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1/Introduction 
This study looks at simulating data of chemical reactions and performing nonlinear 

curve fitting on that data. Simulating the data for chemical reactions is the first step 

in the studied calculations. It replaces having a real (and very expensive) chemistry 
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laboratory where one studies chemical reactions by measuring the concentration of 

chemicals, at different times, during the progress of a chemical reaction. The second 

step is to perform optimization-based curve fitting for nonlinear models that fit the 

data collected for the chemical reaction. This study looks at general types of 

chemical reactions. 

2/Simulating the Data for Chemical Reactions 
The first step is to simulate the measured concentrations of chemical reactants (and 

sometimes products) involved in chemical reactions. The better scheme of this 

simulation assumes that the concentrations of chemical are measured at time 

intervals that are not necessarily equal. This unequal time intervals mimics real life 

situations where a lab chemist measures concentrations of chemicals at her or his 

own reasonable discretion. 

 

There are two general schemes used to generate simulated concentrations of 

chemicals in chemical reactions. 

2.1/Using Mathematical Models 

The first, and better choice, is to use integrated models that offer a direct way to 

calculate the concentration of a chemical given: 
 

1. The initial concentration of one or more chemicals involved in the chemical 

reactions. 

2. The values of one or more reaction rate constants. 
 

The method starts with an array of time values for which the concentrations are 

measured. This array mimics a timetable used by a lab chemist to measure 

concentrations. Using the integrated equation(s) of the chemical reaction rate 

equation(s), the method calculates the exact values for the concentrations for the 

given timetable. In addition, the method generates another set of concentration 

values that mimics actual values that include some errors in the measurements. Since 

we are simulating such errors, we use a maximum percent of random errors that 

occur in the measurements. These errors are calculated using uniformly distributed 

random errors. You can alter the source code and use normally distributed random 

numbers. Thus, the calculations generate two arrays of concentration values—one 

theoretical and one observed (that includes random errors). 

2.2/Using Numerical Methods for Integrating Ordinary Differential Equations 

The available models for integrating differential equations for chemical reactions 

represent a small fraction of all possible reactions and also the conditions involving 
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the presence or absence of chemicals involved in chemical reactions. Often, the 

integrated models make simplifications (such as the initial absence of one or more 

chemicals involved in the chemical reactions) in order to perform the analytical 

integration of the chemical reaction’s differential equation.  

 

The general approach for calculating the concentration of chemicals uses a good 

numerical method that solves one or more ordinary differential equations (one per 

chemical reaction). You have more flexibility is choosing the initial conditions for 

the differential equations of the chemical reactions. You also have a choice of good 

numerical method for solving one or more ODE. In this study I use the Runge-Kutta-

Fehlberg method. 

 

An important rule to observe in using numerical methods for solving ODEs in the 

value of the increment h used by the numerical method. You need to make sure that 

h is at least 1/10 (or better yet 1/100) the smallest least significant digit. Let me 

explain with an example. If you take measurements at time units (minutes, seconds, 

milliseconds, and so on) of 1.0, 2.1, 3.4, 5.6, and 7.75 then the smallest digit is the 

0.05 in the value 7.75. The increment in time is therefore 0.01 and h is 0.001 or, 

better yet, 0.0001. If the time measurements were at 1.0, 2.2, 3.4, 6, and 7.7, the 

smallest digit is 0.2 in value 2.2. Thus, the normalized time value is 0.1 and h is 0.01 

or 0.001. Also consider time readings of 20, 40, 50, 70 and 90, then the smallest 

normalized time value is 10 in any two-digit value listed. Thus, the value of h is 1 or 

0.1. If we include the value 15 in the last list, then the smallest digit is 1 found in the 

value 15, and h is 0.1 or 0.001. The scheme for calculating the smallest normalized 

increment and h allow you to find values for the concentrations that match the values 

in the array of timed readings. The Appendix, located near the end of this document, 

shows the listing of the MATLAB function findMinDigits which returns the smallest 

digit found in an array of floating-point numbers. 

3/Forming the Optimized Function 
Once you obtain the simulated concentration values, you start the optimization stage. 

This stage needs arrays that define the lower and upper bounds of the variables 

(concentrations and reaction rate constants) involved in the optimization process. 

This process of course needs a function to optimize. The general form for the 

optimized function is: 
 

Function sumErrorsSquared = rf5k(x) 

… 
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Global variables defined here 

A0 = x(1) 

… 

Kr1 = x(n) 

Kr2 = x(n+1) 

… 

End 

 

Function rate=fx(list of parameters) 

… 

rate = expression for the chemical reaction rate 

end 
 

The function rkf5 is a special version of the Runge-Kutta-Fehlberg method (or any 

other good numerical ODE solver you choose). It takes one argument—x the array 

of optimized variables. The function returns the sum of errors squared. The 

optimization algorithm has the task of minimizing the sum of errors squared by fine-

tuning the values in array x. The function rkf5 uses global variables to pass the arrays 

for the measured time values and concentrations. The values of the elements in array 

x are mapped onto local variables (for the concentrations and reaction rate kinetics) 

to make the equations a bit clearer to follow in the code. The rest of the calculations 

in function rkf5 use a loop to iterate over the range of measured time readings. The 

function uses a local helper function, fx, to calculate the reaction rate(s). It is 

important to point out that function fx passes various values for the concentrations 

and reaction rate constants, but never time values! This omission simplifies the 

numerical integration steps in function rkf5. Normally this function calculates 

intermediate values using coefficients k1 through k6 using x and y values (x is time 

and y is a concentration or a concentration fraction). Since function fx does not 

require the values of time, neither do the coefficients k1 through k6. Thus, we 

implement the equations to calculate these coefficients using the concentration 

values and any other values, such as initial reactant concentrations and reaction rate 

constants. You can say that the procedure uses customized numerical ODE solvers 

to calculate coefficients k1 through k6. This customization varies with the particulars 

of each chemical reaction! 

 

As for the optimization method, I recommend an evolutionary-based optimization 

algorithm. There is a vast number of such methods. I have chosen to work with the 

very popular particle swarm optimization (PSO) which MATLAB makes available 

in the Optimization Toolbox. You tell this optimization method which function you 

want to optimize, the arrays that define the lower and upper limits for the optimized 
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variables, the size of the particle swarm population, and the maximum number of 

iterations. Higher values of the last two parameters generally yield better results, 

albeit at the cost of more CPU effort and longer computational time. 

 

I would like to remind you that the evolutionary optimization method I am using 

(and most of them do) relies on generating many random numbers. These random 

numbers will cause the optimization method to generate different results each time 

you execute the calculations. Thus, when you run the various scripts for the different 

chemical reactions, you will see slightly different output. 

 4/Getting on with the Program 
Now that the preliminaries are behind us, you may ask, “What’s next?” I will start 

with a very simple example to show proof of concept. The simple example is a first 

order chemical reaction. Chemists usually use calculators or PC math software, like 

Excel and MATLAB, to perform straightforward linearized regression on the set of 

observed concentration and time readings. These calculations are deterministic and 

do not involve the explicit use of an optimization function that utilizes random 

numbers. However, to show you how the method I am studying works, we will start 

with such a simple example. 

 

  

 Keep in mind that most, if not all, nonlinear curve fitting (for chemical 

reactions) that uses optimization algorithms encounters many local 

minima. These local minima cause the values of the optimized variables to 

fluctuate above and below their theoretical values. 

 

5/First Order Chemical Reaction 
Consider the following first order chemical reaction: 

  

 Depending on the number of optimization variables, the chemical reaction 

differential equation(s), and the errors in the simulated observed variables, 

you may want to run the calculations several times and then average the 

values of the optimization variables. These averages should diverge to the 

true values. 
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A  B 
 

With the chemical reaction rate of: 
 

dA/dt = –k1A          (5.1) 
 

Where t is time, A is the concentration of reactant A, and k1 is the reaction rate 

constant. The analytical solution of the first rate chemical reaction is: 
 

ln(A) = ln(A0) – k1 t         (5.2) 
 

Or, 
 

A = A0 * exp(–k1 t)         (5.3) 
 

Equation 5.2 says that a semi-log plot of A vs t gives an intercept of ln(A0) and a 

slope of minus k1. You can use the intercept to compare the value of the initial 

concentration with measure value. Measuring the initial value of reactant A is not 

required but helps to get an idea about errors. Of course, the regression analysis of 

equation 5.2 also yields the coefficient of determination to examine how much error 

was involved in the measurements of the concentrations. 
 

  

 The MATLAB files mentioned in this section are found in the folder 

\Chemical Reaction Modeling with Optimized ODEs\First Order 

 

The MATLAB function react calculates the theoretical and error-deviating values 

for reactant A, given the values for A0, k1, the array of time, and the maximum 

percent error. 
 

function [Aobs,Ath,tArr] = react(A0,k,tArr,percErr) 

%REACT calculates the array of concentrations for 

% A = B, with rA = -k1*A 

  n = length(tArr); 

  A = zeros(1,n); 

  for i=1:n 

    Ath(i) = A0*exp(-k*tArr(i)); 

    Aobs(i) = Ath(i) * (1+percErr/100*(2*rand-1)); 

  end 

end 

 



Simulating and Fitting Data for Chemical Reactions  7 

 

Copyright© 2019 by Namir Clement Shammas Version 1.0.0 

 

The function react returns the theoretical values of A, the simulated observed values 

of A (given the maximum percent error), and the time array. The function uses 

uniformly distributed random numbers to simulate random errors. Notice that the 

values for array Ath are based on equation 5.3. The statement that calculates the 

values in array Aobs uses the MATLAB function rand to generate uniformly 

distributed random numbers: 
 

Aobs(i) = Ath(i) * (1+percErr/100*(2*rand-1)); 
 

You can alter the above code to replace function rand with randn to use normally 

distributed random numbers: 
 

Aobs(i) = randn(Ath(i), Ath(i) * percErr/100); 
 

The above statement generates values for array Aobs that have a mean of Ath(i) and 

a standard deviation of Ath(i) * percErr/100. 

