
New PRNG Algorithms Part 3 1

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

New Pseudo Random Number Generators:
Part 3

By
Namir C. Shammas

Introduction
This part of the trilogy articles looks at expanding and maturing the factor statistic

by adding the results from the change-of-sign test and the Kolmogorov-Smirnov

statistics. This article shows the recalculations of the results of the train A3

algorithm for multipliers between 101 and 997. In addition the study compares the

train A3 algorithm with popular PRNGs using both the old and new expressions

for calculating the factor. This comparison should give us an idea about the

increase in the factor values due to the addition of two randomness measurements.

The Penalty Factor
The values for the updated factor depend on the following statistics related to the

random numbers generated. The new components of the factor appear in red text:

 The mean.

 The standard deviation.

 The maximum and minimum autocorrelations taken for 1 to 100 lags.

 The Chi-square statistic for a ten-bin histogram counting random numbers in

bins of 0.1 width, between 0 and 1. I will call this statistic as ChiSqr10. The

expected value in each bin equals the count of random numbers divided by

10.

 The Chi-square statistic for a twenty-bin histogram counting random

numbers in bins of 0.05 width, between 0 and 1. I will call this statistic as

ChiSqr20. The expected value in each bin equals the count of random

numbers divided by 20.

 The sum of product of autocorrelations (distributed in 20 equal-sized bins

ranging from the minimum to the maximum autocorrelations) and their

New PRNG Algorithms Part 3 2

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

counts. Thus the size of the bins is dynamic and depends on the distribution

of the autocorrelations. I will call this statistic AutoCorrSum.

 The change-of-sign statistic. I discuss calculating this statistic below.

 Kolmogorov-Smirnov statistics. This part calculates the following two

values:

o K+ = max(Fn(x) – F(x))

o K– = max(F(x) - Fn(x))

Where Fn(x) = (number of xi <= x)/n and F(x) is the theoretical

cumulative distribution value.

Regarding the change-of-sign statistic, I examine the change of signs between the

consecutive differences in the random numbers. An ideal PRNG would have the

consecutive signs constantly and systematically alternating between positive and

negative. However, real-world PRNGs will have the consecutive signs of the

differences change few elements down. Let D(n,1) be the number of change of

signs from negative to positive every n differences. Also let, D(n,2) be the number

of change of signs from positive to negative every n differences. These values

decrease exponentially with n and are highest at n equal 1. I calculate the chsStat

as:

chsStat = ΣD(i,1)*i)/D(1,1) + ΣD(i,2)*i)/D(1,2) for i=2,…,n (1)

The values D(1,1) and D(1,2) will normalize the ratios and thus take care of the

effect of the number of random numbers generated. An ideal PRNG will have

D(i,1) and D(i,2) as zeros for all i > 1, yielding a chsStat value of 0. Multiplying

D(i,1) and D(i,2) by i is a way to penalize larger delays in the change of signs. One

can also multiply the values of D(i,1) and D(i,2) by I squared or some other power.

Using powers greater than one serve only to magnify the effect delayed changes of

signs.

I calculate the new factor using:

Factor = 1000 [|mean – 0.5| + |sdev – 1/√12|] +

100 (max_autoCorrel – min_autoCorrel)) + 100·AutoCorrSum +

ChiSqr10 + ChiSqr20 / 2 + 10·chsStat + 10 (K+ + K–) (2)

Equation (2) calculates the factor by adding the following weighted terms:

 One thousand (the weight) times the sum of the following sub-terms:

New PRNG Algorithms Part 3 3

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

o The absolute difference between the mean and its expected value, 0.5.

o The absolute difference between the standard deviation and its

expected value, 1/√12.

 One hundred (the weight) times difference between the maximum and

minimum autocorrelation values. The maximum and minimum

autocorrelations have positive and negative values, respectively. This term

adds a special penalty for the extreme autocorrelation values.

 One hundred (the weight) times the value of the statistic AutoCorrSum. This

term adds a special penalty for the general autocorrelation values. A

dispersed distribution of the autocorrelation values contributes to a higher

factor value. By contrast, a distribution of the autocorrelation values

concentrated near zero, contributes little to the factor value.

 The value of the ChiSqr10 statistic.

 Half the value of the ChiSqr20 statistic.

 Ten times the change-of-sign statistic.

 Ten times the sum of the K+ and K– values.

Thus the calculated factor measures the following:

 The deviation from the expected basic statistics (mean and standard

deviation).

 The goodness of distribution for the random numbers.

 The level of the autocorrelations.

 The change of sign of the differences between random numbers.

 The closeness of the cumulative distribution of the numbers generated to the

ideal cumulative distribution.

Scheme 2 Take 2
In this section I show the updated results of scheme 2 calculations (from part 2)

using the updated factor calculations. Recall that the second scheme performs a

more detailed exploration of algorithms A3 using a wide range of multipliers. The

scheme calculates the factor statistics for multipliers in the range of 100 to 1000 in

steps of 10, with the following value patterns:

 Adding 1, 3, 5, and 7 to each selected multiplier. Thus, the enumerated list of

multipliers is 101, 103, 105, 107, …, 991, 993, 995, and 997.

 Each enumerated multiplier has shift values of 0 and 2.

New PRNG Algorithms Part 3 4

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 The initial seed starts at 0.00135711 and moves up in increments of .001. This

sequence of values ensures that the initial seeds have plenty of decimal places.

Table 1 shows the best factors, that are less than 36, obtained using scheme 2

calculations with the new way of computing the factor. The multiplier 145 and

shift value of zero are still in the lead! Their factor value has increased by about

29. This increase is due to adding the change-of-sign and Kolmogorov-Smirnov

statistics.

