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New Pseudo Random Number Generators: 
Part 1 

By 
Namir C. Shammas 

 

Introduction 
Random numbers are usually calculated using pseudo random number generators 

(PRNGs) to typically support games, simulations, special calculations, and 

cryptography. Using PRNGs allows you to reproduce sequences of random 

numbers by supplying the same seed. Over the last four decades I noticed several 

simple PRNGs used in programmable calculator and BASIC pocket computers. 

Here are some popular PRNGS that generates uniformly distributed random 

numbers between 0 and 1: 

 ri+1 = frac(997·ri)        (1) 

 ri+1 = frac(147·ri)        (2) 

 ri+1 = frac((π + ri)
5)        (3) 

Where ri is the current random number and ri+1 is the new one. The function frac 

returns the fractional part of a real value. In the case of the first two PRNGs the 

initial seed must be a positive real number with a non-zero fractional part. 

Typically initial seeds are positive integers or real numbers, depending on the 

algorithm used. The above algorithms are simple enough to work in programmable 

calculators. They are simpler than the more popular linear congruential methods 

more commonly used in computer applications.  The linear congruential methods 

have the following general form: 

xi+1 = (a·xi + c) mod m       (4) 

Where all the variables are integers. The uniformly-distributed random number of 

each iteration is calculated as xi+1/m. Higher bit-integers used to set values for a 

and m, give better random numbers with longer periods--before they start repeating 

the same sequence. 
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Much research has been done on PRNGs seeking random numbers with very long 

periods. In the case of the linear congruential methods, the periods depends on the 

value of the parameter m. The authors of the popular book “Numerical Recipes”, 

Press et al, have criticized the linear congruential methods and recommend against 

using them. They regard the time and effort computer scientists spent in studying 

the algorithm’s parameters, as a big waste of time! Cryptography and Monte Carlo 

simulations require random numbers with long periods and very low 

autocorrelations. Calculators programs are more forgiving of random numbers that 

are more auto-correlated and have shorted cycles--calculator applications rarely 

generate enough numbers to see them start repeating. 

My goal in this first of three related papers, is to share with you the study I 

conducted in fine-tuning the type of uniformly-distributed PRNGs seen in the 

above equations. 

The Penalty Factor 
There are several tests for measuring the randomness of a sequence of uniformly-

distributed random numbers. The most famous battery of tests is the diehard test. I 

have devised my own test which calculates a penalty factor (which I will simply 

call factor). The lower the factor the better the sequence of random number 

generated. The values for a calculated factor depend on the count of random 

numbers generated. This study is based on consistently generating sequences of 

100,000 random numbers. Lowering the count of random numbers generated tends 

to increase the values for the factors. One reason is the random numbers may 

appear more auto-correlated when they are fewer of them. The values for the factor 

depend on the following statistics related to the random numbers generated: 

 The mean. 

 The standard deviation. 

 The maximum and minimum autocorrelations taken for 1 to 100 lags. 

 The Chi-square statistic for a ten-bin histogram counting random numbers in 

bins of 0.1 width, between 0 and 1. I will call this statistic as ChiSqr10. The 

expected value in each bin equals the count of random numbers divided by 

10. 

 The Chi-square statistic for a twenty-bin histogram counting random 

numbers in bins of 0.05 width, between 0 and 1. I will call this statistic as 
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ChiSqr20. The expected value in each bin equals the count of random 

numbers divided by 20. 

 The sum of product of autocorrelations (distributed in 20 equal-sized bins 

ranging from the minimum to the maximum autocorrelations) and their 

counts. Thus the size of the bins is dynamic and depends on the distribution 

of the autocorrelations. I will call this statistic AutoCorrSum. 

I calculate the factor using: 

Factor = 1000 [|mean – 0.5| + |sdev – 1/√12|] +  

100 (max_autoCorrel – min_autoCorrel)) + 100·AutoCorrSum + 

ChiSqr10 + ChiSqr20 / 2        (5) 

Equation (5) calculates the factor by adding the following weighted terms: 

 One thousand (the weight) times the sum of the following sub-terms: 

o The absolute difference between the mean and its expected value, 0.5. 

o The absolute difference between the standard deviation and its 

expected value, 1/√12. 