 

Working in parallel to function react is function rkf5 which yields the calculated 

values of the concentration of reactant A and the sum of errors squared. These errors 

are calculated by comparing the observed and calculated values of A. 
 

function sumSqrErr = rkf5(x) 

% rkf5 implements Runge-Kutta-Fehlberg 

% rkf5 implements Runge-Kutta-Fehlberg 

% A = B, with rA = -k1*A 

  global tData 

  global yData   

  global incr; 

  A0 = x(1); 

  k = x(2); 

  iData = 1;   

  nData = length(tData); 

  h = incr/10; 

  nSteps = fix((tData(nData)-tData(1))/h + 0.5); 

  sumSqrErr = 0; 

  t = tData(1); 

  y = A0; 

  for iter=1:nSteps 

    if t+h > tData(iData) 

      sumSqrErr = sumSqrErr + (y - yData(iData))^2; 

      iData = iData + 1; 

    end 

    k1 = h*fx(y,k); 

    k2 = h*fx(y+k1/4,k); 
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    k3 = h*fx(y+(3*k1+9*k2)/32,k); 

    k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,k); 

    k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-845/4104*k4,k); 

    k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,k); 

    y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 

+ 2/55*k6; 

    t = t + h; 

  end 

end 

 

function y = fx(A,k) 

  y = -k*A; 

end 
 

Function rkf5 has one parameter—the array x which contains the optimization 

variables. The function also accesses the global values for the array of time, tData, 

the array of observed concentrations yData, and the minimum time increment, incr. 

The function copies the values of elements x(1) and x(2) into local variables A0 (the 

initial concentration of reactant A) and k (the reaction rate constant). The function 

calculates the integration step increment h as incr/10. Dividing incr by values one 

or more orders higher than 10 will significantly increase the calculations time. The 

function uses a for loop to obtain the calculated values for the concentration of A. 

The if statement that appears as the first loop statement detects when to compare the 

value of the calculate concentration of A with its observed counterpart. This 

comparison calculates the sum of errors squared. The subsequent statements that 

calculate coefficients k1 through k6 call local function fx and passes two 

arguments—one for the value of the concertation of A (stored in variable y) and the 

reaction rate coefficient k. The function fx calculates the reaction rate using equation 

5.1. Notice that the function fx has no parameter for time since it is not required in 

the calculations of the reaction rate. 

 

The script file go.m is the main function that initializes the theorical and observed 

data and then performs nonlinear curve fitting by using optimization. 
 

% Reaction A = B 

% using rA = -k*A 

clc 

close  

clear all 

global tData 

global yData 
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global incr 

fprintf('A ==> B\n'); 

fprintf('A0 > 0\n'); 

fprintf('Reaction is first order\n'); 

fprintf('Wait please ...\n'); 

A0 = 100; 

k = 0.05; 

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10]; 

incr = findMinDigit(tArr); 

[Aobs,Ath,tArr] = react(A0,k,tArr,10); 

tData = tArr; 

yData = Aobs; 

 

fcn = @rkf5; 

nvars = 2; 

lb = [A0 k]/1.05; 

ub = 1.05^2*lb; 

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub); 

fprintf('\nBest A0=%f, k=%f\n', bestX(1), bestX(2)); 

fprintf('Best fx = %e\n', bestFx); 

% [bestX, bestFx] = scout([50 .01], [200 .1], [10 .01], [.1 

.001], 10000, 100, 50, false, true) 

n = length(tArr); 

Acalc = zeros(n,1); 

for i=1:n 

  Acalc(i) = bestX(1)*exp(-bestX(2)*tArr(i)); 

end   

 

plot(tArr,Ath,tArr,Aobs,'r',tArr,Acalc,'g');  

grid; 

 

for i=1:n 

  err1 = (Acalc(i) - Ath(i))/Ath(i)*100; 

  err2 = (Acalc(i) - Aobs(i))/Aobs(i)*100; 

  fprintf('%f %f %f %f %f\n', Ath(i), Aobs(i), Acalc(i), err1, 

err2); 

end 

fprintf('\n\n'); 

fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(Ath,Acalc)); 

fprintf('R^2 = %f for comparing observed and calculated 

values\n', rsqr(Aobs,Acalc)); 
 

The go script performs the following tasks: 
 

• Declares the global arrays tData and yData to store time and concentration 

values, respectively. The script also declares the global variable incr. 
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• Assigns the values of the initial concentration of reactant A and the reaction 

rate constant to variables A0 and k, respectively. 

• Assigns the time values to array tArr. 

• Calculates the minimum digit in the time array by calling function 

findMinDigit and passing it the argument tArr. The script stores the result of 

this function call in the global variable incr. 

• Calls function react to obtain the values of the theoretical and simulated 

observed values of the concentration of reactant A. The function call stores 

these values in arrays Ath and Aobs, respectively. The arguments for the 

function call are A0, k, tsArr, and 10 (the maximum percentage of error used 

in calculating the observed concentration values). 

• Copies the values of arrays Aobs and tArr into the global arrays tData and 

yData, respectively. 

• Stores the handle of function rkf5 in the variable fcn. 

• Assigns the number of optimization variables, 2, to variable nvars. 

• Assigns values to the arrays lb and ub that store the lower and upper bounds 

of the optimization variables, respectively. 

• Calls the MATLAB function particleswarm to perform particle swarm 

optimization. The arguments for this function call are fcn, nvars, lb, and ub. 

The function particleswarm uses the default particle population and maximum 

number of iterations. The function call stores the values of the best 

optimization variables in array bestX. The call also stores the value of the best 

optimized function in variable bestFx. 

• Displays the values of the optimization variables and bets optimized function 

value stored in array bestX and variable bestFx, respectively. 

• Calculates the estimated concentration values (stored in array Acalc) using a 

for loop. The loop uses the values of array bestX to calculate the values of 

array Acalc. 

• Plots the values in arrays Ath, Aobs, and Acalc. This plot allows you to 

visually compare between the theoretical, observed, and calculated 

concentration values of reactant A. 

• Calculates and displays the array of errors between the theoretical and 

calculated concentration values, and also between the observed and calculated 

concentration values. 
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• Calculates the coefficient determination between the theoretical and 

calculated concentration values, and also between the observed and calculated 

concentration values. 
 

Here is a sample session with the script in file go.m: 
 

A ==> B 

A0 > 0 

Reaction is first order 

Wait please ... 

 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=102.990562, k=0.050538 

Best fx = 3.561682e+02 

100.000000 106.294474 102.990562 2.990562 -3.108263 

94.176453 101.819662 96.930226 2.924056 -4.802055 

89.583414 82.900255 92.153264 2.868668 11.161618 

84.789370 91.799346 87.170066 2.807775 -5.042825 

79.851622 81.965442 82.040665 2.741388 0.091774 

76.720595 70.545207 78.789867 2.697154 11.687060 

73.712337 70.446855 75.667880 2.652938 7.411297 

70.822035 71.486084 72.669600 2.608742 1.655588 

69.767633 76.151466 71.576131 2.592173 -6.008204 

67.368004 73.631726 69.088262 2.553523 -6.170526 

66.697681 62.130398 68.393459 2.542483 10.080509 

64.403642 70.465220 66.016214 2.503852 -6.313761 

62.813511 68.556763 64.368941 2.476267 -6.108547 

60.653066 60.475664 62.131582 2.437661 2.738157 

 

 

R^2 = 0.968644 for comparing theoretical and calculated values 

R^2 = 0.855072 for comparing observed and calculated values 
 

The calculated values for A0 and k are 102.990562 and 0.050538, respectively. They 

are close to the assigned values of A0 = 100 and k = 0.05, respectively. Figure 5.1 

shows the plot generated by the script. The blue line shows the theoretical values of 

the concentration. The green line shows the calculated values of the concentration. 

Both of these curves are smooth. The shift between these two curves is due to the 

influence of the errors in the observed concentration values. These two curves are 

contrasted by the zig zagging red line that represents the observed values of the 

concentration. 
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Figure 5.1. The plot generated for the simple first order reaction A B. 

 

The results generated by the go.m script for the simple first order reaction shows 

that the method of simulating concentration data and performing nonlinear fitting 

using the optimization of ODE solvers works well. 

 

Armed with the above positive conclusion, we venture into more advanced 

chemical reactions. 

6/First Order Chained Chemical Reaction 
Consider the following first order chained chemical reaction: 
 

A  B  C 
 

With the chemical reaction rates of: 
 

dA/dt = –k1A          (6.1) 

dB/dt = k1A – k2B          (6.2) 

dC/dt = k2B           (6.3) 
 

Where t is time, A is the concentration of reactant A, and k1 is the first reaction rate 

constant, B is the concentration of intermediate reactant B, and k2 is the second 

reaction rate constant. C is the concentration of the final product. The analytical 
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solution of the chained chemical reaction (assuming that the initial concentrations 

for reactants B and C are zero) is: 
 

A = A0 * exp(–k1*t)         (6.4)  

B = A0 * k1/(k2 – k1)*(exp(–k1*t) – exp(–k2*t))     (6.5) 

C = A0 – A – B          (6.6) 
 

Equation 6.4 can be solved easily using a linearized regression model that applies 

logarithmic transformations to both left and right sides of the equation. Equation 

6.5 is a nonlinear model and is typically solved using optimized regression with the 

optimized variables A0, k1, and k2. 
 

