found in file testBessel1Halton.m) tests fitting Bessel 

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth 

order Quantum Shammas Polynomial and a fourth order classical polynomial.   
 

clc 
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clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_halton_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code is 

like the one in the first random search optimization program. The main difference 

is that the above code uses functions that involve the Halton quasi-random 

sequence.  Running the above code produces the following Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.200216709 2.367505269 3.718058169 4.063405016  
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QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

1.001146739 -0.046446745 -0.245212153 0.097382774 -0.041099665 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698 

     

r_sqr1 r_sqr2    

0.999998756 0.999803041    

Table 5. Summary of the results appearing in file 

besselj_0_x_halton_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 3. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is higher than that for the classical polynomial. Both are good values. 

Using the Halton sequence gives surprisingly good results. I suspect using one 

million iterations has something to do with it. 
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Here is the graph (from file besselj_0_x_halton_random_run1.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 5. The graph from file besselj_0_x_halton_random_run1.jpg. 

 

The figure shows that both types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Halton Random Search Optimization-

Run2 
The next MATLAB script (found in file testBessel2Halton.m) tests fitting Bessel 

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth 

order Quantum Shammas Polynomial and a sixth order classical polynomial. 
 

clc 

clear 

close all 
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global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "besselj_0_x_halton_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 
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Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code is 

very similar to the one before it. The differences are the names of the files and the 

range for x. The above code produces the following Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.255957298 2.619854083 3.698932578 4.745875281 5.884304742 6.755610054  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.989599539 -0.027639685 -0.276898654 0.104683677 -0.015261174 0.0008695 -3.94588E-05 
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Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.999774454 0.996718149      

Table 6. Summary of the results appearing in file 

besselj_0_x_halton_random_run2.xlsx. 
 

The above table shows similar types of results as the ones in Table 2 and Table 4. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is slightly higher than that for the classical polynomial.  
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Here is the graph (from file besselj_0_x_halton_random_run2.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 6. The graph from file besselj_0_x_halton_random_run2.jpg. 

The curves in the above figure show some deviations between the two polynomials 

and the curve for the Bessel function. 

Testing Bessel Function Fit with Sobol Random Search Optimization-Run1 
The next MATLAB script (found in file testBessel1Sobol.m) tests fitting Bessel 

J(0, x) for x in the range (0, 5) and samples at 0.1 steps. The curve fits use a fourth 

order Quantum Shammas Polynomial and a fourth order classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 
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zFilename = "besselj_0_x_sobol_random_run1"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:5\n") 

xData= 0:0.1:5; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 
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writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code is 

like the one in the first random search optimization program. The main difference 

is that the above code uses functions that involve the Sobol quasi-random 

sequence.  Running the above code produces the following Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 
 

1.178198979 2.36532478 3.725169921 4.043021325 
 

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 
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1.001148744 -0.044716538 -0.247344388 0.10343606 -0.04671253 
     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.980927341 0.138170634 -0.457980428 0.113695746 -0.007357698      

r_sqr1 r_sqr2 
   

0.999998736 0.999803041 
   

Table 7. Summary of the results appearing in file 

besselj_0_x_sobol_random_run1.xlsx. 
 

The above table shows similar types of results as the ones in Table 1 and Table 3. 

Again, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is higher than that for the classical polynomial. Both are good values. 

Using the Sobol sequence gives surprisingly good results. I also suspect using one 

million iterations has something to do with it. 
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Here is the graph (from file besselj_0_x_sobol_random_run1.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 7. The graph from file besselj_0_x_sobol_random_run1.jpg. 

 

The figure shows that both types of polynomials fit the Bessel function well. 