 One hundred (the weight) times difference between the maximum and 

minimum autocorrelation values. The maximum and minimum 

autocorrelations have positive and negative values, respectively. This term 

adds a special penalty for the extreme autocorrelation values. 

 One hundred (the weight) times the value of the statistic AutoCorrSum. This 

term adds a special penalty for the general autocorrelation values. A 

dispersed distribution of the autocorrelation values contributes to a higher 

factor value. By contrast, a distribution of the autocorrelation values 

concentrated near zero, contributes little to the factor value. 

 The value of the ChiSqr10 statistic. 

 Half the value of the ChiSqr20 statistic. 

Thus the calculated factor measures the deviation from the expected basic statistics 

(mean and standard deviation), goodness of distribution for the random numbers, 

and the level of their autocorrelations. I felt that these three aspects to be an 

adequate measure for the randomness of the numbers generated. While I certainly 

respect the diehard test, I feel it is an overkill. 

Changing the weights used in equation (5) will change the value of the calculated 

factor. For the sake of consistency, I have stuck with equation (5) since earlier 
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studies about random numbers that I conducted in 2013. When I switched from 

using Excel to Matlab, I adjusted the way to calculate AutoCorrSum. It now takes 

the actual range of autocorrelations into account and not use a preset range of 

autocorrelations. Thus the statistic AutoCorrSum has become more in tuned with 

the actual random numbers generated. 

I have calculated factors for the Matlab rand() function and also for different 

multipliers (like the ones in equations (1) and (2)). Table 1 shows the results. The 

rows Mean_30 and Sdev_30 show the mean and standard deviation, respectively, 

for the best 30 results, sorted by factor values. The column titled rand() shows the 

results for the Matlab rand() function. The seeds for rand() are decimals scaled up 

into integers, compared to the seeds for the other columns in the table. The scaling 

is needed because the seeds for the Matlab rand() function must be integers. The 

table also contains the statistics for the best initial seeds obtained in the range of 

(0.001, 0.999) and in steps of 0.001. The statistics for the multiplier 977 and for 

rand() seem to be slightly better than the other values in the table. The results for 

the arbitrarily chosen multiplier 787 put it at a close third. My target is to go, as 

much as possible, below the minimum factor values below 29. The new algorithms 

that I present here goes below this target value. 

Parameter Multiplier 

 rand() 127 145 147 577 787 997 

Minimum 29.7636 30.3087 32.6161 32.5187 31.1263 29.4823 29.8569 

Maximum_30 35.4215 35.4926 36.3289 36.4672 35.5368 35.7442 35.3705 

Mean_30 33.502 33.64681 35.43605 34.79971 33.96834 34.35561 33.3976 

Sdev_30 1.50041 1.421245 0.929797 1.130787 1.228065 1.466423 1.40077 

First Seed 1 0.001 0.001 0.001 0.001 0.001 0.001 

Last Seed 999 0.999 0.999 0.999 0.999 0.999 0.999 

Seed 

Increment 1 0.001 0.001 0.001 0.001 0.001 0.001 
Table 1. Statistics for frac(multiplier*random_number) for various multipliers and using initial seeds that 

range from .001 to 0.999, in increments of .001. 

Table 2 shows another set of similar results. The table contains the statistics for the 

best initial seeds obtained in the range of (0.0001, 0.9999) and in steps of 0.0001. 

The results show that adding a decimal place in the changing the initial seed values 

yields better factor values. The statistics for the factor values in Table 2 are better 

than their counterparts in Table 1. 
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Parameter Multiplier 

 rand() 127 145 147 577 787 997 

Minimum 29.2985 27.3908 28.9075 29.0369 27.5771 29.1636 27.7466 

Maximum_30 31.9601 32.4034 32.0317 32.3906 31.9905 31.7282 31.4312 

Mean_30 30.8831 31.598 30.9431 31.4740 31.1185 30.6955 30.3002 

Sdev_30 0.79728 1.16429 0.925599 0.809699 0.934245 0.847015 1.026946 

First Seed 1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Last Seed 9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

Seed 

Increment 1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
Table 2. Statistics for frac(multiplier*random_number) for various multipliers and using initial seeds that 

range from .0001 to .9999, in increments of .0001. 