 FYI 

 If B0 > 0, equation 6.5 becomes: 
 

B = A0 * k1/(k2 – k1)*(exp(–k1*t) – exp(–k2*t)) + B0*exp(–k2*t) 
 

The above equation has started to appear in recently published books 

that deal with reaction kinetics. Equation 6.5 has previously been the 

dominantly popular analytical equation for the chain reaction. 

 

And equation 6.6 becomes: 
 

C = A0 + B0 – A – B 

 

You can find MATLAB files that handle the above case for the 

chained chemical reaction where A0 and B0 are both positive in the 

folder \Chemical Reaction Modeling with Optimized ODEs\Chain 

Reaction First Order  2 Reactions - Ver 2. 

 

  

 The MATLAB files mentioned in this section are found in the folder 

\Chemical Reaction Modeling with Optimized ODEs\Chain Reaction First 

Order  2 Reactions - Ver 1 

 

Armed with the above equations, I present a new version of function react that 

returns the matrices ConcTh and ConcObs. The matrix ConcTh has the theoretical 

values for chemicals A, B, and C, stored in columns 1, 2, and 3, respectively. The 

matrix ConcObs has the simulated observed values for chemicals A, B, and C, 
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stored in columns 1, 2, and 3, respectively. The parameters for the function react 

are A0, k1, k2, tArr, and percErr that pass the initial concentration of chemical A, 

the first reaction rate constant, the second reaction rate constant, the array of time 

values, and the maximum percent error, respectively. Here is the listing for 

function react: 
 

function [ConcObs,ConcTh,tArr] = react(A0,k1,k2,tArr,percErr) 

%REACT calculates teh array of concenrations for 

% A --> B --> C  where B0 = C0 = 0 

  n = length(tArr); 

  ConcTh = zeros(n,3); 

  ConcObs = zeros(n,3); 

  rB = k1/(k2-k1); 

  for i=1:n 

    t = tArr(i); 

    ConcTh(i,1) = A0*exp(-k1*t); 

    ConcTh(i,2) = A0*rB*(exp(-k1*t) - exp(-k2*t)); 

    ConcTh(i,3) = A0 - ConcTh(i,1) - ConcTh(i,2); 

    for j=1:3 

      ConcObs(i,j) = ConcTh(i,j) * (1+percErr/100*(2*rand-1)); 

    end 

  end 

end 
 

The above source code shows how the theoretical values for the concentrations of 

chemicals A, B, and C are calculated using equations 6.4, 6.5, and 6.6, respectively. 

 

Here is the listing for the version of function rkf5 that represents the optimized 

function that is based on a custom version of the Runge-Kutta-Fehlberg method: 
 

function sumSqrErr = rkf5(x) 

% rkf5 implements Runge-Kutta-Fehlberg 

% A --> B --> C  where B0 = C0 = 0 

  global tData 

  global cData   

  global incr; 

  A0 = x(1); 

  kr1 = x(2); 

  kr2 = x(3); 

  iData = 1;   

  nData = length(tData); 

  h = incr/10; 

  nSteps = fix((tData(nData)-tData(1))/h + 0.5); 

  sumSqrErr = 0; 

  t = tData(1); 
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  y = [A0 0]; 

  for iter=1:nSteps 

    if t+h > tData(iData) 

      for j=1:2    

        sumSqrErr = sumSqrErr + (y(j) - cData(iData,j))^2; 

      end 

      iData = iData + 1; 

    end 

    k1 = h*fx(y,kr1,kr2); 

    k2 = h*fx(y+k1/4,kr1,kr2); 

    k3 = h*fx(y+(3*k1+9*k2)/32,kr1,kr2); 

    k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,kr2); 

    k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,kr2); 

    k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,kr2); 

    y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 

+ 2/55*k6; 

    t = t + h; 

  end 

end 

 

function y = fx(x,k1,k2) 

  y(1) = -k1*x(1); 

  y(2) = k1*x(1)-k2*x(2); 

end 
 

The source code of the above version of rkf5 is similar to the first version of rkf5. 

The new version is a bit more elaborate since it is handling a more elaborate set of 

chained chemical reactions. The parameter of function rkf5 is array x that stores 

values for A0, k1, and k2. The function copies the elements of array x into the local 

variables A0, kr1, and kr2, respectively. I inserted the letter r after the letter k to 

make the variables different from the other local variables k1, and k2 that are used 

in the numerical solution of the ODEs. The function accesses the observed 

concentration values using the global matrix cData. The function also accesses the 

time values using the global array tData. Notice that the local function fx returns an 

array of reaction rates calculated based on equations 6.1 and 6.2. Thus, the new 

version of function rkf5 solves a system of two ODEs. 

 

The second version of script go.m deals with the case of the chained reaction. Here 

is the source code for the script in that MATLAB file: 
 

% Chain rection: 

% 
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%   A --> B -- > C 

%    

%   where [A0] > 0, [B0] = 0, and [C0] = 0 

% 

clc 

close all 

clear 

global tData 

global cData % a matrix 

global incr 

fprintf('Reaction: A --> B -- > C\n'); 

fprintf('where [A0] > 0, [B0] = 0, and [C0] = 0\n'); 

fprintf('All reactions are first order\n'); 

fprintf('Please wait ...\n'); 

A0 = 100; 

k1 = 0.5; 

k2 = 0.1; 

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10]; 

incr = findMinDigit(tArr); 

[ConcObs,ConcTh,tArr] = react(A0,k1,k2,tArr,10); 

tData = tArr; 

cData = ConcObs; 

 

fcn = @rkf5; 

nvars = 3; 

lb = [A0 k1 k2]/1.1; 

ub = 1.1^2*lb; 

options = optimoptions('particleswarm', 'SwarmSize', 500, 

'MaxIterations', 5000); 

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options); 

fprintf('\nBest A0=%f, k1=%f k2=%f\n', bestX(1), bestX(2), 

bestX(3)); 

fprintf('Best fx = %e\n', bestFx); 

n = length(tArr); 

ConcCalc = zeros(n,3); 

A00 = bestX(1); 

kk1 = bestX(2); 

kk2 = bestX(3); 

rB = kk1/(kk2-kk1); 

for i=1:n 

  t = tArr(i); 

  ConcCalc(i,1) = A00*exp(-kk1*t); 

  ConcCalc(i,2) = A00*rB*(exp(-kk1*t) - exp(-kk2*t)); 

  ConcCalc(i,3) = A00 - ConcCalc(i,1) - ConcCalc(i,2); 
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end   

 

for j=1:3 

  figure(j) 

  

plot(tArr,ConcTh(:,j),tArr,ConcObs(:,j),'r',tArr,ConcCalc(:,j),'

g');  

  if j == 1 

    title('Concentration of A'); 

  elseif j == 2 

    title('Concentration of B'); 

  else 

    title('Concentration of C'); 

  end 

  xlabel('Time'); 

  ylabel('Concentration'); 

  grid; 

end 

 

figure(4) 

plot(tArr,ConcTh(:,1),tArr,ConcTh(:,2),'r',tArr,ConcTh(:,3),'g')

;  

title('Theoretical concentrations of A, B, and C'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

figure(5) 

plot(tArr,ConcObs(:,1),tArr,ConcObs(:,2),'r',tArr,ConcObs(:,3),'

g');  

title('Observed concentrations of A, B, and C'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

figure(6) 

plot(tArr,ConcCalc(:,1),tArr,ConcCalc(:,2),'r',tArr,ConcCalc(:,3

),'g');  

title('Calculated concentrations of A, B, and C'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

for j =1:3 
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  if j == 1 

    fprintf('For concentration of A\n'); 

  elseif j == 2 

    fprintf('For concentration of B\n'); 

  else 

    fprintf('For concentration of C\n'); 

  end 

  for i=1:n 

    if ConcTh(i,j)~=0 

      err1 = (ConcCalc(i,j) - ConcTh(i,j))/ConcTh(i,j)*100; 

      err2 = (ConcCalc(i,j) - ConcObs(i,j))/ConcObs(i,j)*100; 

      fprintf('%f %f %f %f %f\n', ConcTh(i,j), ConcObs(i,j), 

ConcCalc(i,j), err1, err2); 

    end 

  end 

  fprintf('\n'); 

  fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(ConcTh(:,j),ConcCalc(:,j))); 

  fprintf('R^2 = %f for comparing observed and calculated 

values\n\n', rsqr(ConcObs(:,j),ConcCalc(:,j))); 

end 

  

The go script performs the following tasks: 

• Declares the global array tData and global matrix yData to store time and 

concentration values, respectively. The script also declares the global variable 

incr. 

• Assigns the values of the initial concentration of reactant A and the reaction 

rate constants to variables A0 and k1, and k2, respectively. 

• Assigns the time values to array tArr. 

• Calculates the minimum digit in the time array by calling function 

findMinDigit and passing it the argument tArr. The script stores the result of 

this function call in the global variable incr. 

• Calls function react to obtain the values of the theoretical and simulated 

observed values of the concentration of chemicals A, B, and C. The function 

call stores these values in matrices ConcTh and ConcObs, respectively. The 

arguments for the function call are A0, k1, k2, tsArr, and 0 (the percentage of 

error used in calculating the observed concentration values). 

• Copies the values of matrix Concobs and array tArr into the global variables 

cData and tData respectively. 

• Stores the handle of function rkf5 in variable fcn. 
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• Assigns the number of optimization variables, 3, to variable nvars. 

