
More PRNGs for Calculators 1

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

More PRNGs for Calculators
By

Namir C. Shammas

Contents
Introduction .. 1

The Penalty Factor ... 2

Legacy Calculator PRNG Algorithm ...10

New Calculator PRNGs ...10

The Proposed PRNGs ..11

Notes ..17

Conclusions ..17

Document History ..19

Introduction
This paper looks at pseudo-random number generators (PRNGs) for calculators

using tools developed with Matlab. The study uses a popular PRNG for calculators

as the baseline to compare with the collection of new PRNGs for calculators.

PRNGs for calculators do not require the kind of strict randomness needed by

computer applications, such as simulation or cryptography. Thus, the bar for

calculator PRNGs is lower than that for computer PRNGs. Using PRNGs for

simple calculator games or simulations require the generation of far fewer random

numbers than the computer-based application counterparts. Thus, the cycle size of

PRNGs, where random numbers start to repeat, is not a critical issue.

The purpose of PRNG functions is to take an input, usually the current random

number (a positive floating-point number) and generate a new random number.

The quality of generating PRNGs depends on the chaos created by the PRNG

function. The more chaotic the output, the better is the PRNG function.

More PRNGs for Calculators 2

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

There are two types of PRNG functions. The first type relies on mostly integer

calculations—the final step involves dividing a random integer by a big integer to

generate a uniformly distributed random number in the range of [0, 1]. Integer-

based PRNG functions depend on the maximum integer supported by the operating

system. The good selling point of such functions is they are quite portable across

different operating systems, hardware, and, in a good number of cases, different

programming languages. The second type of PRNG functions works with floating-

point numbers. As such, they are dependent on the number of decimals supported

and number rounding. These functions are less portable than their integer-based

counterparts. This study focuses on the second type of PRNG functions. I used

Matlab because it quickly handled large arrays.

It is worth pointing out that designing good integer based PRNGs ranges between

difficult and hard. Designing floating-point-based PRNGs is easier. In the end, you

get what you pay for!

The Penalty Factor
There are several tests for measuring the randomness of a sequence of uniformly

distributed random numbers. The most famous battery of tests is the diehard test. I

have devised my own test which calculates a penalty factor. The lower this factor

the better the sequence of random number generated. The values for a calculated

penalty factor depend on the count of random numbers generated. This study is

based on consistently generating numerous batches containing sequences of 10,000

random numbers. Lowering the count of random numbers generated tends to

increase the values for the factors. One reason is the random numbers may appear

slightly more auto correlated when they are fewer of them. The values for the

factor depend on the following statistics related to the random numbers generated:

• The mean.

• The standard deviation.

• The maximum and minimum autocorrelations taken for 1 to 100 lags.

• The Chi-square statistic for a ten-bin histogram counting random numbers in

bins of 0.1 width, between 0 and 1. I will call this statistic as ChiSqr10. The

expected value in each bin equals the count of random numbers divided by

10.

• The Chi-square statistic for a twenty-bin histogram counting random

numbers in bins of 0.05 width, between 0 and 1. I will call this statistic as

More PRNGs for Calculators 3

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

ChiSqr20. The expected value in each bin equals the count of random

numbers divided by 20.

• The sum of product of autocorrelations (distributed in 20 equal-sized bins

ranging from the minimum to the maximum autocorrelations) and their

counts. Thus, the size of the bins is dynamic and depends on the distribution

of the autocorrelations. I will call this statistic AutoCorrSum.

• The change-of-sign statistic. I discuss calculating this statistic below.

• Kolmogorov-Smirnov statistics. This part calculates the following two

values:

o K+ = max(Fn(x) – F(x))

o K– = max(F(x) - Fn(x))

Where Fn(x) = (number of xi <= x)/n and F(x) is the theoretical

cumulative distribution value.

