
New PRNG Algorithms Part 1 1

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

New Pseudo Random Number Generators:
Part 1

By
Namir C. Shammas

Introduction
Random numbers are usually calculated using pseudo random number generators

(PRNGs) to typically support games, simulations, special calculations, and

cryptography. Using PRNGs allows you to reproduce sequences of random

numbers by supplying the same seed. Over the last four decades I noticed several

simple PRNGs used in programmable calculator and BASIC pocket computers.

Here are some popular PRNGS that generates uniformly distributed random

numbers between 0 and 1:

 ri+1 = frac(997·ri) (1)

 ri+1 = frac(147·ri) (2)

 ri+1 = frac((π + ri)
5) (3)

Where ri is the current random number and ri+1 is the new one. The function frac

returns the fractional part of a real value. In the case of the first two PRNGs the

initial seed must be a positive real number with a non-zero fractional part.

Typically initial seeds are positive integers or real numbers, depending on the

algorithm used. The above algorithms are simple enough to work in programmable

calculators. They are simpler than the more popular linear congruential methods

more commonly used in computer applications. The linear congruential methods

have the following general form:

xi+1 = (a·xi + c) mod m (4)

Where all the variables are integers. The uniformly-distributed random number of

each iteration is calculated as xi+1/m. Higher bit-integers used to set values for a

and m, give better random numbers with longer periods--before they start repeating

the same sequence.

New PRNG Algorithms Part 1 2

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

Much research has been done on PRNGs seeking random numbers with very long

periods. In the case of the linear congruential methods, the periods depends on the

value of the parameter m. The authors of the popular book “Numerical Recipes”,

Press et al, have criticized the linear congruential methods and recommend against

using them. They regard the time and effort computer scientists spent in studying

the algorithm’s parameters, as a big waste of time! Cryptography and Monte Carlo

simulations require random numbers with long periods and very low

autocorrelations. Calculators programs are more forgiving of random numbers that

are more auto-correlated and have shorted cycles--calculator applications rarely

generate enough numbers to see them start repeating.

My goal in this first of three related papers, is to share with you the study I

conducted in fine-tuning the type of uniformly-distributed PRNGs seen in the

above equations.

The Penalty Factor
There are several tests for measuring the randomness of a sequence of uniformly-

distributed random numbers. The most famous battery of tests is the diehard test. I

have devised my own test which calculates a penalty factor (which I will simply

call factor). The lower the factor the better the sequence of random number

generated. The values for a calculated factor depend on the count of random

numbers generated. This study is based on consistently generating sequences of

100,000 random numbers. Lowering the count of random numbers generated tends

to increase the values for the factors. One reason is the random numbers may

appear more auto-correlated when they are fewer of them. The values for the factor

depend on the following statistics related to the random numbers generated:

 The mean.

 The standard deviation.

 The maximum and minimum autocorrelations taken for 1 to 100 lags.

 The Chi-square statistic for a ten-bin histogram counting random numbers in

bins of 0.1 width, between 0 and 1. I will call this statistic as ChiSqr10. The

expected value in each bin equals the count of random numbers divided by

10.

 The Chi-square statistic for a twenty-bin histogram counting random

numbers in bins of 0.05 width, between 0 and 1. I will call this statistic as

New PRNG Algorithms Part 1 3

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

ChiSqr20. The expected value in each bin equals the count of random

numbers divided by 20.

 The sum of product of autocorrelations (distributed in 20 equal-sized bins

ranging from the minimum to the maximum autocorrelations) and their

counts. Thus the size of the bins is dynamic and depends on the distribution

of the autocorrelations. I will call this statistic AutoCorrSum.

I calculate the factor using:

Factor = 1000 [|mean – 0.5| + |sdev – 1/√12|] +

100 (max_autoCorrel – min_autoCorrel)) + 100·AutoCorrSum +

ChiSqr10 + ChiSqr20 / 2 (5)

Equation (5) calculates the factor by adding the following weighted terms:

 One thousand (the weight) times the sum of the following sub-terms:

o The absolute difference between the mean and its expected value, 0.5.

o The absolute difference between the standard deviation and its

expected value, 1/√12.