The New PRNGS 
I spent several months running multiple computers round the clock and testing all 

kinds of PRNG algorithms. Whoever said that creating PRNG algorithms is not 

trivial, sure knew what he was talking about! I usually employed the built-in 

PRNGs in Matlab and Excel to supply the initial seeds needed to start the PRNG 

algorithms. This approach is based on the thinking that the studied PRNG 

algorithms should do well for arbitrary initial seeds for the random numbers. 

In the last phase of my study, I came to realize that the seeds for the PRNG 

algorithms played a bit more significant role than I originally thought. I therefore 

changed my approach and started to directly supply the initial seed values. The 

process involved generating factor values for a range of initial seed values. I 

started with a small seed value and increased it by 0.001, 0.0001, and 0.00001. 

Smaller values covered a more detailed range of seed values. While this process is 

repeatable and deterministic, I was surprised that Matlab repeatedly failed to 

replicate the transplanted factors. By transplanted I refer to the seeds that had 

generated very low factors values, being stored in text files, and read in other 

PRNG Matlab programs. For some reason which has escaped me, using good seed 

values did not generate as good factor values!! Sometimes, the factor values were 

too high and not acceptable. I will explain the solution to this problem later on. 

The algorithms I present here are similar and are basically variants of the same 

core method. The first and best version is: 

  x(1)=initSeed;  

  for j=2:maxElems; 

    if abs(frac(10* x(j-1)))<1e-7 

      x(j-1)=frac((x(j-1)+pi)^5+log(j)); 

    end 

    x2=frac(10*x(j-1)) 
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    x3=frac(10*x2) 

    x(j)=frac(11*145*(x(j-1) + 7*145*(x2 + 5*145*x3))) 

  end  
 

The above pseudo-code generates maxElems random numbers stored in the array 

x.  The variable initSeed represents the initial seed. The function frac returns the 

fractional part of a real number. The if statement ensures that the last random 

number has more than one decimal digit. I used a comparison with a small number 

instead of an equality test with zero, because the function frac(x) (defined as x – 

fix(x) or as x – floor(x)) has a rounding problem or bug. It took me a while to 

detect the issue with the function frac. If the tested condition is true, the code 

assigns a new value to the last random number. This value is the fractional part of 

the sum of two terms. The first term uses equation (3). The second term is the 

natural logarithm of the loop counter. The variables x2 and x3 calculate temporary 

additional random numbers, based on the previous random number. If that number 

has only one decimal digit, the values in variables x2 and x3 are zero.  If the value 

of x(j) ends with a single decimal, then the numbers generated ill not be random! 

The magic multiplier here is 145. I have tried a wide range of numbers between 

100 and 1000 that end in 5 and in 7. The numbers 145 and 147 gave excellent 

factor values that reflect very weak autocorrelations between the random numbers 

generated. This algorithm can easily generate factor values that are slightly below 

5, compared to minimum factor of 29 for Matlab’s Mersenne-Twister algorithm. It 

also generates a sizeable sequence of initial seeds that have factor values falling 

below 10. 

If you study the expression that assigns a value to x(j) you will notice that it has a 

nested subexpression. I originally meant to enter the following statement: 

x(j)=frac(11*145*x(j-1) + 7*145*x2 + 5*145*x3)) 
 

But erroneously typed the expression with the nested subexpression. When I 

realized my error, I developed another version of the PRNG function using the 

originally-intended expression. To my surprise, the results were by far not as good 

as the one in the above pseudo-code. This was a true stroke of luck for me! 

I decided to apply two variations on the above algorithms: 

 Replace 145 with 147. 

 Add a small shift value of 2 to the products of 11*145, 7*145, and 5*145. 

These above variations give the following general form of the PRNG for a user-

defined multiplier (145 and 147 in our case) and shift values (0 and 2 in our case): 
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  k1=11*multipler+shift 

  k2=7*multipler+shift 

  k3=5*multipler+shift 

  x(1)=initSeed 

  for j=2:maxElems 

    if abs(frac(10* x(j-1)))<1e-7 

      x(j-1)=frac((x(j-1)+pi)^5+log(j)); 

    end 

    x2=frac(10*x(j-1)) 

    x3=frac(10*x2) 

    x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3))) 

  end   
 

Thus we have four versions of the algorithm: 

1. Values of 145 and 0 for the multiplier and shift values, respectively. 

2. Values of 147 and 0 for the multiplier and shift values, respectively. 

3. Values of 145 and 2 for the multiplier and shift values, respectively. 

4. Values of 147 and 2 for the multiplier and shift values, respectively. 

Table 3 shows the statistics for the factor values for the above four variations in the 

multiplier and shift values. In the case of the multiplier 145, using a shift of 2 

slightly degrades the factor values. By contrast, in the case of the multiplier 147, 

using a shift of 2 benefits the factor values. 