Factor Initial Seed Multiplier Shift

33.3619 0.724357 145 0

33.6723 0.115357 353 0

33.7169 0.094357 201 0

33.8032 0.991357 533 0

33.831 0.196357 315 2

33.8967 0.080357 453 0

33.9862 0.959357 351 0

34.0005 0.418357 273 0

34.0431 0.485357 167 2

34.0469 0.307357 113 0

34.1301 0.403357 273 2

34.1408 0.499357 327 2

34.1854 0.916357 261 2

34.2571 0.172357 463 0

34.2746 0.127357 251 2

34.3102 0.719357 107 2

34.4704 0.420357 253 0

34.5107 0.796357 133 0

34.5195 0.215357 473 2

34.6314 0.889357 425 2

34.6603 0.612357 415 0

34.7684 0.427357 285 0

34.8012 0.547357 333 2

34.823 0.661357 225 0

34.8369 0.553357 161 2

34.869 0.506357 551 0

34.9021 0.608357 131 0

34.9123 0.274357 521 2

34.9154 0.343357 253 2

New PRNG Algorithms Part 3 5

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Factor Initial Seed Multiplier Shift

34.9272 0.137357 391 0

34.9292 0.672357 283 0

34.9643 0.173357 263 0

35.0019 0.465357 145 2

35.039 0.255357 381 0

35.0439 0.886357 527 2

35.0592 0.989357 335 2

35.0732 0.136357 477 0

35.0811 0.802357 153 2

35.1242 0.609357 155 2

35.1358 0.837357 377 2

35.1803 0.444357 351 2

35.1908 0.501357 191 0

35.2341 0.454357 181 2

35.2844 0.214357 341 2

35.3251 0.393357 345 0

35.3422 0.537357 297 0

35.366 0.986357 541 0

35.4436 0.569357 131 2

35.4449 0.053357 123 2

35.4638 0.625357 115 0

35.5538 0.717357 211 0

35.5592 0.820357 307 2

35.5654 0.404357 325 2

35.5683 0.211357 433 2

35.5707 0.508357 513 2

35.5893 0.270357 287 2

35.5956 0.991357 163 0

35.6039 0.745357 393 2

35.6462 0.573357 213 2

35.6873 0.384357 215 2

35.6878 0.138357 275 0

35.6958 0.221357 241 2

35.7551 0.495357 307 0

35.7765 0.029357 471 2

35.794 0.943357 361 0

35.8169 0.449357 141 2

35.8247 0.981357 455 2

New PRNG Algorithms Part 3 6

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Factor Initial Seed Multiplier Shift

35.8408 0.544357 153 0

35.8444 0.789357 441 2

35.8494 0.325357 263 2

35.861 0.823357 435 2

35.8648 0.863357 223 2

35.9125 0.797357 543 2

35.9642 0.517357 247 2
Table 1. The best factor values obtained from using scheme 3 with the new factor calculations.

Table 2 shows a summary of factor ranges obtained in the scheme 2 calculations.

Figure 1 shows the histogram for the data in Table 2. I deliberately divided the

range of 0 to 40 into the range of 0 to 35 and 35 to 40. If you combine these two

ranges then Figure 1 would clearly show an exponential decay in the number of

high factor values.

From To Frequency

0 35 32

35 40 188

40 50 170

50 60 88

60 70 62

70 80 36

80 90 22

90 100 30

100 200 47

200 300 6

300 400 9

400 500 2

500 600 5

600 700 4

700 800 3

800 900 1

900 1000 6

1000 More 15
Table 2. The count for the factor values obtained from using scheme 3 with the new factor calculations.

New PRNG Algorithms Part 3 7

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Figure 1. The histogram for the factor values obtained from using scheme 3 with the new factor

calculations.

Performing a power fit for the following model:

Ln(factor) = a + b ln(InitSeed) + c ln(Multiplier)

Gives the following results using the Excel regression tool:

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.470756

R Square 0.221612

Adjusted R
Square 0.219458

Standard Error 0.775015

Observations 726

ANOVA

 df SS MS F
Significance

F

Regression 2 123.6387 61.81933 102.9211 4.65E-40

Residual 723 434.2684 0.600648

Total 725 557.907

0

20

40

60

80

100

120

140

160

180

200

Frequency

New PRNG Algorithms Part 3 8

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 Coefficients
Standard

Error t Stat P-value Lower 95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 0.773713 0.299536 2.58304 0.009989 0.185649 1.361777 0.185649 1.361777

Ln(InitSeed) -0.24162 0.028989 -8.33493 3.9E-16 -0.29853 -0.18471 -0.29853 -0.18471

Ln(Multip) 0.505349 0.04895 10.32378 2.11E-23 0.409248 0.60145 0.409248 0.60145

The above results show that the power relation between the variables, albeit it a

weak one, is:

factor = 2.167801 * InitSeed^ 0.785355 * multiplier^ 1.657564

Which is roughly close to:

factor = 2 * InitSeed^(3/4) * multiplier^(3/2)

Which hints at a trend that increases the factor values with increasing initial seed

values and multiplier values. This explains why lower factor values are associated

with lower multiplier values.

If we create histograms (in steps of 50) for the multipliers for factors less than 40,

in the range of 40 up to 50, in the range of 50 up to 60, and in the range of 60 up

to 70 we get Figures 2, 3, 4, and 5. When you sequentially examine these figures,

you see a wave that is moving from left to right. These histograms confirm the

trend that has factors increasing with increasing multiplier values.

0

5

10

15

20

25

30

35

Factor < 40

New PRNG Algorithms Part 3 9

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Figure 2. The histogram for the multipliers that have factors less than 40.

Figure 3. The histogram for the multipliers that have factors from 40 and up to 50.