 One hundred (the weight) times difference between the maximum and

minimum autocorrelation values. The maximum and minimum

autocorrelations have positive and negative values, respectively. This term

adds a special penalty for the extreme autocorrelation values.

 One hundred (the weight) times the value of the statistic AutoCorrSum. This

term adds a special penalty for the general autocorrelation values. A

dispersed distribution of the autocorrelation values contributes to a higher

factor value. By contrast, a distribution of the autocorrelation values

concentrated near zero, contributes little to the factor value.

 The value of the ChiSqr10 statistic.

 Half the value of the ChiSqr20 statistic.

Thus the calculated factor measures the deviation from the expected basic statistics

(mean and standard deviation), goodness of distribution for the random numbers,

and the level of their autocorrelations. I felt that these three aspects to be an

adequate measure for the randomness of the numbers generated. While I certainly

respect the diehard test, I feel it is an overkill.

Changing the weights used in equation (5) will change the value of the calculated

factor. For the sake of consistency, I have stuck with equation (5) since earlier

New PRNG Algorithms Part 1 4

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

studies about random numbers that I conducted in 2013. When I switched from

using Excel to Matlab, I adjusted the way to calculate AutoCorrSum. It now takes

the actual range of autocorrelations into account and not use a preset range of

autocorrelations. Thus the statistic AutoCorrSum has become more in tuned with

the actual random numbers generated.

I have calculated factors for the Matlab rand() function and also for different

multipliers (like the ones in equations (1) and (2)). Table 1 shows the results. The

rows Mean_30 and Sdev_30 show the mean and standard deviation, respectively,

for the best 30 results, sorted by factor values. The column titled rand() shows the

results for the Matlab rand() function. The seeds for rand() are decimals scaled up

into integers, compared to the seeds for the other columns in the table. The scaling

is needed because the seeds for the Matlab rand() function must be integers. The

table also contains the statistics for the best initial seeds obtained in the range of

(0.001, 0.999) and in steps of 0.001. The statistics for the multiplier 977 and for

rand() seem to be slightly better than the other values in the table. The results for

the arbitrarily chosen multiplier 787 put it at a close third. My target is to go, as

much as possible, below the minimum factor values below 29. The new algorithms

that I present here goes below this target value.

Parameter Multiplier

 rand() 127 145 147 577 787 997

Minimum 29.7636 30.3087 32.6161 32.5187 31.1263 29.4823 29.8569

Maximum_30 35.4215 35.4926 36.3289 36.4672 35.5368 35.7442 35.3705

Mean_30 33.502 33.64681 35.43605 34.79971 33.96834 34.35561 33.3976

Sdev_30 1.50041 1.421245 0.929797 1.130787 1.228065 1.466423 1.40077

First Seed 1 0.001 0.001 0.001 0.001 0.001 0.001

Last Seed 999 0.999 0.999 0.999 0.999 0.999 0.999

Seed

Increment 1 0.001 0.001 0.001 0.001 0.001 0.001
Table 1. Statistics for frac(multiplier*random_number) for various multipliers and using initial seeds that

range from .001 to 0.999, in increments of .001.

Table 2 shows another set of similar results. The table contains the statistics for the

best initial seeds obtained in the range of (0.0001, 0.9999) and in steps of 0.0001.

The results show that adding a decimal place in the changing the initial seed values

yields better factor values. The statistics for the factor values in Table 2 are better

than their counterparts in Table 1.

New PRNG Algorithms Part 1 5

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

Parameter Multiplier

 rand() 127 145 147 577 787 997

Minimum 29.2985 27.3908 28.9075 29.0369 27.5771 29.1636 27.7466

Maximum_30 31.9601 32.4034 32.0317 32.3906 31.9905 31.7282 31.4312

Mean_30 30.8831 31.598 30.9431 31.4740 31.1185 30.6955 30.3002

Sdev_30 0.79728 1.16429 0.925599 0.809699 0.934245 0.847015 1.026946

First Seed 1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Last Seed 9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Seed

Increment 1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Table 2. Statistics for frac(multiplier*random_number) for various multipliers and using initial seeds that

range from .0001 to .9999, in increments of .0001.