Regarding the change-of-sign statistic, I examine the change of signs between the

consecutive differences in the random numbers. An ideal PRNG would have the

consecutive signs constantly and systematically alternating between positive and

negative. However, real-world PRNGs will have the consecutive signs of the

differences change few elements down. Let D(n,1) be the number of change of

signs from negative to positive every n differences. Also let, D(n,2) be the number

of change of signs from positive to negative every n differences. These values

decrease exponentially with n and are highest at n equal 1. I calculate the chsStat

as:

chsStat = (ΣD(i,1)*i)/D(1,1) + (ΣD(i,2)*i)/D(1,2) for i=2,…,n (1)

The values D(1,1) and D(1,2) will normalize the ratios and thus take care of the

effect of the number of random numbers generated. An ideal PRNG will have

D(i,1) and D(i,2) as zeros for all i > 1, yielding a chsStat value of 0. Multiplying

D(i,1) and D(i,2) by i is a way to penalize larger delays in the change of signs. One

can also multiply the values of D(i,1) and D(i,2) by I squared or some other power.

Using powers greater than one serve only to magnify the effect delayed changes of

signs.

I calculate the penalty factor using:

Factor = 1000 [|mean – 0.5| + |sdev – 1/√12|] +

100 (max_autoCorrel – min_autoCorrel)) + 100·AutoCorrSum +

More PRNGs for Calculators 4

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

ChiSqr10 + ChiSqr20 / 2 + 10·chsStat + 10 (K+ + K–) (2)

Equation (2) calculates the penalty factor by including the following weighted

terms:

• One thousand (the weight) times the sum of the following sub-terms:

o The absolute difference between the mean and its expected value, 0.5.

o The absolute difference between the standard deviation and its

expected value, 1/√12.

• One hundred (the weight) times difference between the maximum and

minimum autocorrelation values. The maximum and minimum

autocorrelations have positive and negative values, respectively. This term

adds a special penalty for the extreme autocorrelation values.

• One hundred (the weight) times the value of the statistic AutoCorrSum. This

term adds a special penalty for the general autocorrelation values. A

dispersed distribution of the autocorrelation values contributes to a higher

factor value. By contrast, a distribution of the autocorrelation values

concentrated near zero, contributes little to the factor value.

• The value of the ChiSqr10 statistic.

• Half the value of the ChiSqr20 statistic.

• Ten times the change-of-sign statistic.

• Ten times the sum of the K+ and K– values.

Thus, the calculated penalty factor measures the following:

• The deviation from the expected basic statistics (mean and standard

deviation).

• The goodness of distribution for the random numbers.

• The level of the autocorrelations.

• The change of sign of the differences between random numbers.

• The closeness of the cumulative distribution of the numbers generated to the

ideal cumulative distribution.

Here is a sample Matlab function that test a PRNG algorithms, performs the

various statistics and returns a penalty factor.

function factor = rngRandoDora1(maxElems,bShowResults)

%UNTITLED2 Summary of this function goes here

 if ~exist('bShowResults','var') || isempty(bShowResults)

 bShowResults=false;

More PRNGs for Calculators 5

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

 end

 if bShowResults, fprintf('r + 1/(phi+r))*997 rng test\n'); end

 x=zeros(maxElems,1);

 rng('shuffle','twister');

 x(1)=rand;

 for j=2:maxElems

 x(j) = rando(x(j-1));

 end

 factor=calcFactor(x,bShowResults);

 if isnan(factor), factor=1e99; end

end

function x = frac(x)

 x=x-fix(x);

end

function r=rando(r)

 r = mod(997/r,1);

end

function factor = calcFactor(x, bShowResults)

% Calculate the factor statistic for the array of random nnumbers x.

 if nargin < 2, bShowResults = false; end

 maxElems=length(x);

 meanx=mean(x);

 sdevx=std(x);

 % get the first 100 autocorrelation values

 acArr=autocorrArr(x,1,100);

 % calculate the chisquare for the 10-bin histogram

 numBins=10;

 expval=maxElems/numBins;

 [N1,ev1]=histcounts(x,numBins);

 chiSq10=sum((N1-expval).^2/expval);

 numBins=20;

 expval=maxElems/numBins;

 [N2,ev2]=histcounts(x,numBins);

 chiSq20=sum((N2-expval).^2/expval);

 numBins=20;

 [N3,ev3]=histcounts(acArr,numBins);

 ev3c=ev3(2:length(ev3));

 autoCorrSum = sum(dot(N3,abs(ev3c)));

 chsStat=chs(x);