Figure 4. The histogram for the multipliers that have factors from 50 and up to 60.

0

2

4

6

8

10

12

14

16

18

Factor < 50

0

2

4

6

8

10

12

14

16

Factor < 60

New PRNG Algorithms Part 3 10

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Figure 3. The histogram for the multipliers that have factors from 640 and up to 70.

Table 3 shows the mean and standard deviation values for the multipliers as

grouped by ranges of factor values. The table shows the mean of the multipliers

increasing with increasing range.

From To Stat Value

30 40 Mean 322.5091

 Sdev 143.2858

40 50 Mean 456.6588

 Sdev 212.6668
50 60 Mean 635.4773

 Sdev 192.3316

60 70 Mean 745.4194

 Sdev 161.476
Table 3. The mean and standard deviation values for the multipliers as grouped by ranges of factor

values.

A linear regression between the mean multiplier value (as the dependent variable)

and the upper range value (as the independent variable) yields the following

equation with a coefficient of determination, R2, of 0.9925:

 Mean_multiplier = -256.136 + 14.47549 * Upper_Factor_Range

The above linear regression equation shows that higher factors are generated by

higher values of the multipliers. You can invert the above equation and obtain the

following linear relation:

0

1

2

3

4

5

6

7

8

9

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Factor < 70

New PRNG Algorithms Part 3 11

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 Upper_FactorRange = 17.69445 + 0.069082 * Mean_multiplier

Comparing Algorithm A3 with other common

prngs
How does the train A3 algorithm compare with common PRNGS, mostly used in

generating random numbers for computer applications? I selected a number of

commonly used PRNGS and applied calculations using the old factors and the new

one. The common algorithms I used are:

 Two versions used by Apple computers.

 The 977*r algorithm,

 The 147*r algorithm

 The (π+r)5 algorithm.

 The ANSI C algorithm.

 The BCPL algorithm.

 The Fishman LCGS algorithm.

 The Matlab PRNG.

 The Whichmann-Hill algorithm.

 The Numerical Recipes algorithm.

 The SimScript algorithm.

 The Super-Duper algorithm.

 The L’Ecuyer algorithm.

 The Borland C++ algorithm.

 The Borland Delphi algorithm.

 The Microsoft Visual C++ algorithm.

 The Microsoft Visual Basic 6 algorithm.

 The RANDU algorithm.

The definitions of most of the above PRNGs are found in Wikipedia. I recommend

you consult Wikipedia for that information. Alternatively, you can look in the

folders (downloadable from my web site) PRNG Common Generator test Gen 1 or

RNG Common Generator test Gen 2 and inspect the various Matlab files that

contain the code for the various PRNGs. I ran a Matlab code that supplied random

seeds to the above algorithms as well as to the train A3 algorithm.

New PRNG Algorithms Part 3 12

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Results using the old factor
I ran the test for the algorithms three times and combined the results. Table 4

shows the factors for less than 30. The algorithm A3 came in the lead followed by

the Apple2 PRNG. Only these two algorithms performed consistently well. The

other algorithms altered ranks. Algorithm A3 showed a few factor values that

exceeded 300. These results were filtered out for algorithm A3 and a few other

algorithms.

Method Min Max Mean Sdev

Algorithm A3 3.97762 297.884 15.961 18.5666

Algorithm A3 4.07746 200.58 15.2848 15.5548

Algorithm A3 4.10719 296.466 15.7138 18.2244

Apple2 10.5513 71.0327 35.3722 10.7902

Apple2 10.595 100.181 35.7397 10.4135

Apple2 11.192 100.414 35.1174 10.6141

L`Ecuyer 26.6239 75.5872 46.8208 7.33189

Matlab rand 27.1777 77.131 46.4749 7.14993

Num Recipes 27.3584 82.8856 46.6458 7.57688

Super-Duper 28.0759 86.1288 46.9369 7.4413

Rng997 28.2246 76.7838 46.7941 7.38212

MS Visual C++ 28.4778 76.6173 46.5856 7.16646

Super-Duper 28.5591 70.8764 46.6241 7.05973

Wichmann-Hill 28.6195 79.533 46.2561 7.25884

RANDU 28.7768 74.1421 46.8599 7.29605

L`Ecuyer 29.1564 81.6356 46.4845 7.24898

Rng997 29.203 75.2963 46.6025 7.16121

MS Visual Basic 29.2587 78.6755 46.7395 7.16813

Matlab rand 29.4367 74.9319 46.831 7.40842

Rng147 29.4547 79.6679 47.0178 7.09848

Wichmann-Hill 29.4869 73.0375 46.7985 7.22143

Matlab rand 29.6442 81.9051 46.788 7.02363

Num Recipes 29.9347 80.4611 46.5719 7.4477

Rng147 29.9533 80.251 47.3764 7.39952
Table 4. The results of comparing common PRNG algorithms using the old factor calculations.

Results using the new factor
I ran the test for the algorithms three times and combined the results. Table 5

shows the factors for less than 66. Once again, the train A3 algorithms and Apple2

New PRNG Algorithms Part 3 13

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

came in the lead. The other algorithms altered ranks with factor values starting

above 60. The results of tables 3 and 4 shows that there is at least a difference of

29 between the results of the old and new factor calculations. The factors of 60

seem to be the general minimum value and a good baseline value to use in

examining other PRNGs not included in this paper. The train A3 algorithm and the

Apple2 algorithm are able to produce random numbers with factors below 60.