The New PRNGS
I spent several months running multiple computers round the clock and testing all

kinds of PRNG algorithms. Whoever said that creating PRNG algorithms is not

trivial, sure knew what he was talking about! I usually employed the built-in

PRNGs in Matlab and Excel to supply the initial seeds needed to start the PRNG

algorithms. This approach is based on the thinking that the studied PRNG

algorithms should do well for arbitrary initial seeds for the random numbers.

In the last phase of my study, I came to realize that the seeds for the PRNG

algorithms played a bit more significant role than I originally thought. I therefore

changed my approach and started to directly supply the initial seed values. The

process involved generating factor values for a range of initial seed values. I

started with a small seed value and increased it by 0.001, 0.0001, and 0.00001.

Smaller values covered a more detailed range of seed values. While this process is

repeatable and deterministic, I was surprised that Matlab repeatedly failed to

replicate the transplanted factors. By transplanted I refer to the seeds that had

generated very low factors values, being stored in text files, and read in other

PRNG Matlab programs. For some reason which has escaped me, using good seed

values did not generate as good factor values!! Sometimes, the factor values were

too high and not acceptable. I will explain the solution to this problem later on.

The algorithms I present here are similar and are basically variants of the same

core method. The first and best version is:

 x(1)=initSeed;

 for j=2:maxElems;

 if abs(frac(10* x(j-1)))<1e-7

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1))

New PRNG Algorithms Part 1 6

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

 x3=frac(10*x2)

 x(j)=frac(11*145*(x(j-1) + 7*145*(x2 + 5*145*x3)))

 end

The above pseudo-code generates maxElems random numbers stored in the array

x. The variable initSeed represents the initial seed. The function frac returns the

fractional part of a real number. The if statement ensures that the last random

number has more than one decimal digit. I used a comparison with a small number

instead of an equality test with zero, because the function frac(x) (defined as x –

fix(x) or as x – floor(x)) has a rounding problem or bug. It took me a while to

detect the issue with the function frac. If the tested condition is true, the code

assigns a new value to the last random number. This value is the fractional part of

the sum of two terms. The first term uses equation (3). The second term is the

natural logarithm of the loop counter. The variables x2 and x3 calculate temporary

additional random numbers, based on the previous random number. If that number

has only one decimal digit, the values in variables x2 and x3 are zero. If the value

of x(j) ends with a single decimal, then the numbers generated ill not be random!

The magic multiplier here is 145. I have tried a wide range of numbers between

100 and 1000 that end in 5 and in 7. The numbers 145 and 147 gave excellent

factor values that reflect very weak autocorrelations between the random numbers

generated. This algorithm can easily generate factor values that are slightly below

5, compared to minimum factor of 29 for Matlab’s Mersenne-Twister algorithm. It

also generates a sizeable sequence of initial seeds that have factor values falling

below 10.

If you study the expression that assigns a value to x(j) you will notice that it has a

nested subexpression. I originally meant to enter the following statement:

x(j)=frac(11*145*x(j-1) + 7*145*x2 + 5*145*x3))

But erroneously typed the expression with the nested subexpression. When I

realized my error, I developed another version of the PRNG function using the

originally-intended expression. To my surprise, the results were by far not as good

as the one in the above pseudo-code. This was a true stroke of luck for me!

I decided to apply two variations on the above algorithms:

 Replace 145 with 147.

 Add a small shift value of 2 to the products of 11*145, 7*145, and 5*145.

These above variations give the following general form of the PRNG for a user-

defined multiplier (145 and 147 in our case) and shift values (0 and 2 in our case):

New PRNG Algorithms Part 1 7

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

 k1=11*multipler+shift

 k2=7*multipler+shift

 k3=5*multipler+shift

 x(1)=initSeed

 for j=2:maxElems

 if abs(frac(10* x(j-1)))<1e-7

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1))

 x3=frac(10*x2)

 x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3)))

 end

Thus we have four versions of the algorithm:

1. Values of 145 and 0 for the multiplier and shift values, respectively.

2. Values of 147 and 0 for the multiplier and shift values, respectively.

3. Values of 145 and 2 for the multiplier and shift values, respectively.

4. Values of 147 and 2 for the multiplier and shift values, respectively.

Table 3 shows the statistics for the factor values for the above four variations in the

multiplier and shift values. In the case of the multiplier 145, using a shift of 2

slightly degrades the factor values. By contrast, in the case of the multiplier 147,

using a shift of 2 benefits the factor values.