Parameter Multiplier and Shift 

 145 and 0 147 and 0 145 and 2 147 and 2 

Minimum 4.08354 12.6918 5.49014 9.45088 
Maximum_30  5.2639 13.7527 10.8129 11.4277 
Mean_30 4.727039 13.357046 7.904233 10.260867 
Sdev_30 0.362969 0.2905969 1.904074 0.4482475 
First Seed 0.001 0.001 0.001 0.001 

Last Seed 0.999 0.999 0.999 0.999 

Seed 

Increment 0.001 0.001 0.001 0.001 
Table 3. Statistics for various multiplier/shift combinations and using initial seeds that range from .001 to 

0.999, in increments of .001. 

Table 4 shows the effect of using the multipliers 145 and 147 with and without a 

small shift of 2 using smaller seed increment values. Since this table is based on 

smaller seed increments and covers more seed values it is able to find better results 

than Table 3. Nevertheless, the comments made about comparing the statistics in 

the various columns of Table 3, still apply to Table 4. 
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Parameter Multiplier and Shift 

 145 and 0 147 and 0 145 and 2 147 and 2 

Minimum 3.85348 12.2075 5.31787 8.49994 
Maximum_30  4.34976 12.9856 5.84596 9.40546 
Mean_30 4.198123 12.76841667 5.681303667 9.202553667 
Sdev_30 0.125885 0.198782975 0.136806277 0.250986366 
First Seed 0.0091 0.0091 0.0091 0.0091 

Last Seed 0.9999 0.9999 0.9999 0.9999 

Seed 

Increment 0.0001 0.0001 0.0001 0.0001 
Table 4. Statistics for various multiplier/shift combinations and using initial seeds that range from .0001 

to 0.9999, in increments of .0001. 

The conclusion that we can draw from tables 3 and 4 is that we can either use the 

following core algorithm (call it version A1): 

  k1=11*145 

  k2=7*145 

  k3=5*145 

  x(1)=initSeed 

  for j=2:maxElems 

    if abs(frac(10* x(j-1)))<1e-7 

      x(j-1)=frac((x(j-1)+pi)^5+log(j)); 

    end 

    x2=frac(10*x(j-1)) 

    x3=frac(10*x2) 

    x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3))) 

  end 

Or the following core algorithm (call it version A2): 

  k1=11*147+2 

  k2=7*147+2 

  k3=5*147+2 

  x(1)=initSeed 

  for j=2:maxElems 

    if abs(frac(10* x(j-1)))<1e-7 

      x(j-1)=frac((x(j-1)+pi)^5+log(j)); 

    end 

    x2=frac(10*x(j-1)) 

    x3=frac(10*x2) 

    x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3))) 

  end 

Keeping in mind that algorithm A1 is better than A2. Both algorithms do much 

better than the PRNG algorithms I discuss in this paper, 

Once you have a set of good initial seeds, the ideal approach becomes: 

 Selecting the initial seed values that generate low factor values. 
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 Storing the initial seeds in data files. 

 Reading these files in separate client programs.  

As I stated earlier, this process, though sound in theory, has not worked for a 

reason that escapes me! The alternative is to generate sequences of random 

numbers for a sequence of initial seed values. The first seed value that generates a 

factor falling below a critical factor value, ends the iterative process and returns the 

factor value and the large sequence of random numbers. I will present, in the next 

section, Matlab code that implements this iterative process. If your application 

needs more random numbers then you can do one of the following: 

1. Generate more random numbers using the new algorithms shown above. The 

initial seed for the new batch of random numbers is the last random number 

in the previous batch. 

2. Rerun the iterative process to locate another sequence of random numbers 

that has an acceptable low factor value. 