 [Kplus,Kminus]=KStest(x);

 factor = 1000*(abs(meanx-0.5)+abs(sdevx-1/sqrt(12)))+100*(max(acArr)-

min(acArr))+100*autoCorrSum+chiSq10+chiSq20/2;

 factor = factor + 10*chsStat + 10*(Kplus + Kminus);

 if bShowResults

 fprintf('Mean = %g\nSdev = %g\n', meanx, sdevx);

 fprintf('Min = %g\nMax = %g\n', min(x), max(x));

 fprintf('Max lags = 100\n');

 fprintf('Auto correlation array\n');

 disp(acArr');

 fprintf('10-Bin Histogram\n');

 disp(N1); disp(ev1);

 fprintf('Chi-Sqr10 = %g\n', chiSq10);

 fprintf('20-Bin Histogram\n');

More PRNGs for Calculators 6

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

 disp(N2); disp(ev2);

 fprintf('Chi-Sqr20 = %g\n', chiSq20);

 fprintf('20-Bin Autocorrelation Histogram\n');

 disp(N3); disp(ev3);

 fprintf('Sum autocorrel product = %g\n', autoCorrSum);

 fprintf('Change of sign stat = %g\n', chsStat);

 fprintf('K+ = %g and K- = %g\n', Kplus, Kminus);

 fprintf('Factor = %g\n', factor);

 end

end

function acArr=autocorrArr(xdata,fromLag,toLag)

numLags=toLag-fromLag+1;

acArr=zeros(numLags,1);

j=1;

for i=fromLag:toLag

 acArr(j)=autocor(xdata,i);

 j=j+1;

end

end

function res = autocor(xdata,lag)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

maxElems=length(xdata);

res=corrcoef(xdata(1:maxElems-lag),xdata(lag+1:maxElems));

res=res(1,2);

end

function sumx=chs(x)

% Function CHS calculates the change of sign (between subsequent random

% numbers) moment. The function counts the number of consequtive positive

% abd negative changes of sign. The last nested loop calculates the

% statistic returned by this function. This value is the sum of:

%

% sum = sum of difference(count,:) * count / difference(1,:)

%

% Keeping in mind that difference(1,:) is a good value that counts the

% sign flips that happpens one neighbor down. The values for

% difference(n,:) for n>1 are not desirable. The smaller, the better. The

% value difference(2,:) is the number of sign flips that occur

% two neighbors down. The value difference(3,:) is the number of sign flips

% that occur three neighbors down, and so on.

 n=length(x);

 nby2=fix(n/2);

 Diff=zeros(nby2,2);

 countPos=0;

 countNeg=0;

 s1=sign(x(2)-x(1));

 if s1>0

 bIsPos=true;

 countPos=1;

 else

 bIsPos=false;

 countNeg=1;

More PRNGs for Calculators 7

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

 end

 for i=3:n

 s2=sign(x(i)-x(i-1));

 % was positive and is still positive

 if s2>0 && bIsPos

 countPos=countPos+1;

 % was negative and is now positive

 elseif s2>0 && ~bIsPos

 bIsPos=true;

 countPos=1;

 Diff(countNeg,2)=Diff(countNeg,2)+1;

 countNeg=0;

 % was negative and is still negative

 elseif s2<0 && ~bIsPos

 countNeg=countNeg+1;

 % was positive is and is now negative

 elseif s2<0 && bIsPos

 bIsPos=false;

 countNeg=1;

 Diff(countPos,1)=Diff(countPos,1)+1;

 countPos=0;

 end

 end

 if s2>0

 if countPos>0, Diff(countPos,1)=Diff(countPos,1)+1; end

 else

 if countNeg>0, Diff(countNeg,2)=Diff(countNeg,2)+1; end

 end

 i=2:nby2;

 d=Diff(2:nby2,:);

 sumx=0;

 for j=1:2

 sumx = sumx + dot(d(:,j),i)/Diff(1,j);

 end

end

function [Kplus,Kminus]=KStest(x)

 x=sort(x);

 n=length(x);

 diffMaxPlus=-1e+99;

 diffMaxMinus=-1e+99;

 i=1;

 for xv=0.001:.001:1

 F=xv;

 while x(i)<=xv && i<n

 i=i+1;

 end

 Fn=1;

 if i<n, Fn=(i-1)/n; end

 diff=Fn-F;

 if diff>diffMaxPlus, diffMaxPlus=diff; end

 diff=-diff;

 if diff>diffMaxMinus, diffMaxMinus=diff; end

 end

More PRNGs for Calculators 8

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

 Kplus=sqrt(n)*diffMaxPlus;

 Kminus=sqrt(n)*diffMaxMinus;

end

Each PRNG test function has an accompanying function doAll() which runs nine

tests for the PRNG test function and calculates the minimum, maximum, mean,

standard deviation, and confidence interval for the mean best 30 penalty values.