Method Min Max Mean Sdev

Algorithm A3 33.4175 222.748 47.2444 15.4019

Algorithm A3 33.485 177.238 46.851 13.2886

Algorithm A3 33.5696 222.763 47.2347 15.6687

Apple2 40.0355 132.185 74.0165 13.226

Apple2 40.2205 104.165 74.2027 12.5738

Apple2 40.5181 103.624 74.2796 13.1178

Num Recipes 61.418 126.05 86.9245 9.54399

Rng997 62.7189 122.014 86.6891 8.78067

MS Visual C++ 63.675 121.638 86.6604 9.3267

L`Ecuyer 64.1455 120.865 86.7525 9.21878

MS Visual C++ 64.2018 126.732 86.9597 8.88438

RANDU 64.3915 123.35 87.2154 9.34769

MS Visual C++ 64.5331 132.196 86.6505 9.21205

(Pi+Rand)^5 64.6438 153.929 87.3957 9.79243

Wichmann-Hill 64.836 129.587 86.7375 9.33777

Wichmann-Hill 65.1221 125.158 87.0651 9.41457

(Pi+Rand)^5 65.2292 125.35 87.6511 9.40748

RANDU 65.2373 126.73 86.4946 8.76665

Super-Duper 65.5379 124.056 86.7352 8.85417

MS Visual Basic 65.5402 133.234 86.9507 9.37381

Matlab rand 65.5488 132.019 86.6577 9.36276

Rng147 65.6712 127.342 87.7314 9.69041

Matlab rand 65.7448 130.09 87.0531 9.11979

Super-Duper 65.7695 123.072 86.7641 9.32998

Num Recipes 65.7901 129.761 86.8058 9.60342

(Pi+Rand)^5 65.9142 127.87 87.4296 9.26757

Wichmann-Hill 65.9473 127.094 86.8891 9.15363

Rng997 65.9636 125.505 87.2244 9.15307
Table 5. The results of comparing common PRNG algorithms using the new factor calculations.

New PRNG Algorithms Part 3 14

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Among the PRNG algorithms that did well, showing two or three entries, in Table

5 are:

 Numerical Recipes algorithm.

 The (997*r) algorithm.

 MS Visual C++ algorithm.

 RANDU algorithm, which is supposed to be inferior and faulty!

 (Pi+r)^5 algorithm.

 Wichmann-Hill algorithm.

 Supper-Duper algorithm.

 Matlab’s rand() function.

Sample Matlab code
To avoid having you wade through hundreds of web pages of Matlab code, I

present a sample of two Matlab functions to show you the new calculations for the

factor values. Here is the code for function rngSimpleVerA3Gen2 which shows the

use of the new factor calculations with algorithm A3:

function factor =

rngSimpleVerA3Gen2(maxElems,multiplier,shift,initSeed,

bShowResults)

%UNTITLED2 Summary of this function goes here

 if ~exist('bShowResults','var') || isempty(bShowResults)

 bShowResults=false;

 end

% Detailed explanation goes here

 fprintf('RNG version A3 Gen 2 with multiplier %g and shift %g

and initial seed = %g\n', multiplier,shift,initSeed);

 x=zeros(maxElems,1);

 if abs(frac(1000*initSeed))<1e-7

 initSeed=(frac(1000*frac(initSeed)) + 0.35711)/1000;

 end

 k1=11*multiplier+shift;

 k2=7*multiplier+shift;

 k3=5*multiplier+shift;

 x(1)=initSeed;

 for j=2:maxElems;

 if abs(frac(10*x(j-1)))<1e-7,

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1));

 x3=frac(10*x2);

New PRNG Algorithms Part 3 15

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3)));

 end

 factor=calcFactor(x,bShowResults);

 if isnan(factor), factor=1e99; end

end

function x = frac(x)

 x=x-fix(x);

end

function factor = calcFactor(x, bShowResults)

% Calculate the factor statistic for the array of random

nnumbers x.

 if nargin < 2, bShowResults = false; end

 maxElems=length(x);

 meanx=mean(x);

 sdevx=std(x);

 % get the first 100 autocorrelation values

 acArr=autocorrArr(x,1,100);

 % calculate the chisquare for the 10-bin histogram

 numBins=10;

 expval=maxElems/numBins;

 [N1,ev1]=histcounts(x,numBins);

 chiSq10=sum((N1-expval).^2/expval);

 numBins=20;

 expval=maxElems/numBins;

 [N2,ev2]=histcounts(x,numBins);

 chiSq20=sum((N2-expval).^2/expval);

 numBins=20;

 [N3,ev3]=histcounts(acArr,numBins);

 ev3c=ev3(2:length(ev3));

 autoCorrSum = sum(dot(N3,abs(ev3c)));

 chsStat=chs(x);

 [Kplus,Kminus]=KStest(x);

 factor = 1000*(abs(meanx-0.5)+abs(sdevx-

1/sqrt(12)))+100*(max(acArr)-

min(acArr))+100*autoCorrSum+chiSq10+chiSq20/2;

 factor = factor + 10*chsStat + 10*(Kplus + Kminus);

 if bShowResults

 fprintf('Mean = %g\nSdev = %g\n', meanx, sdevx);

 fprintf('Min = %g\nMax = %g\n', min(x), max(x));

 fprintf('Max lags = 100\n');

 fprintf('Auto correlation array\n');

 disp(acArr');

 fprintf('10-Bin Histogram\n');

 disp(N1); disp(ev1);