Parameter Multiplier and Shift

 145 and 0 147 and 0 145 and 2 147 and 2

Minimum 4.08354 12.6918 5.49014 9.45088
Maximum_30 5.2639 13.7527 10.8129 11.4277
Mean_30 4.727039 13.357046 7.904233 10.260867
Sdev_30 0.362969 0.2905969 1.904074 0.4482475
First Seed 0.001 0.001 0.001 0.001

Last Seed 0.999 0.999 0.999 0.999

Seed

Increment 0.001 0.001 0.001 0.001
Table 3. Statistics for various multiplier/shift combinations and using initial seeds that range from .001 to

0.999, in increments of .001.

Table 4 shows the effect of using the multipliers 145 and 147 with and without a

small shift of 2 using smaller seed increment values. Since this table is based on

smaller seed increments and covers more seed values it is able to find better results

than Table 3. Nevertheless, the comments made about comparing the statistics in

the various columns of Table 3, still apply to Table 4.

New PRNG Algorithms Part 1 8

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

Parameter Multiplier and Shift

 145 and 0 147 and 0 145 and 2 147 and 2

Minimum 3.85348 12.2075 5.31787 8.49994
Maximum_30 4.34976 12.9856 5.84596 9.40546
Mean_30 4.198123 12.76841667 5.681303667 9.202553667
Sdev_30 0.125885 0.198782975 0.136806277 0.250986366
First Seed 0.0091 0.0091 0.0091 0.0091

Last Seed 0.9999 0.9999 0.9999 0.9999

Seed

Increment 0.0001 0.0001 0.0001 0.0001
Table 4. Statistics for various multiplier/shift combinations and using initial seeds that range from .0001

to 0.9999, in increments of .0001.

The conclusion that we can draw from tables 3 and 4 is that we can either use the

following core algorithm (call it version A1):

 k1=11*145

 k2=7*145

 k3=5*145

 x(1)=initSeed

 for j=2:maxElems

 if abs(frac(10* x(j-1)))<1e-7

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1))

 x3=frac(10*x2)

 x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3)))

 end

Or the following core algorithm (call it version A2):

 k1=11*147+2

 k2=7*147+2

 k3=5*147+2

 x(1)=initSeed

 for j=2:maxElems

 if abs(frac(10* x(j-1)))<1e-7

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1))

 x3=frac(10*x2)

 x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3)))

 end

Keeping in mind that algorithm A1 is better than A2. Both algorithms do much

better than the PRNG algorithms I discuss in this paper,

Once you have a set of good initial seeds, the ideal approach becomes:

 Selecting the initial seed values that generate low factor values.

New PRNG Algorithms Part 1 9

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

 Storing the initial seeds in data files.

 Reading these files in separate client programs.

As I stated earlier, this process, though sound in theory, has not worked for a

reason that escapes me! The alternative is to generate sequences of random

numbers for a sequence of initial seed values. The first seed value that generates a

factor falling below a critical factor value, ends the iterative process and returns the

factor value and the large sequence of random numbers. I will present, in the next

section, Matlab code that implements this iterative process. If your application

needs more random numbers then you can do one of the following:

1. Generate more random numbers using the new algorithms shown above. The

initial seed for the new batch of random numbers is the last random number

in the previous batch.

2. Rerun the iterative process to locate another sequence of random numbers

that has an acceptable low factor value.

While the iterative process requires a bit more calculations, you have control over

the range of initial seeds and seed increment values you want to use. Moreover,

there is no need to track a data file containing a large set of initial seed values. This

level of control is most valuable in obtaining different sets of good random

numbers. The alternative is to be somewhat stuck with a set of initial seeds that

you read from a data file and then pick, at random, one or more initial seeds.