• Assigns values to the arrays lb and ub that store the lower and upper bounds 

of the optimization variables, respectively. I used special expressions that 

estimate the ranges to be about plus and minus 5% of the actual values of the 

optimization variables. 

• Sets the options for function particleswarm to use 500 particles and a 

maximum number of iterations of 5000. The script stores these options in the 

variable options. 

• Calls the MATLAB function particleswarm to perform particle swarm 

optimization. The arguments for this function call are fcn, nvars, lb, ub, 

options. The function call stores the best optimization variables in array bestX. 

The call also stores the best optimized function in variable bestFx. 

• Displays the values of the optimization variables and bets optimized function 

value stored in array bestX and variable bestFx. 

• Calculates the estimated concentration values (stored in matrix ConcCalc) 

using a for loop. The loop uses the values of array bestX to calculate the values 

of matrix ConcCalc. 

• Performs several plots for the various chemicals. Some of these plots 

compares the concentrations of the chemicals A, B, and C. Other plots are for 

the individual chemicals. 

• Calculates and displays the array of errors between the theoretical and 

calculated concentration values, and also between the observed and calculated 

concentration values. 

• Calculates the coefficient of determination between the theoretical and 

calculated concentration values, and also between the observed and calculated 

concentration values. 
 

Here is a sample session with the script go: 
 

Reaction: A --> B -- > C 

where [A0] > 0, [B0] = 0, and [C0] = 0  

All reactions are first order  

Please wait ... 

 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=99.968911, k1=0.501053 k2=0.099937 

Best fx = 9.395978e-02 
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For concentration of A 

100.000000 100.000000 99.968911 -0.031089 -0.031089 

54.881164 54.881164 54.794842 -0.157288 -0.157288 

33.287108 33.287108 33.199786 -0.262332 -0.262332 

19.204991 19.204991 19.132443 -0.377753 -0.377753 

10.539922 10.539922 10.486852 -0.503514 -0.503514 

7.065121 7.065121 7.023630 -0.587267 -0.587267 

4.735892 4.735892 4.704117 -0.670949 -0.670949 

3.174564 3.174564 3.150610 -0.754561 -0.754561 

2.732372 2.732372 2.710899 -0.785897 -0.785897 

1.925470 1.925470 1.908931 -0.858976 -0.858976 

1.742237 1.742237 1.726908 -0.879846 -0.879846 

1.227734 1.227734 1.216035 -0.952857 -0.952857 

0.956160 0.956160 0.946551 -1.004974 -1.004974 

0.673795 0.673795 0.666532 -1.077892 -1.077892 

 

R^2 = 0.999997 for comparing theoretical and calculated values 

R^2 = 0.999997 for comparing observed and calculated values 

 

For concentration of B 

42.263600 42.263600 42.316545 0.125272 0.125272 

58.705964 58.705964 58.757754 0.088218 0.088218 

65.859228 65.859228 65.895719 0.055407 0.055407 

66.528616 66.528616 66.547402 0.028238 0.028238 

64.744220 64.744220 64.753642 0.014553 0.014553 

61.998993 61.998993 62.001450 0.003962 0.003962 

58.728804 58.728804 58.726502 -0.003919 -0.003919 

57.428567 57.428567 57.424975 -0.006253 -0.006253 

54.323762 54.323762 54.318042 -0.010528 -0.010528 

53.429461 53.429461 53.423332 -0.011472 -0.011472 

50.313196 50.313196 50.306197 -0.013912 -0.013912 

48.124014 48.124014 48.116836 -0.014914 -0.014914 

45.142687 45.142687 45.135725 -0.015423 -0.015423 

 

R^2 = 0.999998 for comparing theoretical and calculated values 

R^2 = 0.999998 for comparing observed and calculated values 

 

For concentration of C 

2.855236 2.855236 2.857524 0.080132 0.080132 

8.006927 8.006927 8.011372 0.055506 0.055506 

14.935781 14.935781 14.940748 0.033258 0.033258 

22.931462 22.931462 22.934656 0.013930 0.013930 

28.190659 28.190659 28.191639 0.003476 0.003476 

33.265114 33.265114 33.263344 -0.005322 -0.005322 

38.096632 38.096632 38.091799 -0.012687 -0.012687 

39.839061 39.839061 39.833037 -0.015122 -0.015122 

43.750768 43.750768 43.741938 -0.020184 -0.020184 
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44.828301 44.828301 44.818670 -0.021483 -0.021483 

48.459070 48.459070 48.446679 -0.025570 -0.025570 

50.919826 50.919826 50.905524 -0.028089 -0.028089 

54.183519 54.183519 54.166654 -0.031124 -0.031124 

 

R^2 = 1.000000 for comparing theoretical and calculated values 

R^2 = 1.000000 for comparing observed and calculated values 

 

The results are A0 = 99.968911, k1 = 0.501053, and k2 = 0.099937. These values 

are very close to the assigned values of A0 = 100, k1 = 0.5, and k2 = 0.1. This is not 

a big surprise since the simulated observed concentrations were calculated using 0% 

error and the trust region (i.e. the lower and upper ranges for the optimization 

variables) is minus and plus 5% of the assigned values. The output tables show that 

the first three columns of the various chemicals in close agreement, Again, this is 

expected in an ideal problem. 

 

Figures 6.1, 6.2, and 6.3 show the theoretical, observed, and calculated 

concentrations for all three chemicals. These figures show the red line representing 

chemical B rise to a maximum in the middle of the observed reaction time. 

 

 
Figure 6.1. The theoretical concentrations of chemicals A, B, and C. 
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Figure 6.2. The observed concentrations of chemicals A, B, and C. 

 
Figure 6.3. The calculated concentrations of chemicals A, B, and C. 

 

Here is the output with a maximum of 10% random errors used in calculating the 

simulated observed concentration values. 
 

Reaction: A --> B -- > C 

where [A0] > 0, [B0] = 0, and [C0] = 0  

All reactions are first order  

Please wait ... 
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Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=99.695925, k1=0.521301 k2=0.099264 

Best fx = 1.886424e+02 

For concentration of A 

100.000000 97.191541 99.695925 -0.304075 2.576751 

54.881164 49.749460 53.333461 -2.820098 7.204100 

33.287108 34.920132 31.666622 -4.868210 -9.317005 

19.204991 20.935836 17.846946 -7.071314 -14.754083 

10.539922 10.647029 9.547425 -9.416552 -10.327803 

7.065121 7.072374 6.291698 -10.947070 -11.038388 

4.735892 4.684190 4.146192 -12.451728 -11.485399 

3.174564 3.462640 2.732316 -13.930962 -21.091533 

2.732372 2.729843 2.336746 -14.479209 -14.399982 

1.925470 1.991316 1.622307 -15.744908 -18.530928 

1.742237 1.902961 1.461684 -16.103084 -23.189006 

1.227734 1.234943 1.014787 -17.344750 -17.827268 

0.956160 0.993462 0.781944 -18.220387 -21.290958 

0.673795 0.675124 0.542872 -19.430718 -19.589378 

 

R^2 = 0.999096 for comparing theoretical and calculated values 

R^2 = 0.995639 for comparing observed and calculated values 

 

For concentration of B 

42.263600 42.442163 43.438382 2.779654 2.347237 

58.705964 59.661405 59.871340 1.985107 0.351877 

65.859228 72.352095 66.702284 1.280088 -7.808772 

66.528616 71.885129 66.987954 0.690437 -6.812501 

64.744220 62.404527 64.995296 0.387797 4.151572 

61.998993 64.655093 62.090408 0.147446 -3.966718 

58.728804 53.049534 58.705880 -0.039035 10.662384 

57.428567 53.426611 57.373024 -0.096716 7.386606 

54.323762 57.987089 54.210546 -0.208410 -6.512732 

53.429461 52.136034 53.303938 -0.234933 2.240110 

50.313196 52.858353 50.156685 -0.311074 -5.111146 

48.124014 46.007028 47.954987 -0.351231 4.234047 

45.142687 43.914989 44.966441 -0.390419 2.394291 

 

R^2 = 0.998948 for comparing theoretical and calculated values 

R^2 = 0.964233 for comparing observed and calculated values 

 

For concentration of C 

2.855236 2.651952 2.924082 2.411212 10.261520 

8.006927 7.678708 8.157963 1.886311 6.241352 

14.935781 15.827193 15.146695 1.412139 -4.299547 
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22.931462 20.677345 23.160546 0.998995 12.009282 

28.190659 27.586918 28.408932 0.774273 2.979724 

33.265114 30.958485 33.459325 0.583827 8.078044 

38.096632 41.269052 38.257729 0.422864 -7.296806 

39.839061 37.625054 39.986154 0.369219 6.275340 

43.750768 45.725945 43.863073 0.256692 -4.073994 

44.828301 47.700689 44.930304 0.227540 -5.807852 

48.459070 46.322729 48.524453 0.134926 4.753011 

50.919826 49.621599 50.958994 0.076920 2.695186 

54.183519 48.773154 54.186612 0.005709 11.099259 

 

R^2 = 0.999934 for comparing theoretical and calculated values 

R^2 = 0.981958 for comparing observed and calculated values 
 

The above output shows the results as A0 = 99.695925, k1 = 0.521301 k2 = 

0.099264. They are close to the theoretical values of A0 = 100, k1 = 0.5, and k2 = 

0.1. These results deviate a bit more than the ones in the first output on account of 

the 10% maximum random error used in obtaining the simulated observed 

concentrations. You can also notice that the set of coefficient of determination values 

for the second output is less than their counterparts in the first output. 