New PRNG Algorithms Part 3 16

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 fprintf('Chi-Sqr10 = %g\n', chiSq10);

 fprintf('20-Bin Histogram\n');

 disp(N2); disp(ev2);

 fprintf('Chi-Sqr20 = %g\n', chiSq20);

 fprintf('20-Bin Autocorrelation Histogram\n');

 disp(N3); disp(ev3);

 fprintf('Sum autocorrel product = %g\n', autoCorrSum);

 fprintf('Change of sign stat = %g\n', chsStat);

 fprintf('K+ = %g and K- = %g\n', Kplus, Kminus);

 fprintf('Factor = %g\n', factor);

 end

end

function acArr=autocorrArr(xdata,fromLag,toLag)

numLags=toLag-fromLag+1;

acArr=zeros(numLags,1);

j=1;

for i=fromLag:toLag

 acArr(j)=autocor(xdata,i);

 j=j+1;

end

end

function res = autocor(xdata,lag)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

maxElems=length(xdata);

res=corrcoef(xdata(1:maxElems-lag),xdata(lag+1:maxElems));

res=res(1,2);

end

function sumx=chs(x)

% Function CHS calculates the change of sign (between subsequent

random

% numbers) moment. The function counts the number of consecutive

positive

% and negative changes of sign. The last nested loop calculates

the

% statistic returned by this function. This value is the sum of:

%

% sum = sum of difference(count,:) * count / difference(1,:)

%

% Keeping in mind that difference(1,:) is a good value that

counts the

% sign flips that happens one neighbor down. The values for

New PRNG Algorithms Part 3 17

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

% difference(n,:) for n>1 are not desirable. The smaller, the

better. The

% value difference(2,:) is the number of sign flips that occur

% two neighbors down. The value difference(3,:) is the number of

sign flips

% that occur three neighbors down, and so on.

 n=length(x);

 nby2=fix(n/2);

 Diff=zeros(nby2,2);

 countPos=0;

 countNeg=0;

 s1=sign(x(2)-x(1));

 if s1>0

 bIsPos=true;

 countPos=1;

 else

 bIsPos=false;

 countNeg=1;

 end

 for i=3:n

 s2=sign(x(i)-x(i-1));

 % was positive and is still positive

 if s2>0 && bIsPos

 countPos=countPos+1;

 % was negative and is now positive

 elseif s2>0 && ~bIsPos

 bIsPos=true;

 countPos=1;

 Diff(countNeg,2)=Diff(countNeg,2)+1;

 countNeg=0;

 % was negative and is still negative

 elseif s2<0 && ~bIsPos

 countNeg=countNeg+1;

 % was positive is and is now negative

 elseif s2<0 && bIsPos

 bIsPos=false;

 countNeg=1;

 Diff(countPos,1)=Diff(countPos,1)+1;

 countPos=0;

 end

 end

 if s2>0

 if countPos>0, Diff(countPos,1)=Diff(countPos,1)+1; end

 else

New PRNG Algorithms Part 3 18

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 if countNeg>0, Diff(countNeg,2)=Diff(countNeg,2)+1; end

 end

 i=2:nby2;

 d=Diff(2:nby2,:);

 sumx=0;

 for j=1:2

 sumx = sumx + dot(d(:,j),i)/Diff(1,j);

 end

end

function [Kplus,Kminus]=KStest(x)

 x=sort(x);

 n=length(x);

 diffMaxPlus=-1e+99;

 diffMaxMinus=-1e+99;

 i=1;

 for xv=0.001:.001:1

 F=xv;

 while x(i)<=xv && i<n

 i=i+1;

 end

 Fn=1;

 if i<n, Fn=(i-1)/n; end

 diff=Fn-F;

 if diff>diffMaxPlus, diffMaxPlus=diff; end

 diff=-diff;

 if diff>diffMaxMinus, diffMaxMinus=diff; end

 end

 Kplus=sqrt(n)*diffMaxPlus;

 Kminus=sqrt(n)*diffMaxMinus;

End

The nested function chs calculates the change-of-sign statistic. The nested function

KStest calculates the Kolmogorov-Smirnov statistics. Please examine the code in

these functions to get a good idea on the exact calculations they perform.

And here is the code for function rngSimpleGrabA3Gen2:

function [factor,minFactor,lastInitSeed,x] =

rngSimpleGrabA3Gen2(maxElems,multiplier,shift,seedStart,seedIncr

,maxFactor,maxit)

% Function generates random number.

%

% Copyright(c) 2015 Namir Clement Shammas

% email: nshammas@.aol.com

%

% INPUT

New PRNG Algorithms Part 3 19

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

% =====

% maxElems - the number of random numbers.

% multiplier - the multiplier used to generate the random

numbers.

% shift – the shift value.

% seedStart - the starting value for the sequence of initial

seed values. If the absolute

% value of seedStart is equal to or greater than 1, the function

uses the Matlab rand()

% to generate a startSeed value.

% seedIncr - the increment value for the sequence of initial

seed values. If the absolute

% value of seedIncr is equal to or greater than 1, the function

uses the Matlab rand()

% and divide that number by 10 to generate a value for seed

increment in each iteration.

% maxFactor - the critical factor value. We seek random numbers

that have a

% factor value below the value of maxFactor.

% maxit - the maximum number of iterations.

%

% OUTPUT

% ======

% factor - the first best factor or -1 if process fails

% minFactor - the smallest factor value encountered. Examine

this returned

% value if the process fails, so you can have an idea about

using

% maxFactor values in subsequent calls to this function.

% lastInitSeed - the last initial seed used by this function.

This value

% is useful in making additional calls to this function to get

additional

% arrays of random numbers.

% x - the array of random numbers.