The Matlab Code
I started out my study using Excel. The advantage was the ability to view all the

results on the Excel spreadsheets. However, running VBA in Excel proved to be

slow. My curiosity drove me to translate the Excel VBA code into Matlab. Using

Matlab, I avoided loops as much as possible and used vectorised expressions. This

approach paid very handsomely and I enjoyed faster speed of execution using the

same computers.

I finally accelerated the calculations by switching from using a stochastic approach

(that uses Matlab’s random number generating function to provide the initial seeds)

into a deterministic approach by directly supplying the initial seed. The stochastic

approach required that I repeat the process in order to get the mean, standard

deviation, and other statistics for the factor values. This is justified based on the

principle that the initial seeds themselves can be selected at random. The

New PRNG Algorithms Part 1 10

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

deterministic approach did away with all of this repetitive work and simplified

matter—one initial seed value gives a specific factor value.

Next, let’s look at the Matlab function that generate random numbers. You can call

this function in your Matlab applications. You can also comment out the fprintf

statements in these functions so they will run in a silent mode, so to speak.

Here is the source code for the iterative Matlab function rngSimpleGrab which

returns an array of random numbers:

function [factor,minFactor,lastInitSeed,x] =

rngSimpleGrab(maxElems,multiplier,shift,seedStart,seedIncr,maxFactor,maxit)

% Function generates random number.

%

% Copyright(c) 2015 Namir Clement Shammas

% email: nshammas@.aol.com

%

% INPUT

% =====

% maxElems - the number of random numbers.

% multiplier - the multiplier used to generate the random numbers.

% shift – the shift value.

% seedStart - the starting value for the sequence of initial seed values.

% seedIncr - the increment value for the sequence of initial seed values.

% maxFactor - the critical factor value. We seek random numbers that have a

% factor value below the value of maxFactor.

% maxit - the maximum number of iterations.

%

% OUTPUT

% ======

% factor - the first best factor or -1 if process fails

% minFactor - the smallest factor value encountered. Examine this returned

% value if the process fails, so you can have an idea about using

% maxFactor values in subsequent calls to this function.

% lastInitSeed - the last initial seed used by this function. This value

% is useful in making additional calls to this function to get additional

% arrays of random numbers.

% x - the array of random numbers.

%

%

 fprintf('RNG Special version (grab) with multiplier %g = %g\n',

multiplier);

 clk=clock;

 currtime=clk(4)+clk(5)/100+clk(6)/10000;

 fprintf('Current time is %g\n', currtime);

 initSeed=seedStart;

 minFactor=1e99;

 k1=11*multiplier+shift;

 k2=7*multiplier+shift;

 k3=5*multiplier+shift;

 for iter=1:maxit

 x=zeros(maxElems,1);

 x(1)=frac(initSeed);

 for j=2:maxElems

New PRNG Algorithms Part 1 11

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

 if abs(frac(10*x(j-1)))<1e-7

 x(j-1)=frac((x(j-1)+pi)^5+log(j));

 end

 x2=frac(10*x(j-1));

 x3=frac(10*x2);

 x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3)));

 end

 factor=calcFactor(x);

 if isnan(factor), factor=1e99; end

 if factor<minFactor, minFactor=factor; end

 if factor<maxFactor, break; end

 initSeed=initSeed+seedIncr;

 end

 % if random generation process fails to meet the factor value criteria

 % then return -1 and an empty array of random numbers

 if factor>=maxFactor

 factor=-1;

 x=[];

 fprintf('Process failed to generate random numbers that meet the critical

factor value\n');

 end

 lastInitSeed=initSeed;

end

function x = frac(x)

 x=x-fix(x);

end

function factor = calcFactor(x, bShowResults)

% Calculate the factor statistic for the array of random nnumbers x.

 if nargin < 2, bShowResults = false; end

 maxElems=length(x);

 meanx=mean(x);

 sdevx=std(x);

 % get the firrst 100 autocorrelation values

 acArr=autocorrArr(x,1,100);

 % calcul the chisquare for the 10-bin histogram

 numBins=10;

 expval=maxElems/numBins;