 

Figures 6.4, 6.5, and 6.6 show the theoretical, observed, and calculated 

concentrations for all three chemicals. These figures show the red line representing 

chemical B rise to a maximum in the middle of the observed reaction time. Figure 

6.5 has more zigzags in the curves due to the random errors used in calculating the 

simulated observed concentrations. 
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Figure 6.4. The theoretical concentrations of chemicals A, B, and C. 

 

 
Figure 6.5. The observed concentrations of chemicals A, B, and C. 
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Figure 6.6. The calculated concentrations of chemicals A, B, and C. 

 

Here is a third output set for the chain reaction calculations using 10% maximum 

random error and plus and minus 10% for the upper and lower ranges, respectively. 
 

Reaction: A --> B -- > C 

where [A0] > 0, [B0] = 0, and [C0] = 0  

All reactions are first order  

Please wait ... 

 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=99.676403, k1=0.497518 k2=0.098598 

Best fx = 1.293750e+02 

For concentration of A 

100.000000 103.019324 99.676403 -0.323597 -3.244946 

54.881164 50.365868 54.866729 -0.026302 8.936331 

33.287108 35.576133 33.361046 0.222122 -6.226328 

19.204991 18.793794 19.300267 0.496101 2.694897 

10.539922 11.009150 10.623804 0.795841 -3.500241 

7.065121 7.443516 7.135502 0.996165 -4.138019 

4.735892 4.833154 4.792576 1.196886 -0.839572 

3.174564 3.486609 3.218944 1.398007 -7.676927 

2.732372 2.843656 2.772635 1.473530 -2.497552 

1.925470 1.928535 1.957240 1.649970 1.488404 

1.742237 1.609845 1.771863 1.700437 10.064184 
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1.227734 1.237920 1.250782 1.877271 1.038978 

0.956160 1.004255 0.975319 2.003770 -2.881340 

0.673795 0.686695 0.688491 2.181131 0.261576 

 

R^2 = 0.999987 for comparing theoretical and calculated values 

R^2 = 0.996564 for comparing observed and calculated values 

 

For concentration of B 

42.263600 40.231564 42.013365 -0.592081 4.428864 

58.705964 61.958367 58.464789 -0.410819 -5.638590 

65.859228 60.045716 65.715203 -0.218687 9.441949 

66.528616 68.381529 66.517319 -0.016980 -2.726188 

64.744220 62.752033 64.817665 0.113439 3.291736 

61.998993 62.467556 62.148429 0.241029 -0.510869 

58.728804 57.410698 58.943840 0.366151 2.670482 

57.428567 56.748283 57.665464 0.412508 1.616228 

54.323762 54.771993 54.606037 0.519617 -0.302994 

53.429461 57.637032 53.723308 0.549970 -6.790294 

50.313196 53.532814 50.642967 0.655435 -5.398273 

48.124014 45.575314 48.475372 0.730111 6.363222 

45.142687 43.325327 45.519120 0.833875 5.063534 

 

R^2 = 0.999778 for comparing theoretical and calculated values 

R^2 = 0.974260 for comparing observed and calculated values 

 

For concentration of C 

2.855236 3.009205 2.796308 -2.063852 -7.074847 

8.006927 7.556217 7.850568 -1.952807 3.895474 

14.935781 15.176698 14.660933 -1.840197 -3.398402 

22.931462 23.670604 22.535280 -1.727678 -4.796344 

28.190659 30.489497 27.723237 -1.658076 -9.072829 

33.265114 33.099958 32.735399 -1.592407 -1.101390 

38.096632 40.965723 37.513618 -1.530356 -8.426812 

39.839061 36.343679 39.238304 -1.507960 7.964590 

43.750768 44.106593 43.113126 -1.457443 -2.252424 

44.828301 47.462124 44.181232 -1.443439 -6.912653 

48.459070 46.964872 47.782654 -1.395850 1.741262 

50.919826 53.779690 50.225711 -1.363153 -6.608404 

54.183519 59.490145 53.468792 -1.319086 -10.121598 

 

R^2 = 0.999139 for comparing theoretical and calculated values 

R^2 = 0.980844 for comparing observed and calculated values 
 

The above output shows the results as A0 = 99.676403, k1 = 0.497518, and k2 = 

0.098598. They are still close to the theoretical values of A0 = 100, k1 = 0.5, and k2 



Simulating and Fitting Data for Chemical Reactions  28 

 

Copyright© 2019 by Namir Clement Shammas Version 1.0.0 

 

= 0.1. These results deviate a bit more than the ones in the two outputs on account 

of: 
 

1. The 10% maximum random error used in obtaining the simulated observed 

concentrations. 

2. The plus and minus 10% deviation from the theoretical values used in 

calculating the upper and lower ranges for the optimization variables.  
 

You can also notice that the coefficient of determination values for the third output 

is slightly less than their counterparts in the first two outputs. 

7/Reversible Chemical Reaction: Two Chemicals with First-Second Order 

Reacions 
This section deals with a reversible chemical reaction between compounds A and R: 
 

A  R           (7.1) 
 

The differential equation describing the chemical reaction is: 
 

dA/dt = –k1A + k2R
2         (7.2) 

 

The author Ancheyta[1] has established tables 4.4 and 4.5 in his book to provide 

analytical solutions for several reversible chemical reactions for one or two reactants 

and one or two products. Ancheyta’s Table 4.4 (in his book) shows a set of four 

reversible reactions where the products are initially absent. By contrast, Table 4.5 

(in his book) shows a set of four reversible reactions where the products are initially 

present. I will focus on the case of reversible reactions involving two chemicals. The 

beauty of Ancheyta’s work is that he uses the same set of equations for all eight 

reversible reactions. The only difference between these equations is how some basic 

parameters that Ancheyta calls a, b, and c are calculated. The equations that 

Ancheyta uses are based on xA which is the fraction of remaining reactant A and is 

equal to A/A0. Thus, xA is initially 1. As the reversible reaction proceeds, xA reaches 

an equilibrium value (greater than 0 and less than 1). Mots books that cover chemical 

reaction kinetics use x as the fraction of reactant converted at time t. That version of 

xA is equal to 1 – A/A0. 
 

  

 Table 4.4 and Table 4.5 refer to tables in the book Chemical Reaction 

Kinetics-Concepts, Methods and Case Studies, 2017, by Jorge Ancheyta. 
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John Wiley & Sons Ltd. The information in these tables is most valuable 

in calculating analytical values for the concentrations of chemicals 

involved in various reversible chemical reactions. 

 

The reaction rates for all eight reactions presented by Ancheyta is (I am simplifying 

xA by dropping off the subscript A and just using x): 
 

dx/dt = k1*(a*x2 + b*x + c)        (7.3) 

dA/dt = A0 * dx/dt 
 

For the reaction modeled by equation 7.2, the values for coefficients a, b, and c are 

calculated using the following set of equations: 
 

K = k1/k2           (7.4) 

MRA = R0/A0 

a = A0 / K  

b = –(1 + 2* MRA* A0 / K) 

c = 1 – MRA
2 *A0 / K 

 

Ancheyta presents the following sets of three equations used for all eight reversible 

reactions he covers in Tables 4.4 and Table 4.5. 
 

For b2 > 4*a*c and with D1 = √(b2 –  4*a*c)      (7.5) 

k1 = ln[(2*a*x+Bm)(2*a*x+Bp)*Bp/Bm]/(D1*t) 

Bp = b + D1 

Bm = b - D1 

 

For b2< 4*a*c and with D2 = √(4*a*c – b2) 

 k1 = 2/(D2*t)*[arctan((2*a*x+b)/D2) – arctan(b/D2)] 

 

For b2= 4*a*c   

 k1 = [3*a*x/(b*(2*a*x+b))]/t 
 

While working with the equations in 7.5 may seem a bit intimidating, I was able to 

rewrite and code these equations to be in the form x = f(t,…). 
 

  
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 The MATLAB files mentioned in this section are found in the folder 

\Chemical Reaction Modeling with Optimized ODEs\Second-Second 

Order reversible - Tables 4.4 & 4.5\Table 4.4 Reactions 

 

Here is the source code for the MATLAB function react1 that generates the 

theoretical and observed values of x: 
 

function [Xobs,Xth,tArr] = react1(A0,R0,k1,k2,tArr,percErr) 

%REACT calculates the array of concenration FRACTIONS for 

% A <==> R, with [A0] > 0 and [R0] > 0 

  n = length(tArr); 

  Xth = zeros(1,n); 

  Xobs = Xth; 

  Keq = k1/k2; 

  Mra = R0/A0; 

  a = -A0 / Keq; 

  b = -1 -2*R0/Keq; 

  c = 1 - Mra^2*A0/Keq; 

  if b^2 > 4*a*c 

    D1 = sqrt(b^2 - 4*a*c); 

    K = k1*D1; 

    Bp = b+D1; 

    Bm = b-D1; 

    B1 = Bm/Bp;  

    Cm = Bm/2/a; 

    Cp = Bp/2/a;     

    for i=1:n 

      t = tArr(i); 

      x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1); 

      Xth(i) = x; 

      Xobs(i) = x * (1 + percErr/100*(2*rand-1)); 

    end 

  elseif b^2 < 4*a*c 

    D2 = sqrt(4*a*c - b^2); 

    K = k2*D2/2; 

    for i=1:n 

      t = tArr(i); 

      x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a); 

      Xth(i) = x; 

      Xobs(i) = x * (1 + percErr/100*(2*rand-1)); 

    end     

 

  else 

   for i=1:n 

      t = tArr(i); 

      x = ((k1*t * b)*b/4/a) / (1 - (k1*t * b)/2); 
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      Xth(i) = x; 

      Xobs(i) = x * (1 + percErr/100*(2*rand-1)); 

    end        

  end 

end 
 

The parameters of function react1 are A0, R0, k1, k2, tArr, and percErr. The above 

code is based on equations 7.4 and 7.5. The function returns the arrays Xth and Xobs 

that contain the theoretical and observed values of the x (the fraction of chemical A 

still remaining). 