The doAll() function obtains two flavors of these values:

1. Using the mean best 30 penalty factors for each row.

2. Using all of 270 best 30 mean values.

Here is a sample doAll() function:

function msg=doAll(runNum,maxElems,countRepeat,bShutDown)

 if nargin<4, bShutDown = false; end

 if nargin<3, countRepeat=1000; end

 if nargin<2, maxElems=100000; end

 if nargin<1, runNum=fix(1000000*rand(1,1)); end

 sFilename=strcat('commonRng_run', num2str(runNum),'.csv');

 fid=fopen(sFilename,'wt');

 fprintf(fid,

'Method,Min,Max,Mean,Sdev,CountFailed,Mean30,Sdev30,Factors(30)->\n');

 maxiter = 9;

 m = 30;

 gmean = zeros(maxiter,1);

 data = [];

 for iter = 1:maxiter

 [minx,maxx,meanx,sdevx,factorArr] =

rngRandoDora1Stats(maxElems,countRepeat,runNum);

 fprintf(fid, 'r=frac(997/r),%g,%g,%g,%g,0,',minx,maxx,meanx,sdevx);

 factorArr=sort(factorArr);

 n=length(factorArr);

 if n>m, n=m; end

 data = [data; factorArr(1:n)];

 fprintf(fid,'%g,%g,',mean(factorArr(1:n)),std(factorArr(1:n)));

 fprintf(fid,'%g,',factorArr(1:n-1));

 fprintf(fid,'%g\n',factorArr(n));

 gmean(iter) = mean(factorArr(1:n));

 fprintf('Mean30 = %g\n',gmean(iter));

 end

 fprintf(fid,'\n');

 fprintf(fid,'Min,Max,Mean,Sdev,CI Lower, CI Higher\n');

 fprintf(fid,'%g,', min(gmean));

 fprintf(fid,'%g,', max(gmean));

 fprintf(fid,'%g,', mean(gmean));

 fprintf(fid,'%g,', std(gmean));

 SEM = std(gmean)/sqrt(length(gmean)); % Standard Error

 ts = tinv([0.025 0.975],length(gmean)-1); % T-Score

 CI1 = mean(gmean) + ts*SEM;

More PRNGs for Calculators 9

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

 SEM = std(data)/sqrt(length(data)); % Standard Error

 ts = tinv([0.025 0.975],length(data)-1); % T-Score

 CI2 = mean(data) + ts*SEM;

 fprintf(fid,'%g,%g\n', CI1(1), CI1(2));

 fprintf(fid,'%g,', min(data));

 fprintf(fid,'%g,', max(data));

 fprintf(fid,'%g,', mean(data));

 fprintf(fid,'%g,', std(data));

 fprintf(fid,'%g,%g\n', CI2(1), CI2(2));

 fclose(fid);

 msg='Done!';

 for i=1:7

 beep;

 pause(3)

 end

 if bShutDown

 system('shutdown -s')

 end

end

I ran the calculations by calling the doAll() functions with values of 10,000 and

100,000 for the maxElems and countRepeat parameters, respectively.

The doAll() function writes its results to a .csv file. Here is a partial view of the

spreadsheet of such a file:

Method Min Max Mean Sdev CountFailed Mean30 Sdev30 Factors(30)->

r=frac(997/r) 107.094 239.021 147.754 11.7865 0 112.35 2.10703 107.094 109.088

r=frac(997/r) 107.679 680.152 147.77 12.0936 0 112.939 1.88342 107.679 108.666

r=frac(997/r) 106.149 213.683 147.767 11.7797 0 112.634 2.14914 106.149 108.895

r=frac(997/r) 110.175 77859.6 148.526 246.035 0 112.9 1.42358 110.175 110.424

r=frac(997/r) 110.068 495.132 147.714 11.8311 0 113.674 1.14592 110.068 111.573

r=frac(997/r) 108.295 384.061 147.742 11.9036 0 113.015 1.80584 108.295 109.607

r=frac(997/r) 106.288 343.971 147.708 11.765 0 112.552 1.84699 106.288 109.624

r=frac(997/r) 105.72 506.141 147.718 11.7897 0 112.431 2.85629 105.72 106.653

r=frac(997/r) 106.269 218.686 147.726 11.8225 0 112.451 1.74473 106.269 109.187

Min Max Mean Sdev CI Lower CI Higher

112.35 113.674 112.772 0.41572 112.452 113.091

105.72 115.423 112.772 1.94942 112.538 113.005

Figure 1. A partial view of a sample Excel worksheet showing output results.

