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Quadratic Lagrangian Integration 
By Namir Shammas 

Introduction 
Numerical Analysis offers various algorithms for numerical integration. Many such algorithms are based 
on implicit polynomial interpolation. This article looks at using quadratic Lagrangian polynomials to 
perform numerical integration. The advantage of the Lagrangian integration is that the sampled points 
need not be at regular intervals for the independent variable x. 

The Algorithm 
Given three points (x0, y0), (x1, y1), and (x2, y2) you can calculate the following quadratic Lagrangian 
polynomial: 
 

y = A x2 + B x + C         (1) 
 

Where A, B, and C are calculated using the following set of equations based on the given three points: 
 

α0 = y0 / ((x0 – x1) (x0 – x2))        (2) 
α1 = y1 / ((x1 – x0) (x1 – x2))        (3) 
α2 = y2 / ((x2 – x0) (x2 – x1))        (4) 
C = α0 x1 x2 + α1 x0 x2+ α2 x0 x1        (5) 
B = –[ α0 (x1 + x2) + α1 (x0 + x2)+ α2 (x0 + x1)]      (6) 
A = α0 + α1 + α2          (7) 
 

The integral between points (x0, y0) and (x2, y2) is: 
 

∫  ( )  
  

  
 = A/3 (x2

3 – x0
3) + B/2(x2

2 – x0
2) + C(x2 – x0)     (8) 

 

Equation 8 gives the basic rule for the quadratic Lagrangian integration. To apply a chained integration 
for more than three points, you have to include an even number of additional points. 
 

If the values of the variable x occur in an equal interval, h, then equations 2, 3, and 4 become: 
 

α0 = 2 y0 / h2          (9) 
α1 = -4 y1 / h2          (10) 
α2 = 2 y2 / h2          (11) 
 

Equations 5, 6, and 7 remain basically the same. Comparing equation 5 with Simpson rule, which is: 
 

∫  ( )  
 

 
 = (b-a)/6 [f(a) + f((a+b)/2) + f(b)]      (12) 

 

Or,  
 

∫  ( )  
    

  
 = h/6 [f(x0) + f(x0+h/2) + f(x0 + h)]       (13) 
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It is interesting to point out that the quadratic Lagrangian integration and Simpson’s rule yield the same 
results, using equidistant x values, since both are based on quadratic interpolation. The differences are: 
 

 The quadratic Lagrangian integration uses explicit interpolation, while Simpson’s rule uses 
implicit interpolation. 

 The computation effort for Simpson’s rule is eloquently less than that of the quadratic 
Lagrangian integration, when both methods use equidistant values for variable x. 

 

The advantage of using the quadratic Lagrangian integration allows you to change, at will, the difference 
between the values of variable x, within the integration range. This fluid scheme of selecting values of 
variable x, comes at absolutely no extra cost. By contrast, if you want to mimic this fluid variation in the 
intervals of x using Simpson’s rule, you have to explicitly break down the integral into smaller integrals—
each sub-integral uses a consistent change in the values for variable x. 
 

The quadratic Lagrangian integration allows you to change the sampling rate for points (x, y) based on 
the rate of variation of y. Within regions of large slopes (and variations in function values) you can use 
more points to calculate the part of the integral in these regions. Likewise, within regions of small 
slopes, you have the luxury of using fewer points to calculate the integrals in these regions. 
 

When using the fluid sampling scheme with the quadratic Lagrangian integration, you supply the 
method with an array of even, distinct, and sorted values for x. You can calculate the values for y, as 
needed, for each value of x. The sampling rate of points (x, y), the type of function, and the integral 
range, determine the accuracy of the integral. Using the quadratic Lagrangian integration allows you to 
significantly reduce the overall computational effort, compared to Simpson’s rule, especially if you can 
tolerate a lower level of accuracy.  

Examples 
The following table lists (a few) examples of comparing results of the quadratic Lagrangian integration 
with those of Simpson’s rule. The third and fourth columns contain sets of results that represent: 
 

 The calculated integral using either algorithm. 

 The calculated integral using analytical expression for the integral. 