Testing Bessel Function Fit with Sobol Random Search Optimization-Run2 
The next MATLAB script (found in file testBessel1Sobo2.m) tests fitting Bessel 

J(0, x) for x in the range (0, 10) and samples at 0.1 steps. The curve fits use a sixth 

order Quantum Shammas Polynomial and a sixth order classical polynomial.   
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 
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zFilename = "besselj_0_x_sobol_random_run2"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "besselJ(0, x)"; 

fprintf("%s\n",sEqn); 

fprintf("x=0:0.1:10\n") 

xData= 0:0.1:10; 

xData = xData'; 

n = length(xData); 

yData = besselj(0,xData); 

order = 6; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 
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T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code is 

very similar to the Halton version. The difference is in the filenames and the use of 

the Sobol-version of the random search optimization function. The above code 

generates the following Excel table. 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4 QSPpwr5 QSPpwr6  

1.268741613 2.578664106 3.729051957 4.764721434 5.858709457 6.788366254  

       

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 QSPcoeff6 QSPcoeff7 

0.989034301 -0.022449843 -0.272906993 0.095821571 -0.014955846 0.000922222 -3.36858E-05 
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Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 Coeff6 Coeff7 

0.942551329 0.346766161 -0.688054603 0.203338833 -0.020739115 0.000528234 1.54357E-05 

       

r_sqr1 r_sqr2      

0.99977086 0.996718149      

Table 8. Summary of the results appearing in file 

besselj_0_x_sobol_random_run2.xlsx. 
 

As expected, the adjusted coefficient of determination for the Quantum Shammas 

Polynomial is slightly higher than the one for classical polynomials.  
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Here is the graph (from file besselj_0_x_sobol_random_run2.jpg) for the Bessel 

function and the two fitted polynomials: 

Figure 8. The graph from file besselj_0_x_sobol_random_run2.jpg  
 

Again, the above curves show some deviations between the two types of fitted 

polynomials and the curve for the Bessel function. 

Conclusion for Bessel Function Fitting 
The results for the Bessel curve fitting show that all the applied methods yield 

better fittings than the classical polynomials. 

 

The next four subsections look at the curve fitting of ln(x) with values of (x-1) in 

the range of (1, 7). 
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Testing ln(x) Function Fit with PSO 
The next MATLAB script (found in file testLog1pso.m) tests fitting ln(x) vs (x-1) 

for x in the range (1, 7) and samples at 0.1 steps, and using the PSO method. The 

curve fits use a fourth order Quantum Shammas Polynomial and a fourth order 

classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 
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figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code is very 
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similar to the previous versions. The difference is in the filenames and the fitted 

function ln(x) vs (x-1). The above code generates the following Excel table. 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
0.991657635 1.500666526 2.500431764 3.500318656  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.002091573 1.11534981 -0.450466363 0.030771063 -0.001385417 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.999997545 0.99989954    

Table 9. Summary of the results appearing in file Ln_x.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the powers of the fitted 

Quantum Shammas Polynomial are approximately 1, 1.5, 2.5, and 3.5. 
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Here is the graph (from file ln_x.jpg) for the ln(x) function and the two fitted 

polynomials: 

Figure 9. The graph from file ln_x.jpg 
 

The above graph shows that the two types of polynomials fit the ln(x) function 

well. 

Testing ln(x) Function Fit with Random Search Optimization 
The next MATLAB script (found in file testLog1Random.m) tests fitting ln(x) vs 

(x-1) for x in the range (1, 7) and samples at 0.1 steps, and using the random search 

optimization. The curve fits use a fourth order Quantum Shammas Polynomial and 

a fourth order classical polynomial. 
 

clc 

clear 
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close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code is similar 

to ln_x,m except it uses different output filenames and calls the randomSearch() 

function for the curve fit optimization. The above code generates the following 

summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.072746617 1.370767319 2.264574192 3.194799892  
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QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.001048818 1.660775415 -1.020626427 0.055841245 -0.002403173 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.999999108 0.99989954    

Table 10. Summary of the results appearing in file Ln_x_rand.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the adjusted coefficient 

of determination for the random search is also slightly higher than that of the PSO 

method!  
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Here is the graph (from file ln_x_rand.jpg) for the Bessel function and the two 

fitted polynomials: 

Figure 10. The graph from file ln_x_rand.jpg 

 

The above graph shows that the two types of polynomials fit the ln(x) function 

well. 