More PRNGs for Calculators 10

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Figure 1 shows the summary statistics in the last two rows. The first bottom row

shows the statistics of the Mean30 column. The second bottom row shows the

statistics of the 9 sets of best 30 mean penlty factors. The values in the column

Mean are higher than those in column Mean30 because they are based on all the

mean penalty factors and not just the best 30 values. The result in the red font is

the main value of interest for our study.

Legacy Calculator PRNG Algorithm
The study uses the following legacy calculator PRNG as the comparison baseline:

ri+1 = frac(997·ri) (3)

The above algorithm appears in the Stat Pac I (page 04-01 of the pac’s manual) for

the HP-67 programmable calculator. A previous study that I conducted on the same

topic showed that equation (3) performed relatively well (and better than other

simple PRNGs that HP used in their stat pacs) given its simplicity.

New Calculator PRNGs
The PRNGs in this study generally focus on one or more of the following features

used to generate random numbers:

• Explore simple variations of the baseline PRNG, by replacing the integer

997 with other values such as 1003, 9997, 97, and so on. In all cases, the

initial seed MUST HAVE a (significant multidigit) fractional part and

preferably a number greater than 0 and less than 1.

• Using multiple occurrences of a random number in the expressions

generating new random numbers.

• Using two, three, and even five seeds. The PRNGs then tap into the last two,

three, and five random numbers in an arbitrary fashion.

• Using PRNG functions based closely and loosely on the popular Linear

Congruential Methods (LCM) used to generate PRNGs for computers.

• The set before last of PRNGs (equations 39 to 52) tweeks the baseline

PRNG by testing the addition of different fractional parts to the integer 997.

These functions can handle initial seeds (and by mere chance, any random

number) that are positive integers. My hope is that the fine-tuning of the

baseline PRNG would yield an interesting find.

• The last set of PRNG functions (equations 53 to 55) adds π to the current

random number allowing such algorithms to handle initial seeds (and by

More PRNGs for Calculators 11

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

mere chance, any random number) that are non-negative integers. Again, my

hope with this set of algorithms is that the fine-tuning of the baseline PRNG

would yield an interesting find. Stay tuned!

Why so many PRNG algorithms you may ask? Perhaps the answer points us to

Nobel lauriat Linus Pauling who said, “The best way to have a good idea is to have

lots of ideas.”

The Proposed PRNGs
Table 1 shows the list of PRNGs, the first being the the baseline PRNG. The

functions in table 1 are sorted by function/sequence number. Table 2 displays the

functions sorted by their mean penalty factor values. The tables use colored results

to easily classify them. Please read the Notes section that follows this section to

learn about the coloring of the results and the PRNG equations that appear in the

tables.

Folder

Number

PRNG Function Average

Mean30

Eqn Code

0 r = frac(997*r) 112.899

1 r = frac(997/r) 112.772

2 r = frac(9997*r) 112.549

3 r = frac(9997/r) 112.230

4 r = frac(1003*r) 112.345

5 r = frac(1003/r) 112.930

6 r = frac(10003*r) 112.934

7 r = frac(10003/r) 112.536

8 x = frac(abs(pi*(r(i-1)-0.5)))

 r(i) = frac(127/x+x)

112.627 Eqn 8

9 x = frac(abs(pi/2*(r(i-1)-0.5)))

 r(i) = frac(127/x+x)

112.715 Eqn 9

10 x = frac(abs(pi*(r(i-1)-r(i-2))))

 r(i) = frac(127/x+x)

112.863

Eqn 10

11 x = frac(abs(pi/2*(r(i-1)-r(i-2)))

 r(i) = frac(127/x+x)