 The difference between the exact and calculated integrals. 

 The number of iterations involved. 
 

Keep in mind that when the quadratic Lagrangian integration uses the same sampling scheme for 
variable x as does Simpson’s rule, it gives results that match those of Simpson’s rule. The last column 
contains sets of results that represent: 
 

 The mean value for the steps used in the quadratic Lagrangian integration. 

 The standard deviation of the steps used in the quadratic Lagrangian integration. 

 The ratio of the standard deviation to the mean value. 
 

Function [A,B] Step Simpson’s Rule Quadrt Lagrng Step Stats 

1/X [1,2] 0.071428571 0.693147231 
0.693147181 
-5.06802E-08 
14 

0.693148555 
0.693147181 
-1.37477E-06 
14 

0.033333333 
0.040191848 
1.205755429 
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Function [A,B] Step Simpson’s Rule Quadrt Lagrng Step Stats 

1/X [1,10] .9 2.30356496 
2.302585093 
-0.000979867 
10 

2.302745865 
2.302585093 
-0.000160772 
10 

0.45 
0.369921756 
0.822048346 

1/X [1,100] 12.375 5.377393388 
4.605170186 
-0.772223202 
8 

4.542929894 
4.605170186 
0.062240292 
8 

6.1875 
3.614208074 
0.584114436 

1/(X*LN(X) [1,50] 14.14285714 2.1540272 
1.35101767 
-0.80300953 
6 

1.585901989 
1.35101767 
-0.234884318 
7 

7.071428571 
2.644712743 
0.373999782 

1/(X*LN(X) [1,50] 6.125 1.443769068 
1.232757489 
-0.211011579 
8 

1.248671904 
1.232757489 
-0.015914415 
8 

 

3.0625 
2.694902596 
0.879968194 

LN(5*X) [1,10] 0.5625 28.51072914 
28.51079214 
6.3006E-05 
16 

28.51078143 
28.51079214 
1.07076E-05 
16 

0.28125 
0.162515508 
0.577832917 

LN(5*X) [1,10] 0.321428571 27.2585711 
28.51079214 
1.252221045 
27 

28.51079014 
28.51079214 
2.00504E-06 
28 

0.160714286 
0.113102643 
0.703749777 

LN(5X)/X [1,10] 0.5625 6.356788243 
6.356816801 
2.85578E-05 
16 

6.356823642 
6.356816801 
-6.84196E-06 
16 

0.28125 
0.162515508 
0.577832917 

LN(5X)/X [1,10] 0.321428571 6.22953745 
6.356816801 
0.12727935 
27 

6.356816832 
6.356816801 
-3.13982E-08 
28 

0.160714286 
0.113102643 
0.703749777 

SIN(X) [1,10] 0.5625 1.379422239 
1.379373835 
-4.84043E-05 
16 

1.379760819 
1.379373835 
-0.000386984 
16 

0.28125 
0.162515508 
0.577832917 

SIN(X) [1,10] 0.321428571 1.508274847 
1.379373835 
-0.128901012 
27 

1.379631545 
1.379373835 
-0.00025771 
28 

0.160714286 
0.113102643 
0.703749777 

X*SIN(X) [1,10] 0.5625 7.545985683 
7.545525501 
-0.000460182 
16 

7.548655661 
7.545525501 
-0.00313016 
16 

0.28125 
0.162515508 
0.577832917 

X*SIN(X) [1,10] 0.321428571 8.816339768 7.549721529 0.160714286 
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Function [A,B] Step Simpson’s Rule Quadrt Lagrng Step Stats 

7.545525501 
-1.270814267 
27 

7.545525501 
-0.004196028 
28 

0.113102643 
0.703749777 

SIN(X)^2 [1,10] 0.5625 4.499087517 
4.499088044 
5.26976E-07 
16 

4.496780092 
4.499088044 
0.002307952 
16 

0.28125 
0.162515508 
0.577832917 

SIN(X)^2 [1,10] 0.321428571 4.445098964 
4.499088044 
0.05398908 
27 

4.497178759 
4.499088044 
0.001909285 
28 

0.160714286 
0.113102643 
0.703749777 

 
The above table has many results of the quadratic Lagrangian integration (where the error of the 
quadratic Lagrangian integration is marked in red) that show this method doing better than Simpson’s 
rule and using less iterations. 