While the iterative process requires a bit more calculations, you have control over 

the range of initial seeds and seed increment values you want to use. Moreover, 

there is no need to track a data file containing a large set of initial seed values. This 

level of control is most valuable in obtaining different sets of good random 

numbers. The alternative is to be somewhat stuck with a set of initial seeds that 

you read from a data file and then pick, at random, one or more initial seeds. 

The Matlab Code 
I started out my study using Excel. The advantage was the ability to view all the 

results on the Excel spreadsheets. However, running VBA in Excel proved to be 

slow. My curiosity drove me to translate the Excel VBA code into Matlab. Using 

Matlab, I avoided loops as much as possible and used vectorised expressions. This 

approach paid very handsomely and I enjoyed faster speed of execution using the 

same computers. 

I finally accelerated the calculations by switching from using a stochastic approach 

(that uses Matlab’s random number generating function to provide the initial seeds) 

into a deterministic approach by directly supplying the initial seed. The stochastic 

approach required that I repeat the process in order to get the mean, standard 

deviation, and other statistics for the factor values. This is justified based on the 

principle that the initial seeds themselves can be selected at random. The 
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deterministic approach did away with all of this repetitive work and simplified 

matter—one initial seed value gives a specific factor value. 

Next, let’s look at the Matlab function that generate random numbers. You can call 

this function in your Matlab applications. You can also comment out the fprintf 

statements in these functions so they will run in a silent mode, so to speak. 

Here is the source code for the iterative Matlab function rngSimpleGrab which 

returns an array of random numbers: 

function [factor,minFactor,lastInitSeed,x] = 

rngSimpleGrab(maxElems,multiplier,shift,seedStart,seedIncr,maxFactor,maxit) 

% Function generates random number. 

% 

% Copyright(c) 2015 Namir Clement Shammas 

% email: nshammas@.aol.com 

% 

% INPUT 

% ===== 

% maxElems - the number of random numbers. 

% multiplier - the multiplier used to generate the random numbers. 

% shift – the shift value. 

% seedStart - the starting value for the sequence of initial seed values. 

% seedIncr - the increment value for the sequence of initial seed values. 

% maxFactor - the critical factor value. We seek random numbers that have a 

% factor value below the value of maxFactor. 

% maxit - the maximum number of iterations. 

% 

% OUTPUT 

% ====== 

% factor - the first best factor or -1 if process fails 

% minFactor - the smallest factor value encountered. Examine this returned 

% value if the process fails, so you can have an idea about using 

% maxFactor values in subsequent calls to this function. 

% lastInitSeed - the last initial seed used by this function. This value  

% is useful in making additional calls to this function to get additional 

% arrays of random numbers. 

% x - the array of random numbers. 

% 

% 

  fprintf('RNG Special version (grab) with multiplier %g = %g\n', 

multiplier); 

  clk=clock; 

  currtime=clk(4)+clk(5)/100+clk(6)/10000; 

  fprintf('Current time is %g\n', currtime); 

  initSeed=seedStart; 

  minFactor=1e99; 

  k1=11*multiplier+shift; 

  k2=7*multiplier+shift; 

  k3=5*multiplier+shift; 

  for iter=1:maxit 

    x=zeros(maxElems,1); 

    x(1)=frac(initSeed);  

    for j=2:maxElems 
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      if abs(frac(10*x(j-1)))<1e-7 

        x(j-1)=frac((x(j-1)+pi)^5+log(j)); 

      end 

      x2=frac(10*x(j-1)); 

      x3=frac(10*x2); 

      x(j)=frac(k1*(x(j-1)+k2*(x2+k3*x3))); 

    end   

    factor=calcFactor(x); 

    if isnan(factor), factor=1e99; end 

    if factor<minFactor, minFactor=factor; end 

    if factor<maxFactor, break; end 

    initSeed=initSeed+seedIncr; 

  end 

 

  % if random generation process fails to meet the factor value criteria 

  % then return -1 and an empty array of random numbers 

  if factor>=maxFactor 

    factor=-1; 

    x=[]; 

    fprintf('Process failed to generate random numbers that meet the critical 

factor value\n'); 

  end 

  lastInitSeed=initSeed;   

end 

 

function x = frac(x) 

  x=x-fix(x); 

end 

 

function factor = calcFactor(x, bShowResults) 

% Calculate the factor statistic for the array of random nnumbers x. 