112.760 Eqn 11

12 x = frac(abs(sin(pi/2*(r(i-1)-0.5))))

r(i) = frac(127/x+x)

112.906 Eqn 12

13 x = frac(abs(sin(pi/2*(r(i-1)-r(i-2)))))

r(i) = frac(127/x+x)

112.586 Eqn 13

14 r=frac(97*r) 113.813

More PRNGs for Calculators 12

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Folder

Number

PRNG Function Average

Mean30

Eqn Code

15 r=frac(103*r) 113.693

16 r=frac(127/r+r,1) 112.669

17 r(i)=frac(127/r(i-1)+r(i-2)) 112.802

18 r(i)=frac(127/r(i-1)+r(i-3)) 112.797

19 r=0.2 + 10*r+120*r^2 + 1200*r^3 118.373 Cubic1

20 r(i) =10*r(i-1) + 123*r(i-2)^2 + 1234*r(i-3)^3 112.826 Cube2

21 r1=frac(997*r)

 r2=frac(1003*r)

 r = frac(127/r1+r2)

112.893 Eqn21

22 r1=frac(997*r(i-1))

 r2=frac(1003*r(i-2))

 r(i) = frac(127/r1+r2)

112.674 Eqn22

23 r(3)=rand

 r(2)=rand

 r(1)=rand

 for i=4:maxElems

 r1 = mod(997*r(i-1),1)

 r2 = mod(1003*r(i-3),1)

 r(i) = mod(127/r1+r2,1)

 end

112.557 Eqn23

24 for i=5:-1:1

 r(i)=rand

 end

 for i=6:maxElems

 if r(i-3)>0.5

 r1 = mod(997*r(i-1),1)

 r2 = mod(1003*r(i-5),1)

 else

 r1 = mod(997*r(i-2),1)

 r2 = mod(1003*r(i-4),1)

 end

 r(i) = mod(127/r1+r2,1)

 end

112.815 Eqn24

25 for j=5:-1:1

 x(j)=rand

end

for j=6:maxElems

112.886 Eqn25

More PRNGs for Calculators 13

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Folder

Number

PRNG Function Average

Mean30

Eqn Code

 if r(j-3)>0.5

 r1 = mod(997*x(j-1),1)

 r2 = mod(997*x(j-5),1)

 else

 r1 = mod(997*x(j-2),1)

 r2 = mod(997*x(j-4),1)

 end

 if r(j-3)<0.5

 x(j) = mod(127/r1+r2,1)

 else

 x(j) = mod(127/r2+r1,1)

 end

end

26 r=frac(0.2+10*sqrt(r)+120*r + 1200*r^1.5) 112.769 ShamPoly1

27 r(i)=frac(10*sqrt(r(i-1)+123*r(i-2)+1234*r(i-

3)^1.5)

112.564 ShamPoly2

28 r=frac(999*r) 112.862

29 r=frac(999.9*r) 112.874

30 r = frac(25214.9039*r+0.31779)) 113.233 LCM101

31 r = frac(65793*r+0.42823) 112.950 LCM102

32 r = frac(168439*r+0.8263247) 113.349 LCM103

33 r=frac(1839*r+0.8347) 112.893 LCM104

34 r(i)=frac(25214.9039*r(i-1)+ 168439*r(i-

2)+0.31779)

112.989 LCM201

35 m=2^24

r = mod(25214903917*r+11,m)/m

112.687 LCM001

36 m=2^13

r=mod(65793*r+4282663,m)/m

114.945 LCM002

37 m=2^23

r=mod(16843009*r+826366247,m)/m

222.700 LCM003

38 r=frac(111111*r) 113.126

39 r=frac(997.1111*r) 112.689

40 r=frac(997.2222*r) 112.842

41 r=frac(997.3333*r) 112.675

42 r=frac(997.4444*r) 112.638

43 r=frac(997.5555*r) 112.609

44 r=frac(997.6666*r) 112.768

More PRNGs for Calculators 14

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Folder

Number

PRNG Function Average

Mean30

Eqn Code

45 r=frac(997.7777*r) 112.578

46 r=frac(997.1234*r) 112.581

47 r=frac(997.2345*r) 113.028

48 r=frac(997.3456*r) 112.412

49 r=frac(997.4567*r) 112.732

50 r=frac(997.5678*r) 112.891

51 r=frac(997.6789*r) 112.793

52 r=frac(997.7890*r) 112.736

53 r=frac(997*(π+r)) 112.660

54 r=frac(1003*(π+r)) 113.06

55 r=frac(9997/ (π +r)) 112.682

Table 1. The list of equations sorted by equation number.