 

The listing for function rkf5_1 is: 
 

function sumSqrErr = rkf5_1(x) 

% rkf5_1 implements Runge-Kutta-Fehlberg 

%   for A <--> R with dR/dt = k1*A - k2*R 

  global tData 

  global xData   

  global incr 

  A0 = x(1); 

  R0 = x(2); 

  kr1 = x(3); 

  kr2 = x(4); 

  iData = 1;   

  nData = length(tData); 

  h = incr/10; 

  nSteps = fix((tData(nData)-tData(1))/h + 0.5); 

  sumSqrErr = 0; 

  t = tData(1); 

  y = 0; 

  Keq = kr1/kr2; 

  Mra = R0/A0; 

  a = -A0 / Keq; 

  b = -1 -2*R0/Keq; 

  c = 1 - Mra^2*A0/Keq;  

  for iter=1:nSteps 

    if t+h > tData(iData) 

      sumSqrErr = sumSqrErr + (y - xData(iData))^2; 

      iData = iData + 1; 

    end 

    k1 = h*fx(y,kr1,a,b,c); 

    k2 = h*fx(y+k1/4,kr1,a,b,c); 

    k3 = h*fx(y+(3*k1+9*k2)/32,kr1,a,b,c); 

    k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,a,b,c); 

    k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,a,b,c); 
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    k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,a,b,c); 

    y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 

+ 2/55*k6; 

    t = t + h; 

  end 

end 

  

function r = fx(y,k1,a,b,c) 

  r = k1*(a*y^2 + b*y + c); 

end 
 

The above function has a single array-type parameter x. The function copies the 

elements of array x into the local variables A0, R0, kr1, and kr2. The function then 

uses these values to calculate coefficients a, b, c. The local function fx uses these 

coefficients to calculate dx/dt, the normalized reaction rate. The parameters of 

function fx are y, k1, a, b, and c. The code in function fx simply implements equation 

7.3. 

 

The file go1.m drives the calculations for the reversible equation studied in this 

section. Here is the listing for that script file: 
 

% A <==> R, with [A0] > 0 and [R0] = 0 

% (-rA) = k1*A - k2*R^2 

% source of equations is 

% "Chemical Reaction Kinetics=Concepts, Methods and Case 

Studies" 

% by Jorge Ancheyta 

clc 

close  

clear all 

global tData 

global xData 

global incr  

fprintf('A <==> R at (-rA) = k1*A - k2*R^2\n'); 

fprintf('Please wait ...\n'); 

A0 = 1; 

R0 = .0; 

k1 = 0.1; 

k2 = 0.05; 

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10]; 

% tArr = [0 1 2 3 5 7 9 10 12]; 

incr = findMinDigit(tArr); 

[Xobs,Xth,tArr] = react1(A0,R0,k1,k2,tArr,0);  

tData = tArr; 
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xData = Xobs; 

n = length(tArr); 

Ath = A0 * (1-Xth); 

Aobs = A0 * (1-Xobs); 

Rth = (A0+R0) * Xth; 

Robs = (A0+R0) * Xobs; 

fcn = @rkf5_1; 

nvars = 4; 

lb = [A0/1.05 0 k1/1.05 k2/1.05]; 

ub = [A0*1.05 A0 k1*1.05 k2*1.05]; 

Vmax = (ub - lb)/10; 

options = optimoptions('particleswarm', 'SwarmSize', 500, 

'MaxIterations', 5000, ... 

   'DisplayInterval', 100); 

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options); 

% % % tic; 

% % % [bestX,bestFx] = pso(fcn,lb,ub,Vmax,500,5000); 

% % % toc 

fprintf('\nBest A0=%f, R0 =%f, k1=%f, k2=%f\n', bestX(1), 

bestX(2), bestX(3), bestX(4)); 

fprintf('Best fx = %e\n', bestFx); 

fprintf('Estimated xeq = %f\n', newton1(0.5,1e-

6,100,k1/k2,A0,R0/A0)); 

Acalc = zeros(n,1); 

Rcalc = zeros(n,1); 

A00 = bestX(1); 

R00 = bestX(2); 

kk1 = bestX(3); 

kk2 = bestX(4); 

Keq = kk1/kk2; 

Mra = R00/A00; 

a = -A00 / Keq; 

b = -1 -2*R00/Keq; 

c = 1 - Mra^2*A00/Keq; 

if b^2 > 4*a*c 

  D1 = sqrt(b^2 - 4*a*c); 

  K = kk1*D1; 

  Bp = b+D1; 

  Bm = b-D1; 

  B1 = Bm/Bp;  

  Cm = Bm/2/a; 

  Cp = Bp/2/a;     

  for i=1:n 

    t = tArr(i); 

    x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1); 

    Acalc(i) = A00 * (1- x); 

    Rcalc(i) = A00 + R00 - Acalc(i); 
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    Acalc(i) = Acalc(i); % correction 

  end 

elseif b^2 < 4*a*c 

  D2 = sqrt(4*a*c - b^2); 

  K = kk2*D2/2; 

  for i=1:n 

    t = tArr(i); 

    x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a); 

    Acalc(i) = A00 * (1- x); 

    Rcalc(i) = A00 + R00 - Acalc(i); 

    Acalc(i) = Acalc(i); % correction 

  end     

 

else 

 for i=1:n 

    t = tArr(i); 

    x = (kk1*t * b)/2 * x + (kk1*t * b)*b/4/a; 

    Acalc(i) = A00 * (1- x); 

    Rcalc(i) = A00 + R00 - Acalc(i); 

    Acalc(i) = Acalc(i) + A0 - A00; % correction 

  end        

end 

 

 

figure(1) 

plot(tArr,Ath,tArr,Aobs,'r',tArr,Acalc,'g');  

title('Concentration of A'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

figure(2) 

plot(tArr,Rth,tArr,Robs,'r',tArr,Rcalc,'g');  

title('Concentration of R'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

fprintf('For concentration os A\n'); 

for i=1:n 

  if Ath(i)~=0 

    err1 = (Acalc(i) - Ath(i))/Ath(i)*100; 

    err2 = (Acalc(i) - Aobs(i))/Aobs(i)*100; 

    fprintf('%f %f %f %f %f\n', Ath(i), Aobs(i), Acalc(i), err1, 

err2); 

  end 

end 
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fprintf('\n'); 

fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(Ath,Acalc)); 

fprintf('R^2 = %f for comparing observed and calculated 

values\n', rsqr(Aobs,Acalc)); 

 

fprintf('For concentration os R\n'); 

for i=1:n 

  if Rth(i)~=0 

    err1 = (Rcalc(i) - Rth(i))/Rth(i)*100; 

    err2 = (Rcalc(i) - Robs(i))/Robs(i)*100; 

    fprintf('%f %f %f %f %f\n', Rth(i), Robs(i), Rcalc(i), err1, 

err2); 

  end 

end 

fprintf('\n'); 

fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(Rth,Rcalc)); 

fprintf('R^2 = %f for comparing observed and calculated 

values\n', rsqr(Robs,Rcalc)); 
 

The above listing is similar to previous go.m script files that I presented earlier. 

Please notice the following differences: 
 

• The problem has four variables, A0, R0, k1, and k2. The initial value for R0 

is 0. 

• The call to function react1 returns arrays Xth and Xobs. The script uses the 

values in these arrays to calculate values for arrays Ath, Aobs, Rth, and Robs. 

• After calling function particleswarm, the script copies the values of array 

bestX into variables A00, R00, kk1, and kk2. The script uses these values to 

calculate the values for arrays Acalc and Rcalc. 

• The values for parameters a, b, and c that appear in equation set 7.4 are 

calculated in functions react1 and rkf5_1 and also in script go1.m. I usually 

write the MATLAB statements to calculate a, b, and c in function react1 (and 

any other version of react) and then copy (and edit if needed) these statements 

in functions rkf5_1 and script go1 (and any versions of the function and script 

I happen to be working with). 
 

Here is a sample session with script go1.m: 
 

A <==> R at (-rA) = k1*A - k2*R^2 

Please wait ... 