%

%

 fprintf('RNG Special version (grab) with multiplier %g =

%g\n', multiplier);

 clk=clock;

 currtime=clk(4)+clk(5)/100+clk(6)/10000;

 fprintf('Current time is %g\n', currtime);

 if abs(seedStart)<1

 initSeed=seedStart;

 else

 rng('shuffle','twister');

 initSeed=rand(1,1);

New PRNG Algorithms Part 3 20

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 end

 if abs(frac(1000*initSeed))<1e-7

 initSeed=(frac(1000*frac(initSeed)) + 0.35711)/1000;

 end

 minFactor=1e99;

 k1=11*multiplier+shift;

 k2=7*multiplier+shift;

 k3=5*multiplier+shift;

 for iter=1:maxit

 x=zeros(maxElems,1);

 x(1)=frac(initSeed);

 for j=2:maxElems;

 if abs(frac(10*x(j-1)))<1e-7

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1));

 x3=frac(10*x2);

 x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3)));

 end

 factor=calcFactor(x);

 if isnan(factor), factor=1e9; end

 if factor<minFactor, minFactor=factor; end

 if factor<maxFactor, break; end

 if abs(seedIncr)<1

 seedIncrTemp=seedIncr;

 else

 seedIncrTemp=rand(1,1)/10;

 end

 initSeed=initSeed+seedIncrTemp;

 if initSeed>1, initSeed=initSeed-1; end

 if initSeed<0, initSeed=initSeed+1; end

 end

 % if random generation process fails to meet the factor value

criteria

 % then return -1 and an empty array of random numbers

 if factor>=maxFactor

 factor=-1;

 x=[];

 fprintf('Process failed to generate random numbers that meet

the critical factor value\n');

 end

 lastInitSeed=initSeed;

end

function x = frac(x)

 x=x-fix(x);

New PRNG Algorithms Part 3 21

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

end

function factor = calcFactor(x)

% Calculate the factor statistic for the array of random

nnumbers x.

 maxElems=length(x);

 meanx=mean(x);

 sdevx=std(x);

 % get the firrst 100 autocorrelation values

 acArr=autocorrArr(x,1,100);

 % calcul the chisquare for the 10-bin histogram

 numBins=10;

 expval=maxElems/numBins;

 [N1,ev1]=histcounts(x,numBins);

 chiSq10=sum((N1-expval).^2/expval);

 numBins=20;

 expval=maxElems/numBins;

 [N2,ev2]=histcounts(x,numBins);

 chiSq20=sum((N2-expval).^2/expval);

 numBins=20;

 [N3,ev3]=histcounts(acArr,numBins);

 ev3c=ev3(2:length(ev3));

 autoCorrSum = sum(dot(N3,abs(ev3c)));

 chsStat=chs(x);

 [Kplus,Kminus]=KStest(x);

 factor = 1000*(abs(meanx-0.5)+abs(sdevx-

1/sqrt(12)))+100*(max(acArr)-

min(acArr))+100*autoCorrSum+chiSq10+chiSq20/2+10*chs(x);

 factor = factor + 10 *(Kplus + Kminus);

end

function acArr=autocorrArr(xdata,fromLag,toLag)

numLags=toLag-fromLag+1;

acArr=zeros(numLags,1);

j=1;

for i=fromLag:toLag

 acArr(j)=autocor(xdata,i);

 j=j+1;

end

end

function res = autocor(xdata,lag)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

maxElems=length(xdata);

New PRNG Algorithms Part 3 22

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

res=corrcoef(xdata(1:maxElems-lag),xdata(lag+1:maxElems));

res=res(1,2);

end

function sumx=chs(x)

% Function CHS calculates the change of sign (between subsequent

random

% numbers) moment. The function counts the number of consecutive

positive

% and negative changes of sign. The last nested loop calculates

the

% statistic returned by this function. This value is the sum of:

%

% sum = sum of difference(count,:) * count / difference(1,:)

%

% Keeping in mind that difference(1,:) is a good value that

counts the

% sign flips that happens one neighbor down. The values for

% difference(n,:) for n>1 are not desirable. The smaller, the

better. The

% value difference(2,:) is the number of sign flips that occur

% two neighbors down. The value difference(3,:) is the number of

sign flips

% that occur three neighbors down, and so on.

 n=length(x);

 nby2=fix(n/2);

 Diff=zeros(nby2,2);

 countPos=0;

 countNeg=0;

 s1=sign(x(2)-x(1));

 if s1>0

 bIsPos=true;

 countPos=1;

 else

 bIsPos=false;

 countNeg=1;

 end

 for i=3:n

 s2=sign(x(i)-x(i-1));

 % was positive and is still positive

 if s2>0 && bIsPos

 countPos=countPos+1;

 % was negative and is now positive

 elseif s2>0 && ~bIsPos

 bIsPos=true;

New PRNG Algorithms Part 3 23

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 countPos=1;

 Diff(countNeg,2)=Diff(countNeg,2)+1;

 countNeg=0;

 % was negative and is still negative

 elseif s2<0 && ~bIsPos

 countNeg=countNeg+1;

 % was positive is and is now negative

 elseif s2<0 && bIsPos

 bIsPos=false;

 countNeg=1;

 Diff(countPos,1)=Diff(countPos,1)+1;

 countPos=0;

 end

 end

 if s2>0

 if countPos>0, Diff(countPos,1)=Diff(countPos,1)+1; end

 else

 if countNeg>0, Diff(countNeg,2)=Diff(countNeg,2)+1; end

 end

 i=2:nby2;

 d=Diff(2:nby2,:);

 sumx=0;

 for j=1:2

 sumx = sumx + dot(d(:,j),i)/Diff(1,j);

 end

end

function [Kplus,Kminus]=KStest(x)

 x=sort(x);

 n=length(x);

 diffMaxPlus=-1e+99;

 diffMaxMinus=-1e+99;

 i=1;

 for xv=0.001:.001:1

 F=xv;

 while x(i)<=xv && i<n

 i=i+1;

 end

 Fn=1;

 if i<n, Fn=(i-1)/n; end

 diff=Fn-F;

 if diff>diffMaxPlus, diffMaxPlus=diff; end

 diff=-diff;

 if diff>diffMaxMinus, diffMaxMinus=diff; end

 end

New PRNG Algorithms Part 3 24

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 Kplus=sqrt(n)*diffMaxPlus;

 Kminus=sqrt(n)*diffMaxMinus;

End

The rest of the Matlab files can be downloaded as file prng.zip from my web site.