Folder

Number

PRNG Function Average

Mean30

Eqn Code

3 r = frac(9997/r) 112.230

4 r = frac(1003*r) 112.345

48 r=frac(997.3456*r) 112.412

7 r = frac(10003/r) 112.536

2 r = frac(9997*r) 112.549

23 r(3)=rand

 r(2)=rand

 r(1)=rand

 for i=4:maxElems

 r1 = mod(997*r(i-1),1)

 r2 = mod(1003*r(i-3),1)

 r(i) = mod(127/r1+r2,1)

 end

112.557 Eqn23

27 r(i)=frac(10*sqrt(r(i-1)+123*r(i-2)+1234*r(i-

3)^1.5)

112.564 ShamPoly2

45 r=frac(997.7777*r) 112.578

46 r=frac(997.1234*r) 112.581

13 x = frac(abs(sin(pi/2*(r(i-1)-r(i-2)))))

r(i) = frac(127/x+x)

112.586 Eqn 13

43 r=frac(997.5555*r) 112.609

8 x = frac(abs(pi*(r(i-1)-0.5)))

 r(i) = frac(127/x+x)

112.627 Eqn 8

More PRNGs for Calculators 15

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Folder

Number

PRNG Function Average

Mean30

Eqn Code

42 r=frac(997.4444*r) 112.638

53 r=frac(997*(π+r)) 112.660

16 r=frac(127/r+r,1) 112.669

22 r1=frac(997*r(i-1))

 r2=frac(1003*r(i-2))

 r(i) = frac(127/r1+r2)

112.674 Eqn22

41 r=frac(997.3333*r) 112.675

55 r=frac(9997/ (π +r)) 112.682

35 m=2^24

r = mod(25214903917*r+11,m)/m

112.687 LCM001

39 r=frac(997.1111*r) 112.689

9 x = frac(abs(pi/2*(r(i-1)-0.5)))

 r(i) = frac(127/x+x)

112.715 Eqn 9

49 r=frac(997.4567*r) 112.732

52 r=frac(997.7890*r) 112.736

11 x = frac(abs(pi/2*(r(i-1)-r(i-2)))

 r(i) = frac(127/x+x)

112.760 Eqn 11

44 r=frac(997.6666*r) 112.768

26 r=frac(0.2+10*sqrt(r)+120*r + 1200*r^1.5) 112.769 ShamPoly1

1 r = frac(997/r) 112.772

51 r=frac(997.6789*r) 112.793

18 r(i)=frac(127/r(i-1)+r(i-3)) 112.797

17 r(i)=frac(127/r(i-1)+r(i-2)) 112.802

24 for i=5:-1:1

 r(i)=rand

 end

 for i=6:maxElems

 if r(i-3)>0.5

 r1 = mod(997*r(i-1),1)

 r2 = mod(1003*r(i-5),1)

 else

 r1 = mod(997*r(i-2),1)

 r2 = mod(1003*r(i-4),1)

 end

 r(i) = mod(127/r1+r2,1)

 end

112.815 Eqn24

20 r(i) =10*r(i-1) + 123*r(i-2)^2 + 1234*r(i-3)^3 112.826 Cube2

More PRNGs for Calculators 16

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Folder

Number

PRNG Function Average

Mean30

Eqn Code

40 r=frac(997.2222*r) 112.842

28 r=frac(999*r) 112.862

10 x = frac(abs(pi*(r(i-1)-r(i-2))))

 r(i) = frac(127/x+x)

112.863

Eqn 10

29 r=frac(999.9*r) 112.874

25 for j=5:-1:1

 x(j)=rand

end

for j=6:maxElems

 if r(j-3)>0.5

 r1 = mod(997*x(j-1),1)

 r2 = mod(997*x(j-5),1)

 else

 r1 = mod(997*x(j-2),1)

 r2 = mod(997*x(j-4),1)

 end

 if r(j-3)<0.5

 x(j) = mod(127/r1+r2,1)

 else

 x(j) = mod(127/r2+r1,1)

 end

end

112.886 Eqn25

50 r=frac(997.5678*r) 112.891

21 r1=frac(997*r)

 r2=frac(1003*r)

 r = frac(127/r1+r2)