Testing ln(x) Function Fit with Halton Random Search Optimization 
The next MATLAB script (found in file testLog1Halton.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and uses the Halton quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial.   
 

clc 

clear 
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close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_halton_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonlRandomSearch() and requests a million random searches. The above file 

generates the following Excel table summary. 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.078905121 1.358732431 2.293725799 3.171709765  
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QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.000878781 1.733473319 -1.089988947 0.052705316 -0.002753426 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.99999911 0.99989954    

Table 11. Summary of the results appearing in file Ln_x_halton_rand.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the adjusted coefficient 

of determination for the random search is also slightly higher than that of the PSO 

method! This is a bit surprinting, given that the Halton sequence is a quasi-random 

sequence! 
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Here is the graph (from file ln_x_halton_rand.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 11. The graph from file ln_x_halton_rand.jpg 
 

The above graph shows that the two types of polynomials fit the ln(x) function 

well. 

Testing ln(x) Function Fit with Sobol Random Search Optimization 
The next MATLAB script (found in file testLog1Sobol.m) tests fitting ln(x) vs (x-

1) for x in the range (1, 7) and samples at 0.1 steps, and using the Sobol quasi-

random search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial.  
 

clc 

clear 



Quantum Shammas Polynomials  61 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Ln_x_sobol_rand"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "ln(x)"; 

fprintf(sEqn); 

fprintf("x=1:0.1:7\n") 

xData0= 1:0.1:7; 

xData0 = xData0'; 

n = length(xData0); 

yData = log(xData0); 

xData = xData0 - 1; 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

 

figure(1) 

plot(xData0,yData,xData0,yCalc,xData0,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 
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exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above file 

generates the following Excel table summary. 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.080320451 1.359033836 2.264753342 3.184459235  
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QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

-0.000919835 1.747824814 -1.107690334 0.055834617 -0.002490127 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.019526836 0.850579688 -0.210226108 0.031956872 -0.001944825 

     

r_sqr1 r_sqr2    

0.999999145 0.99989954    

Table 12. Summary of the results appearing in file Ln_x_sobol_rand.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher than the one for classical polynomials. Interestingly, the adjusted coefficient 

of determination for the random search is also slightly higher than that of the PSO 

method! This is a bit surprinting, given that the Sobol sequence is a quasi-random 

sequence! 
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Here is the graph (from file ln_x_sobol_rand.jpg) for the Bessel function and the 

two fitted polynomials: 

Figure 12. The graph from file ln_x_sobol_rand.jpg 
 

The above graph shows that the two types of polynomials fit the ln(x) function 

well. 

Conclusion for Fitting the ln(x) Function 
The above four subsections show that fitting the ln(x) vs (x-1) for the range of (1, 

7) using the Quantum Shammas Polynomial is a success. These polynomials yield 

adjusted coefficients of determination that are higher than the corresponding 

classical polynomials. 
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The next four subsections in Part 1 look at fitting the right side of the standard 

Gaussian bell, where x>= 0. To calculate values for x<0, use the symmetry of y(x) 

= y(-x). 

Testing the Right-Side Gauss-Bell Function Fit with PSO 
The next MATLAB script (found in file testGauss1pso.m) tests fitting normal N(0, 

1) for x in the range (0, 3) and samples at 0.1 steps, and using the PSO method. 

The curve fits use a fourth order Quantum Shammas Polynomial and a fourth order 

classical polynomial. 
 

clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = psox(@quantShammasPoly,Lb,Ub,1000,5000,true); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 
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r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 



Quantum Shammas Polynomials  67 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

In the above code, each calls to function psox() performs a PSO search using a 

population size of 1000 and 5000 maximum iterations. The above code is very 

similar to the previous versions. The difference is in the filenames and the fitted 

normal Gaussian function. The above code generates the following Excel table. 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.393926502 2.399814573 2.753140127 3.501134201  

     

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398167858 0.02153673 -0.795788677 0.697814433 -0.080041643 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.99997989 0.999967249    

Table 13. Summary of the results appearing in file Right_GaussBell_x.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. Since the PSO 

method uses random numbers, I consider the difference between the two results as 

statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x.jpg) for the right normal Gauss 

function and the two fitted polynomials: 

Figure 13. The graph from file Right_GaussBell_x.jpg. 
 