 

Optimization ended: relative change in the objective value  
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over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=0.952705, R0 =0.022754, k1=0.100377, k2=0.048442 

Best fx = 5.251261e-07 

Estimated xeq = 0.666667 

For concentration of A 

1.000000 1.000000 0.952705 -4.729500 -4.729500 

0.887175 0.887175 0.844985 -4.755577 -4.755577 

0.803934 0.803934 0.765667 -4.759970 -4.759970 

0.723172 0.723172 0.688799 -4.753083 -4.753083 

0.647092 0.647092 0.616426 -4.739076 -4.739076 

0.602775 0.602775 0.574266 -4.729692 -4.729692 

0.563143 0.563143 0.536549 -4.722569 -4.722569 

0.527813 0.527813 0.502904 -4.719293 -4.719293 

0.515595 0.515595 0.491263 -4.719315 -4.719315 

0.489124 0.489124 0.466026 -4.722408 -4.722408 

0.482059 0.482059 0.459286 -4.724124 -4.724124 

0.458960 0.458960 0.437236 -4.733196 -4.733196 

0.443919 0.443919 0.422865 -4.742664 -4.742664 

0.424735 0.424735 0.404518 -4.760109 -4.760109 

 

R^2 = 0.969315 for comparing theoretical and calculated values 

R^2 = 0.969315 for comparing observed and calculated values 

For concentration os R 

0.112825 0.112825 0.130474 15.643062 15.643062 

0.196066 0.196066 0.209792 7.000670 7.000670 

0.276828 0.276828 0.286659 3.551635 3.551635 

0.352908 0.352908 0.359033 1.735607 1.735607 

0.397225 0.397225 0.401193 0.999018 0.999018 

0.436857 0.436857 0.438910 0.470121 0.470121 

0.472187 0.472187 0.472555 0.077924 0.077924 

0.484405 0.484405 0.484196 -0.043045 -0.043045 

0.510876 0.510876 0.509433 -0.282387 -0.282387 

0.517941 0.517941 0.516173 -0.341355 -0.341355 

0.541040 0.541040 0.538223 -0.520779 -0.520779 

0.556081 0.556081 0.552594 -0.627159 -0.627159 

0.575265 0.575265 0.570941 -0.751517 -0.751517 

 

R^2 = 0.997065 for comparing theoretical and calculated values 

R^2 = 0.997065 for comparing observed and calculated values 
 

The output shows the results A0 = 0.952705, R0 = 0.022754, k1 = 0.100377, and k2 

= 0.048442. These values are close to the theoretical values A0 = 1, R0 = 0, k1 = 

0.1, and k2 = 0.05. 
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Figure 7.1 and 7.2 show the curves for the theoretical, observed, and calculated 

values for chemicals A and R, respectively. The curves are close since the script is 

using 0% errors. 

 
Figure 7.1. The theoretical, observed, and calculated concentrations of chemical A. 
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Figure 7.2. The theoretical, observed, and calculated concentrations of chemical R. 
 

Adjusting the maximum random errors to 10% in the go1.m script file yields the 

following sample session: 
 

A <==> R at (-rA) = k1*A - k2*R^2 

Please wait ... 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=1.050000, R0 =0.158779, k1=0.105000, k2=0.052500 

Best fx = 7.624325e-03 

Estimated xeq = 0.666667 

For concentration of A 

1.000000 1.000000 1.050000 5.000000 5.000000 

0.887175 0.894700 0.928692 4.679658 3.799219 

0.803934 0.797280 0.841436 4.664799 5.538255 

0.723172 0.701306 0.758876 4.937015 8.208919 

0.647092 0.633141 0.683258 5.589026 7.915596 

0.602775 0.570238 0.640302 6.225655 12.286805 

0.563143 0.604822 0.602646 7.014689 -0.359711 

0.527813 0.566094 0.569740 7.943656 0.644148 

0.515595 0.538617 0.558518 8.324929 3.694971 
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0.489124 0.456429 0.534500 9.277005 17.104735 

0.482059 0.528002 0.528162 9.563710 0.030238 

0.458960 0.498811 0.507663 10.611805 1.774777 

0.443919 0.473858 0.494512 11.397062 4.358769 

0.424735 0.439967 0.477981 12.536277 8.640265 

 

R^2 = 0.935470 for comparing theoretical and calculated values 

R^2 = 0.933682 for comparing observed and calculated values 

For concentration of R 

0.112825 0.105300 0.280087 148.250073 165.991063 

0.196066 0.202720 0.367344 87.357033 81.207731 

0.276828 0.298694 0.449904 62.521328 50.623623 

0.352908 0.366859 0.525521 48.911681 43.248927 

0.397225 0.429762 0.568477 43.112312 32.277259 

0.436857 0.395178 0.606133 38.748782 53.382232 

0.472187 0.433906 0.639039 35.335930 47.275873 

0.484405 0.461383 0.650261 34.239233 40.937242 

0.510876 0.543571 0.674279 31.984932 24.046247 

0.517941 0.471998 0.680618 31.408336 44.199284 

0.541040 0.501189 0.701116 29.586604 39.890435 

0.556081 0.526142 0.714267 28.446501 35.755550 

0.575265 0.560033 0.730798 27.036843 30.491971 

 

R^2 = 0.074024 for comparing theoretical and calculated values 

R^2 = -0.145325 for comparing observed and calculated values 

 

The output shows the results A0 = 1.050000, R0 = 0.158779, k1 = 0.105000, and k2 

= 0.052500. These values are still close to the theoretical values A0 = 1, R0 = 0, k1 

= 0.1, and k2 = 0.05. 

 

Figure 7.3 and 7.4 show the curves for the theoretical, observed, and calculated 

values for chemicals A and R, respectively. The curves show the effect of using 10% 

maximum random error on the red line which represents the observed values. 



Simulating and Fitting Data for Chemical Reactions  40 

 

Copyright© 2019 by Namir Clement Shammas Version 1.0.0 

 

 
Figure 7.3. The theoretical, observed, and calculated concentrations of chemical A. 

 
Figure 7.4. The theoretical, observed, and calculated concentrations of chemical R. 
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8/Reversible Reaction: Two Reactants and Two Products with Second-

Second Order Reactions 
This section deals with a reversible chemical reaction between compounds A, B, R 

and S: 
 

A + B  R + S          (8.1) 
 

The differential equation describing the chemical reaction is: 
 

dA/dt = –k1*A*B + k2*R*S        (8.2) 
 

I again use Ancheyta[1] and he how he models reversible reactions. Again, the rate 

of change in x (the remaining fraction of compound A) is: 

 

dx/dt = k1*(a*x2 + b*x + c)        (8.3) 

 

For the reaction modeled by equation 13, the values for coefficients a, b, and c are 

calculated using the following equations (taken from Tale 4.5[1]): 
 

K = k1/k2  

MRA = R0/A0           (8.4) 

MBA = B0/A0 

MSA = S0/A0 

MBS = B0/S0 

a = A0 * (1 + 1/ K)  

b = –A0 *(1 + MBA + (MRA + MBS) / K)) 

c = A0 *(MBA – MRA * MSA/ K) 
 

  

 The MATLAB files mentioned in this section are found in the folder 

\Chemical Reaction Modeling with Optimized ODEs\Second-Second 

Order reversible - Tables 4.4 & 4.5\Table 4.5 Reactions 

 

The listing of react1 (based on Table 4.5) is: 
 

function [Xobs,Xth,tArr] = 

react1(A0,B0,R0,S0,k1,k2,tArr,percErr) 

%REACT calculates the array of concentration FRACTIONS for 

% A + B <==> R + S, with all chemicals' conc > 0 

% (-rA) = k1*A*B - k2*R*S 
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  n = length(tArr); 

  Xth = zeros(1,n); 

  Xobs = Xth; 

  Keq = k1/k2; 

  Mra = R0/A0; 

  Msa = S0/A0; 

  Mba = B0/A0; 

  Mbs = B0/S0; 

  a = A0 *(1 +  1/Keq); 

  b = -A0*(1 + Mba + (Mra + Mbs)/Keq); 

  c = A0*(Mba - Mra*Msa/Keq); 

  if b^2 > 4*a*c 

    D1 = sqrt(b^2 - 4*a*c); 

    K = k1*D1; 

    Bp = b+D1; 

    Bm = b-D1; 

    B1 = Bm/Bp;  

    Cm = Bm/2/a; 

    Cp = Bp/2/a;     

    for i=1:n 

      t = tArr(i); 

      x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1); 

      Xth(i) = x; 

      Xobs(i) = x * (1 + percErr/100*(2*rand-1)); 

    end 

  elseif b^2 < 4*a*c 

    D2 = sqrt(4*a*c - b^2); 

    K = k2*D2/2; 

    for i=1:n 

      t = tArr(i); 

      x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a); 

      Xth(i) = x; 

      Xobs(i) = x * (1 + percErr/100*(2*rand-1)); 

    end     

  

  else 

   for i=1:n 

      t = tArr(i); 

      x = ((k1*t * b)*b/4/a) / (1 - (k1*t * b)/2); 

      Xth(i) = x; 

      Xobs(i) = x * (1 + percErr/100*(2*rand-1)); 

    end        

  end 

end 

  

The function react1 has six optimization variables that pass as parameters—A0, B0, 

R0, S0, k1, and k2. Other parameters include the usual tArr and percErr. The function 
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react1 implements the equation set 8.4 to calculate the array of x values, Xth and 

Xobs. 
 

The listing of rkf5_1 is: 
 

function sumSqrErr = rkf5_1(x) 

% rkf5_1 implements Runge-Kutta-Fehlberg 

% A + B <==> R + S, with all chemcials's conc > 0 

% (-rA) = k1*A*B - k2*R*S 

  global tData 

  global xData   

  global incr 

  A0 = x(1); 

  B0 = x(2); 

  R0 = x(3); 

  S0 = x(4); 

  kr1 = x(5); 

  kr2 = x(6); 

  iData = 1;   

  nData = length(tData); 

  h = incr/10; 

  nSteps = fix((tData(nData)-tData(1))/h + 0.5); 

  sumSqrErr = 0; 

  t = tData(1); 

  y = 0; 

  Keq = kr1/kr2; 

  Mra = R0/A0; 

  Msa = S0/A0; 

  Mba = B0/A0; 

  Mbs = B0/S0; 

  a = A0 *(1 +  1/Keq); 

  b = -A0*(1 + Mba + (Mra + Mbs)/Keq); 

  c = A0*(Mba - Mra*Msa/Keq); 

  for iter=1:nSteps 

    if t+h > tData(iData) 

      sumSqrErr = sumSqrErr + (y - xData(iData))^2; 

      iData = iData + 1; 

    end 

    k1 = h*fx(y,kr1,a,b,c); 

    k2 = h*fx(y+k1/4,kr1,a,b,c); 

    k3 = h*fx(y+(3*k1+9*k2)/32,kr1,a,b,c); 

    k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,a,b,c); 

    k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,a,b,c); 

    k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,a,b,c); 
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    y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 

+ 2/55*k6; 

    t = t + h; 

  end 

end 

  

function r = fx(y,k1,a,b,c) 

  r = k1*(a*y^2 + b*y + c); 

end 

  

The parameter of the above function is x—an array passing six optimization 

variables. The function copies the elements of array x into the local variables A0, 

B0, R0, S0, kr1, and kr2.  Notice that the local function fx is coded just like the one 

in the last section. 
 