112.893 Eqn21

33 r=frac(1839*r+0.8347) 112.893 LCM104

0 r = frac(997*r) 112.899

12 x = frac(abs(sin(pi/2*(r(i-1)-0.5))))

r(i) = frac(127/x+x)

112.906 Eqn 12

5 r = frac(1003/r) 112.930

6 r = frac(10003*r) 112.934

31 r = frac(65793*r+0.42823) 112.950 LCM102

34 r(i)=frac(25214.9039*r(i-1)+ 168439*r(i-

2)+0.31779)

112.989 LCM201

47 r=frac(997.2345*r) 113.028

54 r=frac(1003*(π+r)) 113.06

More PRNGs for Calculators 17

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Folder

Number

PRNG Function Average

Mean30

Eqn Code

38 r=frac(111111*r) 113.126

30 r = frac(25214.9039*r+0.31779)) 113.233 LCM101

32 r = frac(168439*r+0.8263247) 113.349 LCM103

15 r=frac(103*r) 113.693

14 r=frac(97*r) 113.813

36 m=2^13

r=mod(65793*r+4282663,m)/m

114.945 LCM002

19 r=0.2 + 10*r+120*r^2 + 1200*r^3 118.373 Cubic1

37 m=2^23

r=mod(16843009*r+826366247,m)/m

222.700 LCM003

Table 2. The list of equations sorted by the average Mean30 values.

Notes
Note the following about the tables’ information:

• The tables use named equation codes when the corresponding algorithm

does not use a simple and short equation.

• The blue-colored results are those for values that are close to that of the

baseline PRNG. These values are greater than 112.801 and less than

112.900.

• The red-colored results are those for values that are below the result of the

baseline PRNG. These values are less than 112.800.

• The black-colored results correspond to algorithms that did not perform

better than the baseline PRNG. Their values are equal to or greater than

112.900.

• If an equation uses the variable r without explicit indices means that the r to

the right of the equal sign represents the current random number. The r to the

left of the equal signs represents the new random number.

• The equations in the tables assume that the random numbers are never

actually equal to zero (and neitheir should be their initial seeds).

Conclusions
None of the 55 PRNG algorithms did spectacularly better than the baseline PRNG.

The following three algorithms that did relatively better than the baseline PRNG

are:

More PRNGs for Calculators 18

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

r = frac(9997/r) (4)

And,

r = frac(1003*r) (5)

The third top place goes to the following equation:

r = frac(997.3456*r) (6)

The top three equations require seeds that are positive numbers with a significant

fractional part. One trick you can use to obtain this kind of seed is to calculate the

value of log10(x) where x is greater than 1 and less than 10.

The PRNGs based on the LCM methods did not do well as I hoped they would.

The following PRNG which is similar to the baseline PRN:

r = frac(997/r) (7)

Did slightly better than the baseline PRNG—r=frac(997*r).

Adding π to the current random number did not give a significant improvement.

The same can be said about adding various fractional parts to 997. You can still

use the algorithms that add π to the current random number to protect against

initial seeds (and the very unlikely intermediate random numbers) that are non-

negative integers.

The conclusion of this study, that took a lot of computer time to execute, is

that simplicity wins again! I was hoping that more advanced algorithms show

marked improvement over the baseline PRNG, but that did not happen. I had hopes

that using multiple previous random numbers would add more randomness to the

algorithms. In fact, I had conducted another very time-consuming study of similar

PRNGs which I totally scrubbed. The weakness of that study is that only one batch

of 10000 PRNGs were generated! I became concerned that single mean penalty

factor values were not enough to capture the variation in that statistics. That is why

I redesigned this study to perform nine runs for each PRNG and perform statistics

on the best 270 (= 9 * 30) mean penalty factors.

I would like to apologize in advance if you notice spelling mistakes in this

document. Including many lines of listings seems to disable the MS-Word spell

checkers that decides on its own to give up on spell-checking regular text.

More PRNGs for Calculators 19

Copyright © 2020 by Namir Clement Shammas Version 1.00.00

Document History
Date Version Comments

7/1/2020 1.00.00 Initial release.