 

  if nargin < 2, bShowResults = false; end 

  maxElems=length(x); 

  meanx=mean(x); 

  sdevx=std(x); 

  % get the firrst 100 autocorrelation values 

  acArr=autocorrArr(x,1,100); 

  % calcul the chisquare for the 10-bin histogram 

  numBins=10; 

  expval=maxElems/numBins; 

  [N1,ev1]=histcounts(x,numBins); 

  chiSq10=sum((N1-expval).^2/expval); 

  numBins=20; 

  expval=maxElems/numBins; 

  [N2,ev2]=histcounts(x,numBins); 

  chiSq20=sum((N2-expval).^2/expval);   

  numBins=20; 

  [N3,ev3]=histcounts(acArr,numBins); 

  ev3c=ev3(2:length(ev3)); 

  autoCorrSum = sum(dot(N3,abs(ev3c))); 

  factor = 1000*(abs(meanx-0.5)+abs(sdevx-1/sqrt(12)))+100*(max(acArr)-

min(acArr))+100*autoCorrSum+chiSq10+chiSq20/2; 

 

  if bShowResults 

    format long 

    fprintf('Mean = %g\nSdev = %g\n', meanx, sdevx); 
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    fprintf('Min = %g\Max = %g\n', min(x), max(x)); 

    fprinf('Max lags = 100\n'); 

    fprintf('Auto correlation array\n'); 

    disp(acArr); 

    fprintf('10-Bin Histogram\n'); 

    disp(N1); disp(ev1); 

    fprintf('Chi-Sqr10 = %g\n', chiSq10); 

    fprintf('20-Bin Histogram\n'); 

    disp(N2); disp(ev2); 

    fprintf('Chi-Sqr20 = %g\n', chiSq20); 

    fprintf('20-Bin Autocorrelation Histogram\n'); 

    disp(N3); disp(ev3); 

    fprintf('Sum product = %g\n', autoCorrSum); 

    fprintf('Factor = %g\n', factor); 

  end 

end 

 

function acArr=autocorrArr(xdata,fromLag,toLag) 

 

numLags=toLag-fromLag+1; 

acArr=zeros(numLags,1); 

j=1; 

for i=fromLag:toLag 

  acArr(j)=autocor(xdata,i); 

  j=j+1; 

end 

end 

 

function res = autocor(xdata,lag) 

%UNTITLED2 Summary of this function goes here 

%   Detailed explanation goes here 

maxElems=length(xdata); 

res=corrcoef(xdata(1:maxElems-lag),xdata(lag+1:maxElems)); 

res=res(1,2); 

end 
 

Remember to test the value of factor for being less than zero. If it is, then the 

function has failed to generate random numbers whose factor value falls below that 

of maxFactor. A little bit of testing ahead will help you hone in on the maxFactor 

values that go along well with the number of random numbers you wish the 

function to generate. Keep in mind that fewer random numbers yield higher factor 

values. 

Here is a sample session with the above Matlab function: 

>> [factor,minFactor,lastInitSeed,x] = 

rngSimpleGrab(100000,145,0,.001,.001,10,100); 

RNG Special version 2 (grab) with multiplier 145 = Current time is 17.3642 

>> factor 

 

factor = 

 

    6.9247 
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>> lastInitSeed 

 

lastInitSeed = 

 

    0.0040 

 

>> x(1:10) 

 

ans = 

 

    0.0040 

    0.3800 

    0.2343 

    0.2229 

    0.4452 

    0.9386 

    0.5625 

    0.8379 

    0.9834 

    0.2177 
 

The above function call requests the generation of 100,000 random numbers using 

145 as the magic multiplier and a shift value of 0 (basically no effective shift 

valur). The function uses 0.001 as both the starting seed and as the seed increment. 

The function call specifies that the maxFactor be assigned 10 and that there is at 

most 100 iterations to search for the first appropriate array of random numbers. 

The first array of random numbers that has a factor below 10, has a factor of 6.92. 

The parameter lastInitSeed reports that the last initial seed value used was 0.004. 

Since the initial seed value is 0.001 and the increment in the seed value is also 

0.001, we quickly deduce that it took four iterations to give us the results we seek. 