 [N1,ev1]=histcounts(x,numBins);

 chiSq10=sum((N1-expval).^2/expval);

 numBins=20;

 expval=maxElems/numBins;

 [N2,ev2]=histcounts(x,numBins);

 chiSq20=sum((N2-expval).^2/expval);

 numBins=20;

 [N3,ev3]=histcounts(acArr,numBins);

 ev3c=ev3(2:length(ev3));

 autoCorrSum = sum(dot(N3,abs(ev3c)));

 factor = 1000*(abs(meanx-0.5)+abs(sdevx-1/sqrt(12)))+100*(max(acArr)-

min(acArr))+100*autoCorrSum+chiSq10+chiSq20/2;

 if bShowResults

 format long

 fprintf('Mean = %g\nSdev = %g\n', meanx, sdevx);

New PRNG Algorithms Part 1 12

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

 fprintf('Min = %g\Max = %g\n', min(x), max(x));

 fprinf('Max lags = 100\n');

 fprintf('Auto correlation array\n');

 disp(acArr);

 fprintf('10-Bin Histogram\n');

 disp(N1); disp(ev1);

 fprintf('Chi-Sqr10 = %g\n', chiSq10);

 fprintf('20-Bin Histogram\n');

 disp(N2); disp(ev2);

 fprintf('Chi-Sqr20 = %g\n', chiSq20);

 fprintf('20-Bin Autocorrelation Histogram\n');

 disp(N3); disp(ev3);

 fprintf('Sum product = %g\n', autoCorrSum);

 fprintf('Factor = %g\n', factor);

 end

end

function acArr=autocorrArr(xdata,fromLag,toLag)

numLags=toLag-fromLag+1;

acArr=zeros(numLags,1);

j=1;

for i=fromLag:toLag

 acArr(j)=autocor(xdata,i);

 j=j+1;

end

end

function res = autocor(xdata,lag)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

maxElems=length(xdata);

res=corrcoef(xdata(1:maxElems-lag),xdata(lag+1:maxElems));

res=res(1,2);

end

Remember to test the value of factor for being less than zero. If it is, then the

function has failed to generate random numbers whose factor value falls below that

of maxFactor. A little bit of testing ahead will help you hone in on the maxFactor

values that go along well with the number of random numbers you wish the

function to generate. Keep in mind that fewer random numbers yield higher factor

values.

Here is a sample session with the above Matlab function:

>> [factor,minFactor,lastInitSeed,x] =

rngSimpleGrab(100000,145,0,.001,.001,10,100);

RNG Special version 2 (grab) with multiplier 145 = Current time is 17.3642

>> factor

factor =

 6.9247

New PRNG Algorithms Part 1 13

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

>> lastInitSeed

lastInitSeed =

 0.0040

>> x(1:10)

ans =

 0.0040

 0.3800

 0.2343

 0.2229

 0.4452

 0.9386

 0.5625

 0.8379

 0.9834

 0.2177

The above function call requests the generation of 100,000 random numbers using

145 as the magic multiplier and a shift value of 0 (basically no effective shift

valur). The function uses 0.001 as both the starting seed and as the seed increment.

The function call specifies that the maxFactor be assigned 10 and that there is at

most 100 iterations to search for the first appropriate array of random numbers.

The first array of random numbers that has a factor below 10, has a factor of 6.92.

The parameter lastInitSeed reports that the last initial seed value used was 0.004.

Since the initial seed value is 0.001 and the increment in the seed value is also

0.001, we quickly deduce that it took four iterations to give us the results we seek.

Here is a sample code snippet for issuing multiple calls to the above PRNG

function:

initSeed=0.001;

seedIncr=0.001;

% first call to PRNG function

[factor,minFactor,lastInitSeed,x] =

rngSimpleGrab(100000,145,0,initSeed,seedIncr,10,100);

%

% use random numbers in array x

...

initSeed=lastInitSeed+seedIncr;

% second call to PRNG function

[factor,minFactor,lastInitSeed,x] =

rngSimpleGrab(100000,145,0,initSeed,seedIncr,10,100);

% use random numbers in array x

...