The files are grouped in folders by category of code. The folders that deal with the

older version of the factors are labeled Generation 1 or Gen 1. The folders that

handle the updated factors calculations are labeled Generation 2 or Gen 2.

Conclusion
Even with the updated method of calculating the factor for the PRNG, the train A3

algorithm remains ahead of the commonly used PRNGs. The results in this article

affirm those in part 2, using the updated expressions for calculating the factor

values.

Prologue March 1, 2015
After publishing the trilogy articles I kept tinkering with a few new ways to

efficiently generate random numbers. I stumbled on the following method that

worked well in Matlab. The newer version(s) of Matlab support a function called

randperm which takes an argument n and returns an array of n integers where the

values in the range (1, n) are placed in a random order. If you take the elements of

the integer-value array and divide them by n+1, you get an array of uniformly

distributed random numbers between 0 and 1. Of course, this approach is using a

special kind of random number generator, so in a sense we are cheating. However,

the results are very good. Here is the Matlab code fraction in the heart of the

random number generation:

rng('shuffle','twister');

x=randperm(maxElems)/(maxElems+1);

factor=calcFactor(x,bShowResults);

The second statement does all the random number generation. Here is the code for

my version of randperm (in case you are using an older version of Matlab) which I

call myrandperm:

function x=myrandperm(n)

 x=1:n;

 while n>2

 j=1+fix(n*rand(1,1));

 temp=x(n);

New PRNG Algorithms Part 3 25

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 x(n)=x(j);

 x(j)=temp;

 n=n-1;

 end

end

Table 6 shows the results of using Matlab’s randperm function and my own

myrandperm function. The minimum value for the factors seem to rank third after

the train A3 algorithm and the Apple2 algorithm. The standard deviation is small.

You can consider the random permutation method as a good algorithm since it is

easy to implement and each random number does not depend on the previous

random number. In the case of function myrandperm, the code makes n calls to the

Matlab rand function. The justification is that the random number produced have a

better quality than those by function rand itself.

Method Min Max Mean Sdev

RandPerm1 49.0842 61.7664 55.1647 1.98798

RandPerm2 49.0117 61.5947 55.1353 2.02506
Table 6. The results of random permutation methods.

Finally, I present a different approach that uses array shuffling without invoking

random number functions. The basic approach for the method that I present is to

take an ordered array and shuffle it to yield as much as possible random order in

the array elements. My first trial shuffled the array of integers in a manner similar

to shuffling cards. The approach involved a few tricks and a lot of repetition to

increase the randomness of the array elements. The second approach divides the

array into ten buckets or pages, and then shuffles neighboring and distant buckets.

This approach has the advantage that the number of repetition for the shuffling is

less than my first attempt. Here is the Matlab code for the function that calculates

the factor using the ten-bucket shuffling approach:

function factor = rngRandPerm4cGen2(maxElems,bShowResults)

if ~exist('bShowResults','var') || isempty(bShowResults)

 bShowResults=false;

 end

 if bShowResults, fprintf('Algorithm RandPerm4 rng test\n');

end

 x=1:maxElems;

 x=unsort(x)/(maxElems+1);

 factor=calcFactor(x,bShowResults);

 if isnan(factor), factor=1e99; end

New PRNG Algorithms Part 3 26

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

end

function x=unsort(x)

 N=length(x);

 delta=10;

 n=fix(N/delta);

 spacing=fix(delta)/2:-1:1;

 for j=1:7

 for k=1:length(spacing)

 spc=spacing(k);

 for i=1:delta-1

 i1=1+(i-1)*n;

 i2=i1+n-1;

 i3=i1+spc*n;

 i4=i3+n-1;

 if i4>N, break; end

 if i1~=i3

 y=[x(i1:i2),x(i3:i4)];

 y=shuffle(y);

 x(i1:i2)=y(1:n);

 x(i3:i4)=y(n+1:2*n);

 end

 end

 end

 end

 %plot(x)

end

function x=shuffle(x)

 n=length(x);

 m=fix(n/2);

 primeArr=[1,primes(m)];

 for ii=1:14

 for k=1:length(primeArr)

 aprime=primeArr(k);

 for i=1:aprime:n-aprime

 t=x(i);

 x(i)=x(i+aprime);

 x(i+aprime)=t;

 end

 end

 end

end

function x = frac(x)

 x=x-fix(x);

New PRNG Algorithms Part 3 27

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

end

function factor = calcFactor(x, bShowResults)

% Calculate the factor statistic for the array of random

nnumbers x.

 if nargin < 2, bShowResults = false; end

 maxElems=length(x);

 meanx=mean(x);

 sdevx=std(x);

 % get the first 100 autocorrelation values

 acArr=autocorrArr(x,1,100);

 % calculate the chisquare for the 10-bin histogram

 numBins=10;

 expval=maxElems/numBins;

 [N1,ev1]=histcounts(x,numBins);

 chiSq10=sum((N1-expval).^2/expval);

 numBins=20;

 expval=maxElems/numBins;

 [N2,ev2]=histcounts(x,numBins);

 chiSq20=sum((N2-expval).^2/expval);

 numBins=20;

 [N3,ev3]=histcounts(acArr,numBins);

 ev3c=ev3(2:length(ev3));

 autoCorrSum = sum(dot(N3,abs(ev3c)));

 chsStat=chs(x);