Conclusion 
The quadratic Lagrangian integration can be fine-tuned to give good calculated integral by optimizing 
the sampling of the (x, y) points used in the integration. Depending on the integrated function, 
integration range, and steps used, the quadratic Lagrangian integration can give better results than 
Simpson’s rule. 

Appendix 
I used the following Excel VBA listing to conduct thee calculations for the integrals. 
 
Option Explicit 

 

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double 

  sFx = Replace(sFx, "$X", "(" & CStr(X) & ")") 

  MyFx = Evaluate(sFx) 

End Function 

 

Sub IntLang() 

  Dim X0 As Double, X1 As Double, X2 As Double, XA As Double, XB As Double 

  Dim Y0 As Double, Y1 As Double, Y2 As Double 

  Dim h As Double, hSqr As Double, A0 As Double, A1 As Double, A2 As Double 

  Dim A As Double, B As Double, C As Double, Sum As Double, SumX As Double 

  Dim N As Integer, I As Integer, J As Integer, ArrSize As Integer, K As Integer 

  Dim sFx As String 

  Dim Xarr() As Double 

   

  XA = Range("A2").Value 

  XB = [A4].Value 

  h = [A6].Value 

  hSqr = h * h 

  sFx = UCase([A8].Value) 

  N = 0 

  Sum = 0 

  K = CInt((XB - XA) / h - 0.5) 

  Do 

    X0 = XA + N * h 
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    X1 = X0 + h / 2 

    X2 = X0 + h 

    Y0 = MyFx(sFx, X0) 

    Y1 = MyFx(sFx, X1) 

    Y2 = MyFx(sFx, X2) 

    A0 = 2 * Y0 / hSqr ' Y0/((X0-X1)*(X0-X2)) 

    A1 = -4 * Y1 / hSqr ' Y1/((X1-X0)*(X1-X2)) 

    A2 = 2 * Y2 / hSqr ' Y2/((X2-X0)*(X2-X1)) 

    C = A0 * X1 * X2 + A1 * X0 * X2 + A2 * X0 * X1 

    B = -(A0 * (X1 + X2) + A1 * (X0 + X2) + A2 * (X0 + X1)) 

    A = A0 + A1 + A2 

    Sum = Sum + A / 3 * (X2 * X2 * X2 - X0 * X0 * X0) + _ 

          B / 2 * (X2 * X2 - X0 * X0) + C * (X2 - X0) 

    N = N + 1 

  Loop Until N >= K 

  [C2].Value = Sum 

  [C5].Value = N 

   

  ArrSize = 1 

  Do While Trim(Cells(ArrSize + 1, 2)) <> "" 

    ArrSize = ArrSize + 1 

  Loop 

  ArrSize = ArrSize - 1 

  ReDim Xarr(ArrSize) 

  For I = 1 To ArrSize 

    Xarr(I) = Cells(I + 1, 2) 

  Next I 

  N = 1 

  Sum = 0 

  K = 0 

  Do 

    K = K + 1 

    X0 = Xarr(N) 

    X1 = Xarr(N + 1) 

    X2 = Xarr(N + 2) 

    Y0 = MyFx(sFx, X0) 

    Y1 = MyFx(sFx, X1) 

    Y2 = MyFx(sFx, X2) 

    A0 = Y0 / ((X0 - X1) * (X0 - X2)) 

    A1 = Y1 / ((X1 - X0) * (X1 - X2)) 

    A2 = Y2 / ((X2 - X0) * (X2 - X1)) 

    C = A0 * X1 * X2 + A1 * X0 * X2 + A2 * X0 * X1 

    B = -(A0 * (X1 + X2) + A1 * (X0 + X2) + A2 * (X0 + X1)) 

    A = A0 + A1 + A2 

    Sum = Sum + A / 3 * (X2 * X2 * X2 - X0 * X0 * X0) + _ 

          B / 2 * (X2 * X2 - X0 * X0) + C * (X2 - X0) 