Here is a sample code snippet for issuing multiple calls to the above PRNG 

function: 

initSeed=0.001; 

seedIncr=0.001; 

% first call to PRNG function 

[factor,minFactor,lastInitSeed,x] = 

rngSimpleGrab(100000,145,0,initSeed,seedIncr,10,100); 

% 

% use random numbers in array x 

... 

initSeed=lastInitSeed+seedIncr; 

% second call to PRNG function 

[factor,minFactor,lastInitSeed,x] = 

rngSimpleGrab(100000,145,0,initSeed,seedIncr,10,100); 

% use random numbers in array x 

... 
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A Side Discussion 
Before I proceed to my conclusion, some of the readers may take a second look at 

equations (1) and (2) and ask the following questions: 

 What if an application supplies an initial value to r0 by accident to have no 

fractional part? 

 What is the value of r0 is the perfect inverse of the multiplier (997 or 147)? 

This would lead to a value of r1 with no fractional part. Consequently all 

subsequent random numbers will be zeros! 

To make equations (1) and (2) more fool-proof we can add a shift fraction value.  

Which shift value should we chose? The choice is infinite! The values that come to 

mind are equal to the multiplier divided by 1000. Thus, adding a shift term (equal 

to the multiplier divided by 1000) to equations (1) and (2) we get: 

r1 = frac(997·r0 + 0.997)      (6) 

r1 = frac(147·r0 + 0.147)      (7) 

Table 5 shows results for the equations with the shift terms using initial seeds that 

range from 0.001 to 0.999, in increments of 0.001. Comparing tables (1) and (3) 

shows that equations with the additional shift term do not give significantly better 

results that the equations without the shift terms. 

Parameter Multiplier 

 127 145 147 577 787 997 

Minimum 29.8682 31.0564 31.0564 30.9853 28.6979 28.3841 
Maximum_30  35.2288 35.1612 35.1612 34.8198 34.8958 35.4354 
Mean_30 33.16524 33.78283 33.78283 33.57075 33.28571 33.82235 
Sdev_30 1.480006 1.205951 1.205951 1.241225 1.373499 1.718366 
First Seed 0.001 0.001 0.001 0.001 0.001 0.001 

Last Seed 0.999 0.999 0.999 0.999 0.999 0.999 

Seed 

Increment 0.001 0.001 0.001 0.001 0.001 0.001 
 Table 5. Statistics for frac(multiplier*random_number + multiplier/1000) for various multipliers 

and using initial seeds that range from .001 to 0.999, in increments of .001. 

Table 6 shows results for equations with the shift term and using initial seeds that 

range from 0.0001 to 0.9999, in increments of 0.0001. Comparing tables (2) and 

(6) shows that equations with the additional shift term do not give significantly 

better results that the equations without the shift terms. Comparing the results of 
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tables (5) and (6), the results of the latter table are, as expected, better. This 

improvement is due the more detailed scan of the initial seed values. 

Parameter Multiplier 

 127 145 147 577 787 997 

Minimum 27.6922 28.0743 27.3145 27.7758 27.7573 27.6159 
Maximum_30  32.0609 31.8837 31.5481 31.4436 31.7078 31.3784 
Mean_30 30.91123 30.97038 30.5363 30.2215 30.6938 30.46164 
Sdev_30 1.112528 0.847509 0.97083 1.02107 0.93838 0.825438 
First Seed 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Last Seed 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

Seed 

Increment 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
Table 6. Statistics for frac(multiplier*random_number + multipler/1000) for various multipliers and 

using initial seeds that range from .0001 to .9999, in increments of .0001. 

The conclusion to draw is that you can add the shift term if that makes more sense 

mathematically, but you will not gain much. 

What about other simple PRNGs used for calculators? In order to be somewhat 

complete, I dug into more vintage calculator manuals and found the following 

equations: 

r1 = frac((997·r0 + k2) / 199)      (8) 

r1 = frac(9821·r0 + 0.211327)      (9) 

Where k is a progressive counter that cycles between 1 and 25, calculated using: 

 k = general_loop_counter mod 26 + 1 

The general loop counter is the one used to generate the random numbers. 

I also tried the following equations: 

r1 = frac((997·r0) / 199)       (10) 

r1 = frac((577·r0 + k2) / 199)      (11) 

My expectations for equation (10) are low. I chose equation 10 somewhat 

arbitrarily. I felt the outcome to be acceptable but not spectacular. 