New PRNG Algorithms Part 1 14

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

A Side Discussion
Before I proceed to my conclusion, some of the readers may take a second look at

equations (1) and (2) and ask the following questions:

 What if an application supplies an initial value to r0 by accident to have no

fractional part?

 What is the value of r0 is the perfect inverse of the multiplier (997 or 147)?

This would lead to a value of r1 with no fractional part. Consequently all

subsequent random numbers will be zeros!

To make equations (1) and (2) more fool-proof we can add a shift fraction value.

Which shift value should we chose? The choice is infinite! The values that come to

mind are equal to the multiplier divided by 1000. Thus, adding a shift term (equal

to the multiplier divided by 1000) to equations (1) and (2) we get:

r1 = frac(997·r0 + 0.997) (6)

r1 = frac(147·r0 + 0.147) (7)

Table 5 shows results for the equations with the shift terms using initial seeds that

range from 0.001 to 0.999, in increments of 0.001. Comparing tables (1) and (3)

shows that equations with the additional shift term do not give significantly better

results that the equations without the shift terms.

Parameter Multiplier

 127 145 147 577 787 997

Minimum 29.8682 31.0564 31.0564 30.9853 28.6979 28.3841
Maximum_30 35.2288 35.1612 35.1612 34.8198 34.8958 35.4354
Mean_30 33.16524 33.78283 33.78283 33.57075 33.28571 33.82235
Sdev_30 1.480006 1.205951 1.205951 1.241225 1.373499 1.718366
First Seed 0.001 0.001 0.001 0.001 0.001 0.001

Last Seed 0.999 0.999 0.999 0.999 0.999 0.999

Seed

Increment 0.001 0.001 0.001 0.001 0.001 0.001
 Table 5. Statistics for frac(multiplier*random_number + multiplier/1000) for various multipliers

and using initial seeds that range from .001 to 0.999, in increments of .001.

Table 6 shows results for equations with the shift term and using initial seeds that

range from 0.0001 to 0.9999, in increments of 0.0001. Comparing tables (2) and

(6) shows that equations with the additional shift term do not give significantly

better results that the equations without the shift terms. Comparing the results of

New PRNG Algorithms Part 1 15

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

tables (5) and (6), the results of the latter table are, as expected, better. This

improvement is due the more detailed scan of the initial seed values.

Parameter Multiplier

 127 145 147 577 787 997

Minimum 27.6922 28.0743 27.3145 27.7758 27.7573 27.6159
Maximum_30 32.0609 31.8837 31.5481 31.4436 31.7078 31.3784
Mean_30 30.91123 30.97038 30.5363 30.2215 30.6938 30.46164
Sdev_30 1.112528 0.847509 0.97083 1.02107 0.93838 0.825438
First Seed 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Last Seed 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Seed

Increment 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Table 6. Statistics for frac(multiplier*random_number + multipler/1000) for various multipliers and

using initial seeds that range from .0001 to .9999, in increments of .0001.

The conclusion to draw is that you can add the shift term if that makes more sense

mathematically, but you will not gain much.

What about other simple PRNGs used for calculators? In order to be somewhat

complete, I dug into more vintage calculator manuals and found the following

equations:

r1 = frac((997·r0 + k2) / 199) (8)

r1 = frac(9821·r0 + 0.211327) (9)

Where k is a progressive counter that cycles between 1 and 25, calculated using:

 k = general_loop_counter mod 26 + 1

The general loop counter is the one used to generate the random numbers.

I also tried the following equations:

r1 = frac((997·r0) / 199) (10)

r1 = frac((577·r0 + k2) / 199) (11)

My expectations for equation (10) are low. I chose equation 10 somewhat

arbitrarily. I felt the outcome to be acceptable but not spectacular.

Table 7 shows results for the equations (8) through (11) using initial seeds that

range from 0.001 to 0.999, in increments of 0.001. As expected, equation (10)

generated poor sets of random numbers. Equation (11) did not perform well either.

New PRNG Algorithms Part 1 16

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

Equations (8) and (9) perform well meeting the minimum level of factors around

30.