 [Kplus,Kminus]=KStest(x);

 factor = 1000*(abs(meanx-0.5)+abs(sdevx-

1/sqrt(12)))+100*(max(acArr)-

min(acArr))+100*autoCorrSum+chiSq10+chiSq20/2;

 factor = factor + 10*chsStat + 10*(Kplus + Kminus);

 if bShowResults

 fprintf('Mean = %g\nSdev = %g\n', meanx, sdevx);

 fprintf('Min = %g\nMax = %g\n', min(x), max(x));

 fprintf('Max lags = 100\n');

 fprintf('Auto correlation array\n');

 disp(acArr');

 fprintf('10-Bin Histogram\n');

 disp(N1); disp(ev1);

 fprintf('Chi-Sqr10 = %g\n', chiSq10);

 fprintf('20-Bin Histogram\n');

 disp(N2); disp(ev2);

 fprintf('Chi-Sqr20 = %g\n', chiSq20);

 fprintf('20-Bin Autocorrelation Histogram\n');

 disp(N3); disp(ev3);

 fprintf('Sum autocorrel product = %g\n', autoCorrSum);

 fprintf('Change of sign stat = %g\n', chsStat);

New PRNG Algorithms Part 3 28

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 fprintf('K+ = %g and K- = %g\n', Kplus, Kminus);

 fprintf('Factor = %g\n', factor);

 end

end

function acArr=autocorrArr(xdata,fromLag,toLag)

numLags=toLag-fromLag+1;

acArr=zeros(numLags,1);

j=1;

for i=fromLag:toLag

 acArr(j)=autocor(xdata,i);

 j=j+1;

end

end

function res = autocor(xdata,lag)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

maxElems=length(xdata);

res=corrcoef(xdata(1:maxElems-lag),xdata(lag+1:maxElems));

res=res(1,2);

end

function sumx=chs(x)

% Function CHS calculates the change of sign (between subsequent

random

% numbers) moment. The function counts the number of consecutive

positive

% and negative changes of sign. The last nested loop calculates

the

% statistic returned by this function. This value is the sum of:

%

% sum = sum of difference(count,:) * count / difference(1,:)

%

% Keeping in mind that difference(1,:) is a good value that

counts the

% sign flips that happens one neighbor down. The values for

% difference(n,:) for n>1 are not desirable. The smaller, the

better. The

% value difference(2,:) is the number of sign flips that occur

% two neighbors down. The value difference(3,:) is the number of

sign flips

% that occur three neighbors down, and so on.

 n=length(x);

 nby2=fix(n/2);

New PRNG Algorithms Part 3 29

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

 Diff=zeros(n,2);

 countPos=0;

 countNeg=0;

 s1=sign(x(2)-x(1));

 if s1>0

 bIsPos=true;

 countPos=1;

 else

 bIsPos=false;

 countNeg=1;

 end

 for i=3:n

 s2=sign(x(i)-x(i-1));

 % was positive and is still positive

 if s2>0 && bIsPos

 countPos=countPos+1;

 % was negative and is now positive

 elseif s2>0 && ~bIsPos

 bIsPos=true;

 countPos=1;

 Diff(countNeg,2)=Diff(countNeg,2)+1;

 countNeg=0;

 % was negative and is still negative

 elseif s2<0 && ~bIsPos

 countNeg=countNeg+1;

 % was positive is and is now negative

 elseif s2<0 && bIsPos

 bIsPos=false;

 countNeg=1;

 Diff(countPos,1)=Diff(countPos,1)+1;

 countPos=0;

 end

 end

 if s2>0

 if countPos>0, Diff(countPos,1)=Diff(countPos,1)+1; end

 else

 if countNeg>0, Diff(countNeg,2)=Diff(countNeg,2)+1; end

 end

 i=2:nby2;

 d=Diff(2:nby2,:);

 sumx=0;

 for j=1:2

 sumx = sumx + dot(d(:,j),i)/Diff(1,j);

 end

New PRNG Algorithms Part 3 30

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

end

function [Kplus,Kminus]=KStest(x)

 x=sort(x);

 n=length(x);

 diffMaxPlus=-1e+99;

 diffMaxMinus=-1e+99;

 i=1;

 for xv=0.001:.001:1

 F=xv;

 while x(i)<=xv && i<n

 i=i+1;

 end

 Fn=1;

 if i<n, Fn=(i-1)/n; end

 diff=Fn-F;

 if diff>diffMaxPlus, diffMaxPlus=diff; end

 diff=-diff;

 if diff>diffMaxMinus, diffMaxMinus=diff; end

 end

 Kplus=sqrt(n)*diffMaxPlus;

 Kminus=sqrt(n)*diffMaxMinus;

end

The loop that generates the random numbers calls function unsort, shown in red

text. This function divides the array x into ten buckets and then uses array y to

temporarily merge the data from any two buckets. The function in turn calls

function shuffle, also shown in red text, to perform shuffling the array y. The

function unsort then writes the data from the array y back to the source buckets.

The function shuffle repeats the shuffling process of any two buckets for 14 times.

This value is optimum for Matlab and for generating 100,000 random numbers.

You can easily alter the returned parameters of function rngRandPerm4cGen2 by

replacing factor with the array [factor, x], where x is the array of pseudo-random

numbers.

The array shuffling algorithm generates a factor of 51.0668. While this value is

slightly higher than the methods that use random number generation functions, it

stands apart for not using such functions. Thus, the array shuffling method comes

in third place, if you exclude the other methods that I presented in this section.

New PRNG Algorithms Part 3 31

Copyright © 2015 by Namir Clement Shammas Version 1.01.00

Document History
Date Version Comments

2/28/2015 1.00.00 Initial release.

3/1/2015 1.01.00 Added the Prologue

section.