Table 7 shows results for the equations (8) through (11) using initial seeds that 

range from 0.001 to 0.999, in increments of 0.001. As expected, equation (10) 

generated poor sets of random numbers. Equation (11) did not perform well either. 
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Equations (8) and (9) perform well meeting the minimum level of factors around 

30. 

Parameter Multiplier 

 Eqn 7 Eqn 8 Eqn 9 Eqn 10 

Minimum 30.5687 30.107 107.877 48.6362 
Maximum_30  37.9994 35.5601 122.76 62.4749 
Mean_30 36.1859466 33.86539 117.5752333 58.24966 
Sdev_30 1.91229979 1.40243048 4.480145762 3.414447744 
First Seed 0.001 0.001 0.001 0.001 

Last Seed 0.999 0.999 0.999 0.999 

Seed 

Increment 0.001 0.001 0.001 0.001 
 Table 7. Statistics for equations (7) through (10) using initial seeds that range from .001 to 0.999, 

in increments of .001. 

Table 8 shows results for the equations (8) through (11) using initial seeds that 

range from 0.0001 to 0.9999, in increments of 0.0001. Again equation (10) gave 

very disappointing results. By contrast, equation (9) gave somewhat unexpected 

good (but not excellent or very good) results. 

Parameter Multiplier 

 Eqn 7 Eqn 8 Eqn 9 Eqn 10 

Minimum 31.9523 26.3079 98.4476 45.6044 
Maximum_30  34.5385 30.9923 111.357 54.8764 
Mean_30 33.53256 29.93942 108.714486 51.65601667 
Sdev_30 0.74048 1.103937839 2.79935440 2.634965372 
First Seed 0.0001 0.0001 0.0001 0.0001 

Last Seed 0.9999 0.9999 0.9999 0.9999 

Seed 

Increment 0.0001 0.0001 0.0001 0.0001 
 Table 8. Statistics for equations (7) through (10) using initial seeds that range from .0001 to 

0.9999, in increments of .0001. 

The final conclusion draw from looking at tables (5) through (8) is that the new 

PRNG algorithms perform better than legacy algorithms and their variants. 

Conclusion 
Literature research, extensive hands-on research, and luck have all contributed to 

the design of a new PRNG algorithm in three variants. The algorithm for the best 

variant is: 

if |frac(10·r0)|<1e–7 then 
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  r0 = frac((r0 + π)5 + ln(iter_counter)) 

end 

ri1=frac(10·r0) 

ri2=frac(10·ri1)   

       r1 =frac(1595·r0+1015 (ri1+725·ri2)))     (A1) 

The second best variant is: 

if |frac(10·r0)|<1e–7 then 

  r0 = frac((r0 + π)5 + ln(iter_counter)) 

end 

ri1=frac(10·r0) 

      ri2=frac(10·ri1) 

       r1 =frac(1619·r0+1031(ri1+737·ri2)))     (A2) 

Depending on how accurate the implementation or your own user-defined version 

of the frac function, you using either conditions: 

 |frac(10·r0)|<1e–7 when the function frac has some rounding and accuracy 

issues. 

 frac(10·r0)=0 when the function frac is robust. 

While the results are aimed at PC applications that can handle a large count of 

random numbers, you can still use the new algorithms with vintage calculators and 

new graphing calculators. Of course you will not have the luxury of a screening 

Matlab function. You should still be fine, since most likely you will need a 

relatively small population of random number of calculator applications. 

What’s in a name? 
Names are valuable pointers used to refer to various types of objects in the world 

and universe around us. Since algorithms A1 and A2 have achieved a good goal, I 

feel they deserve a name. I will call the general algorithm that encompasses A1 and 

A2 as the train algorithm. I am using the word train since the algorithms use three 

evaluations (which I consider each as a wagon in a train) to generate a new random 

number. 

What’s next? 
This paper showed that we zoomed in on two similar algorithms that help 

generated good quality random numbers. The next paper will cover a thorough 
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survey of odd multiplier values in the range of 101 to 999. The study will also 

include shift values of 0 and 2 that are applied to each multiplier value. Thus, the 

study will handle about 900 versions of algorithms A1 and A2. In addition the 

second part also presents exploratory surveys of using algorithms A1 and A2 

diverse values of the multiplier and shift parameters. 
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