The above graph shows that the two types of polynomials fit the right normal 

Gauss function well. 

Testing the Right-Side Gauss-Bell Function Fit with Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Random.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the random 

search optimization. The curve fits use a fourth order Quantum Shammas 

Polynomial and a fourth order classical polynomial.   
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clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = randomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 

exportgraphics(ax,gFile); 
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QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

randomSearch() and requests a million random searches. The above code generates 

the following summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.529806485 2.606558356 2.790378427 3.157518428  
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QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398237661 0.014630588 -2.179238898 2.510018944 -0.501968366 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999982158 0.999967249    

Table 14. Summary of the results appearing in file 

Right_GaussBell_x_random.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. Since the 

random search method uses random numbers, I consider the difference between the 

two results as statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x _random.jpg) for the right normal 

Gauss function and the two fitted polynomials: 

Figure 14. The graph from file Right_GaussBell_x_random.jpg. 
 

The above graph shows that the two types of polynomials fit the right normal 

Gauss function well. 

Testing the Right-Side Gauss-Bell Function Fit with Halton Random 

Search Optimization 
The next MATLAB script (found in file testGauss1Halton.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Halton 

quasi-random search optimization. The curve fits use a fourth order Quantum 

Shammas Polynomial and a fourth order classical polynomial. 
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clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_halton_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

haltonRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 
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exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

haltonRandomSearch() and requests a million random searches. The above code 

generates the following summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  
1.514658887 2.631929252 2.752323399 3.168725289  
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QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398228945 0.014349079 -3.286588632 3.56247719 -0.446790579 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999982146 0.999967249    

Table 15. Summary of the results appearing in file 

Right_GaussBell_x_halton_random.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. I consider the 

difference between the two results as statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x_halton_random.jpg) for the right 

normal Gauss function and the two fitted polynomials: 

Figure 15. The graph from file Right_GaussBell_x_halton_random.jpg. 

 

The above graph shows that the two types of polynomials fit the right normal 

Gauss function well. 

Testing the Right-Side Gauss-Bell Function Fit with Sobol Random Search 

Optimization 
The next MATLAB script (found in file testGauss1Sobol.m) tests fitting normal 

N(0, 1) for x in the range (0, 3) and samples at 0.1 steps, and using the Sobol 

quasi-random search optimization. The curve fits use a fourth order Quantum 

Shammas Polynomial and a fourth order classical polynomial. 
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clc 

clear 

close all 

 

global xData yData yCalc glbRsqr QSPcoeff 

zFilename = "Right_GaussBell_x_sobol_random"; 

txtFile = strcat(zFilename, ".txt"); 

xlFile = strcat(zFilename, ".xlsx"); 

diary(txtFile) 

gFile =  strcat(zFilename, ".jpg"); 

fprintf("%s\n", datetime(now,'ConvertFrom','datenum')); 

format longE 

sEqn = "exp(-x^2/2)/sqrt(2*pi)"; 

fprintf(sEqn); 

fprintf("x=0:0.1:3\n") 

xData= 0:0.1:3; 

xData = xData'; 

n = length(xData); 

yData = exp(-xData.^2/2)/sqrt(2*pi); 

order = 4; 

[Lb,Ub] = makeLimits(order, 0.5, 1.4); 

 

[bestX,bestFx] = 

sobolRandomSearch(@quantShammasPoly,Lb,Ub,1000000); 

 

SSE = quantShammasPoly(bestX); 

% calculate adjusted value of the coefficient of determination 

glbRsqr = 1 - (1 - glbRsqr)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", glbRsqr); 

fprintf("Quantum Shammas Polynomial Powers\n"); 

bestX 

fprintf("Quantum Shammas Polynomial Coefficients\n"); 