    N = N + 2 

  Loop Until N >= ArrSize 

  [D2].Value = Sum 

  [D5].Value = K 

   

  ' Simpson's method 

  N = 0 

  Sum = 0 

  K = CInt((XB - XA) / h - 0.5) 

  Do 

    X0 = XA + N * h 

    X1 = X0 + h / 2 

    X2 = X1 + h / 2 

    Y0 = MyFx(sFx, X0) 

    Y1 = MyFx(sFx, X1) 

    Y2 = MyFx(sFx, X2) 

    Sum = Sum + (Y0 + 4 * Y1 + Y2) 
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    N = N + 1 

  Loop Until N >= K 

  [E2].Value = h / 6 * Sum 

  [E5].Value = N 

End Sub 

 

The next table represents the Excel worksheet. The worksheet has the following columns: 
 

 Column A is the input column. The cells in red represent user input. Cell A8 contains an 
expression that the Excel VBA converts into a function value. Notice that the name of the 
variable used is $X and not just X. Appending the $ to X allows the VBA parser to distinguish 
between the variable X and the letter X in functions like EXP. The names of the functions in cell 
A8 must match the names of functions used in Excel formula and NOT in the VBA language. For 
example to specify a square root you need to use SQRT and not SQR. Likewise to use the natural 
log type in LN and not LOG. 

 Column B is the array of x values used by the quadratic Lagrangian integration. The number of 
elements in this array must be even. 

 Column C shows the results for the quadratic Lagrangian integration when using equidistant 
points. Cell C2 contains the calculated integral using the quadratic Lagrangian integration. Cells 
C3 contains an Excel formula (in this example “=LN(LN(5*A4))-LN(LN(5*A2))”) that calculates the 
exact analytical integral using the values in cells A2 and A4. You need to change the formula in 
cell C3 to match the new contents of cell A8. Cell C4 contains the Excel formula “=C3-C2”. Cell C5 
shows the number of loops involved in obtaining the integral in C2. 

 Column D shows the results for the quadratic Lagrangian integration when using the values in 
column B. Cell D2 contains the calculated integral using the quadratic Lagrangian integration. 
Cells D3 copies the value in C2 using the Excel formula “=C3”. Cell D4 contains the Excel formula 
“=D3-D2”. Cell D5 shows the number of loops involved in obtaining the integral in D2. 

 Column E shows the results for Simpson’s rule integration. Cell E2 contains the calculated 
integral. Cells E3 copies the value in C2 using the Excel formula “=C3”. Cell E4 contains the Excel 
formula “=E3-E2”. Cell E5 shows the number of loops involved in obtaining the integral in E2. 

 Column F contains the values for the differences in the values of X found in column B. The 
column uses Excel formulae to calculate these differences, starting with cell F3. This cell contains 
the formula “=B2-B3”. Likewise, cell F4 contains the formula “=B3-B4” and so on. The last entry 
in column F must calculate the difference for the last value in column B. 

 Column G contains labels for the statistics of the values in column F. 

 Column H contains the statistics of the values in column F. Cell H2, H3, and H4 contain the 
formulae “=AVERAGE(F3:F29)”, “=STDEV(F3:F29)”, and “=H3/H2”, respectively. You may need to 
adjust the range of cells in cells H2 and H3 to include all of data in cells F. 
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A B C D E F G H 
A X Area QLI Eql 

Spacing 

Area QLI Area 

Simpson's 

Rule 

Diff X   

1 1 1.443769068 1.248671904 1.443769068  Mean 3.0625 

B 2 1.232757489 1.232757489 1.232757489 1 Stdev 2.694902596 

50 3 -0.211011579 -0.015914415 -0.211011579 1 Sdev/mean 0.879968194 

Step 4 8 8 8 1   
6.125 5    1   

Fx 6    1   
1./$X/LN(5*

$X) 

7    1   

 8    1   
 9    1   
 10    1   
 15    5   
 20    5   
 25    5   
 30    5   
 35    5   
 40    5   
 50    10   

 