Parameter Multiplier

 Eqn 7 Eqn 8 Eqn 9 Eqn 10

Minimum 30.5687 30.107 107.877 48.6362
Maximum_30 37.9994 35.5601 122.76 62.4749
Mean_30 36.1859466 33.86539 117.5752333 58.24966
Sdev_30 1.91229979 1.40243048 4.480145762 3.414447744
First Seed 0.001 0.001 0.001 0.001

Last Seed 0.999 0.999 0.999 0.999

Seed

Increment 0.001 0.001 0.001 0.001
 Table 7. Statistics for equations (7) through (10) using initial seeds that range from .001 to 0.999,

in increments of .001.

Table 8 shows results for the equations (8) through (11) using initial seeds that

range from 0.0001 to 0.9999, in increments of 0.0001. Again equation (10) gave

very disappointing results. By contrast, equation (9) gave somewhat unexpected

good (but not excellent or very good) results.

Parameter Multiplier

 Eqn 7 Eqn 8 Eqn 9 Eqn 10

Minimum 31.9523 26.3079 98.4476 45.6044
Maximum_30 34.5385 30.9923 111.357 54.8764
Mean_30 33.53256 29.93942 108.714486 51.65601667
Sdev_30 0.74048 1.103937839 2.79935440 2.634965372
First Seed 0.0001 0.0001 0.0001 0.0001

Last Seed 0.9999 0.9999 0.9999 0.9999

Seed

Increment 0.0001 0.0001 0.0001 0.0001
 Table 8. Statistics for equations (7) through (10) using initial seeds that range from .0001 to

0.9999, in increments of .0001.

The final conclusion draw from looking at tables (5) through (8) is that the new

PRNG algorithms perform better than legacy algorithms and their variants.

Conclusion
Literature research, extensive hands-on research, and luck have all contributed to

the design of a new PRNG algorithm in three variants. The algorithm for the best

variant is:

if |frac(10·r0)|<1e–7 then

New PRNG Algorithms Part 1 17

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

 r0 = frac((r0 + π)5 + ln(iter_counter))

end

ri1=frac(10·r0)

ri2=frac(10·ri1)

 r1 =frac(1595·r0+1015 (ri1+725·ri2))) (A1)

The second best variant is:

if |frac(10·r0)|<1e–7 then

 r0 = frac((r0 + π)5 + ln(iter_counter))

end

ri1=frac(10·r0)

 ri2=frac(10·ri1)

 r1 =frac(1619·r0+1031(ri1+737·ri2))) (A2)

Depending on how accurate the implementation or your own user-defined version

of the frac function, you using either conditions:

 |frac(10·r0)|<1e–7 when the function frac has some rounding and accuracy

issues.

 frac(10·r0)=0 when the function frac is robust.

While the results are aimed at PC applications that can handle a large count of

random numbers, you can still use the new algorithms with vintage calculators and

new graphing calculators. Of course you will not have the luxury of a screening

Matlab function. You should still be fine, since most likely you will need a

relatively small population of random number of calculator applications.

What’s in a name?
Names are valuable pointers used to refer to various types of objects in the world

and universe around us. Since algorithms A1 and A2 have achieved a good goal, I

feel they deserve a name. I will call the general algorithm that encompasses A1 and

A2 as the train algorithm. I am using the word train since the algorithms use three

evaluations (which I consider each as a wagon in a train) to generate a new random

number.

What’s next?
This paper showed that we zoomed in on two similar algorithms that help

generated good quality random numbers. The next paper will cover a thorough

New PRNG Algorithms Part 1 18

Copyright © 2015 by Namir Clement Shammas Version 1.00.00

survey of odd multiplier values in the range of 101 to 999. The study will also

include shift values of 0 and 2 that are applied to each multiplier value. Thus, the

study will handle about 900 versions of algorithms A1 and A2. In addition the

second part also presents exploratory surveys of using algorithms A1 and A2

diverse values of the multiplier and shift parameters.

Document History
Date Version Comments

1/30/2015 0.90.00 Initial release.

2/28/2015 1.00.00 Added the if statement in

the new PRNG

algorithm, updated the

Matlab code, and

rechecked some results.