QSPcoeff = QSPcoeff' 

fprintf("\nRegular polynomial fit\n"); 

c = polyfit(xData,yData,order) 

yPoly = polyval(c,xData); 

r = rsqr(yData,yPoly); 

% calculate adjusted value of the coefficient of determination 

r = 1 - (1 - r)*(n-1)/(n-order-1); 

fprintf("Adjusted Rsqr = %f\n", r); 

figure(1) 

plot(xData,yData,xData,yCalc,xData,yPoly); 

title(sEqn) 

xlabel("X") 

ylabel("Y"); 

grid; 

ax = gca; 
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exportgraphics(ax,gFile); 

 

QSPpwr = bestX; 

Coeff = flip(c); 

T1 = array2table(QSPpwr); 

writetable(T1,xlFile,"Sheet","Sheet1","Range","A1"); 

T2 = array2table(QSPcoeff); 

writetable(T2,xlFile,"Sheet","Sheet1","Range","A4"); 

T3 = array2table(Coeff); 

writetable(T3,xlFile,"Sheet","Sheet1","Range","A7"); 

r_sqr = [glbRsqr r]; 

T4 = array2table(r_sqr); 

writetable(T4,xlFile,"Sheet","Sheet1","Range","A10"); 

 

format short 

diary off 

 

function [Lb,Ub] = makeLimits(order, minPwr, maxPwr) 

  Lb = zeros(1,order); 

  Ub = zeros(1,order); 

  Lb(1) = minPwr; 

  Ub(1) = maxPwr; 

  for i=2:order 

    j = i - 1; 

    Lb(i) = j + minPwr; 

    Ub(i) = j + maxPwr; 

  end 

end 

 

function r = rsqr(y,ycalc) 

  n = length(y); 

  ymean = mean(y); 

  SStot = sum((y - ymean).^2); 

  SSE = sum((y - ycalc).^2); 

  r = 1 - SSE / SStot; 

end 

 

The above script uses random search optimization by calling function 

sobolRandomSearch() and requests a million random searches. The above code 

generates the following summary Excel table: 
 

QSPpwr1 QSPpwr2 QSPpwr3 QSPpwr4  

1.522003875 2.598938314 2.788477382 3.160692568  
     



Quantum Shammas Polynomials  79 

 

Copyright © 2023 by Namir Clement Shammas Version 1.0.0 

QSPcoeff1 QSPcoeff2 QSPcoeff3 QSPcoeff4 QSPcoeff5 

0.398216639 0.015665411 -2.095319336 2.406124769 -0.483016053 

     

Coeff1 Coeff2 Coeff3 Coeff4 Coeff5 

0.397644494 0.028633101 -0.306018517 0.139989216 -0.018592075 

     

r_sqr1 r_sqr2    

0.999982135 0.999967249    

Table 16. Summary of the results appearing in file 

Right_GaussBell_x_sobol_random.xlsx. 
 

The adjusted coefficient of determination for the Quantum Shammas Polynomial is 

higher (by a proverbial hair) than the one for classical polynomials. I consider the 

difference between the two results statistically insignificant. 
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Here is the graph (from file Right_GaussBell_x_sobol_random.jpg) for the right 

normal Gauss function and the two fitted polynomials: 

 

Figure 16. The graph from file Right_GaussBell_x_sobol_random.jpg. 

 

The above graph shows that the two types of polynomials fit the right normal 

Gauss function well. 

Conclusion for Fitting the Right-Side Normal Gaussian Function 
The above four subsections show that fitting the right-side normal Gaussian 

function in the range of (0, 3) using the Quantum Shammas Polynomial is a 

success. These polynomials yield adjusted coefficients of determination that are 

slightly higher than the corresponding classical polynomials. 
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Conclusion for Part 1 
The Quantum Shammas Polynomials did well in fitting the sample test cases. One 

should keep in mind that these polynomials (as well as the classical ones) may not 

always perform well for every single math function and for any/all ranges—that 

would be a very tall order! The results so far are encouraging. 

Next is Part 1B 
Part 1B of this study looks at the Quantum Shammas Polynomials with wider 

ranges of random powers for most of the test cases presented in this part. 
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