The listing for the script file go1.m, for the reaction examined in this section, is: 
 

% A + B <==> R + S, with all chemicals's conc > 0 

% (-rA) = k1*A*B - k2*R*S 

% source of equations is 

% "Chemical Reaction Kinetics=Concepts, Methods and Case 

Studies" 

% by Jorge Ancheyta 

clc 

close  

clear all 

global tData 

global xData 

global incr 

fprintf('A + B <==> R + S at (-rA) = k1*A*B - k2*R*S\n'); 

fprintf('Please wait ...\n'); 

A0 = 1; 

B0 = 0.8; 

R0 = 0.05; 

S0 = 0.075; 

k1 = 0.1; 

k2 = 0.05; 

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10]; 

% tArr = [0 1 2 3 5 7 9 10 12]; 

incr = findMinDigit(tArr); 

[Xobs,Xth,tArr] = react1(A0,B0,R0,S0,k1,k2,tArr,0); %0 % error 

tData = tArr; 

xData = Xobs; 

n = length(tArr); 

Ath = A0 * (1-Xth); 

Aobs = A0 * (1-Xobs); 
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Rth = (A0+R0) * Xth; 

Robs = (A0+R0) * Xobs; 

fcn = @rkf5_1; 

nvars = 6; 

lb = [A0 B0 R0 S0 k1 k2]/1.05; 

ub = 1.05^2*lb; 

Vmax = (ub - lb)/10; 

options = optimoptions('particleswarm', 'SwarmSize', 500, 

'MaxIterations', 5000, ... 

   'DisplayInterval', 100); 

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options); 

fprintf('\nBest A0=%f, B0=%f\n', bestX(1), bestX(2)); 

fprintf('Best R0=%f, S0=%f\n', bestX(3), bestX(4)); 

fprintf('Best k1=%f, k2=%f\n', bestX(5), bestX(6)); 

fprintf('Best fx = %e\n', bestFx); 

%fprintf('Estimated xeq = %f\n', newton1(0.5,1e-

6,100,k1/k2,A0,R0/A0)); 

Acalc = zeros(n,1); 

Rcalc = zeros(n,1); 

A00 = bestX(1); 

B00 = bestX(2); 

R00 = bestX(3); 

S00 = bestX(4); 

kk1 = bestX(5); 

kk2 = bestX(6); 

Keq = kk1/kk2; 

Mba = B00/A00; 

Mra = R00/A00; 

Msa = S00/A00; 

Mbs = B00/S00; 

a = A00 *(1 +  1/Keq); 

b = -A00*(1 + Mba + (Mra + Mbs)/Keq); 

c = A00*(Mba - Mra*Msa/Keq); 

if  b^2 > 4*a*c 

  D1 = sqrt(b^2 - 4*a*c); 

  K = kk1*D1; 

  Bp = b+D1; 

  Bm = b-D1; 

  B1 = Bm/Bp;  

  Cm = Bm/2/a; 

  Cp = Bp/2/a;     

  for i=1:n 

    t = tArr(i); 

    x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1); 

    Acalc(i) = A00 * (1- x); 

    Rcalc(i) = A00 + R00 - Acalc(i); 

    Acalc(i) = Acalc(i); % correction 
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  end 

elseif  b^2 < 4*a*c 

  D2 = sqrt(4*a*c - b^2); 

  K = kk2*D2/2; 

  for i=1:n 

    t = tArr(i); 

    x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a); 

    Acalc(i) = A00 * (1- x); 

    Rcalc(i) = A00 + R00 - Acalc(i); 

    Acalc(i) = Acalc(i); % correction 

  end     

 

else 

 for i=1:n 

    t = tArr(i); 

    x = (kk1*t * b)/2 * x + (kk1*t * b)*b/4/a; 

    Acalc(i) = A00 * (1- x); 

    Rcalc(i) = A00 + R00 - Acalc(i); 

    Acalc(i) = Acalc(i) + A0 - A00; % correction 

  end        

end 

 

figure(1) 

plot(tArr,Ath,tArr,Aobs,'r',tArr,Acalc,'g');  

title('Concentration of A'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

figure(2) 

plot(tArr,Rth,tArr,Robs,'r',tArr,Rcalc,'g');  

title('Concentration of R'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

fprintf('For concentration of A\n'); 

for i=1:n 

  if Ath(i)~=0 

    err1 = (Acalc(i) - Ath(i))/Ath(i)*100; 

    err2 = (Acalc(i) - Aobs(i))/Aobs(i)*100; 

    fprintf('%f %f %f %f %f\n', Ath(i), Aobs(i), Acalc(i), err1, 

err2); 

  end 

end 

fprintf('\n'); 
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fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(Ath,Acalc)); 

fprintf('R^2 = %f for comparing observed and calculated 

values\n', rsqr(Aobs,Acalc)); 

 

fprintf('For concentration os R\n'); 

for i=1:n 

  if Rth(i)~=0 

    err1 = (Rcalc(i) - Rth(i))/Rth(i)*100; 

    err2 = (Rcalc(i) - Robs(i))/Robs(i)*100; 

    fprintf('%f %f %f %f %f\n', Rth(i), Robs(i), Rcalc(i), err1, 

err2); 

  end 

end 

fprintf('\n'); 

fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(Rth,Rcalc)); 

fprintf('R^2 = %f for comparing observed and calculated 

values\n', rsqr(Robs,Rcalc)); 

 

The code for the above listing is an extended version of the one that appear in the 

last section. The main difference is the presence of data for chemicals B and S. Thus, 

the script in go1.m optimizes a function with six variables. Here is a sample session 

with the script in file go1.m: 
 

A + B <==> R + S at (-rA) = k1*A*B - k2*R*S 

Please wait ... 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=0.952381, B0=0.765337 

Best R0=0.052380, S0=0.071429 

Best k1=0.104966, k2=0.052500 

Best fx = 6.488403e-08 

For concentration of A 

1.000000 1.000000 0.952381 -4.761905 -4.761905 

0.935489 0.935489 0.890792 -4.777914 -4.777914 

0.910784 0.910784 0.867283 -4.776152 -4.776152 

0.897555 0.897555 0.854733 -4.770922 -4.770922 

0.890964 0.890964 0.848501 -4.765920 -4.765920 

0.888779 0.888779 0.846442 -4.763530 -4.763530 

0.887514 0.887514 0.845252 -4.761823 -4.761823 

0.886781 0.886781 0.844564 -4.760648 -4.760648 

0.886594 0.886594 0.844389 -4.760314 -4.760314 

0.886281 0.886281 0.844097 -4.759708 -4.759708 
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0.886216 0.886216 0.844036 -4.759572 -4.759572 

0.886047 0.886047 0.843878 -4.759197 -4.759197 

0.885967 0.885967 0.843804 -4.759004 -4.759004 

0.885892 0.885892 0.843734 -4.758810 -4.758810 

 

R^2 = -0.494633 for comparing theoretical and calculated values 

R^2 = -0.494633 for comparing observed and calculated values 

For concentration os R 

0.067736 0.067736 0.113968 68.252587 68.252587 

0.093677 0.093677 0.137477 46.756613 46.756613 

0.107568 0.107568 0.150028 39.472809 39.472809 

0.114488 0.114488 0.156259 36.485365 36.485365 

0.116782 0.116782 0.158319 35.567899 35.567899 

0.118110 0.118110 0.159509 35.050364 35.050364 

0.118880 0.118880 0.160196 34.754404 34.754404 

0.119077 0.119077 0.160372 34.679294 34.679294 

0.119405 0.119405 0.160664 34.553901 34.553901 

0.119473 0.119473 0.160725 34.527783 34.527783 

0.119651 0.119651 0.160883 34.459903 34.459903 

0.119735 0.119735 0.160957 34.427799 34.427799 

0.119813 0.119813 0.161027 34.397741 34.397741 

 

R^2 = -0.440060 for comparing theoretical and calculated values 

R^2 = -0.440060 for comparing observed and calculated values 
 

The results in the above output show A0 = 0.952381, B0 = 0.765337, R0 = 0.052380, 

S0 = 0.071429, k1 = 0.104966, and k2 = 0.052500. Compare these values with the 

theoretical ones of A0 = 1, B0 = 0.8, R0 = 0.05, S0 = 0.075, k1 = 0.1, and k2 = 0.05. 

The results are close enough. The tabulated values show some deviation between the 

calculated concentrations of the chemicals A and R and their theoretical (and also 

observed counterpart, calculated with 0% error). 

 

Here is another sample output with observed concentrations calculated at 10% 

maximum random error: 
 

A + B <==> R + S at (-rA) = k1*A*B - k2*R*S 

Please wait ... 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=1.028834, B0=0.761905 

Best R0=0.052314, S0=0.078750 

Best k1=0.096000, k2=0.047619 

Best fx = 4.116528e-04 
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For concentration of A 

1.000000 1.000000 1.028834 2.883361 2.883361 

0.935489 0.938118 0.966021 3.263793 2.974432 

0.910784 0.907346 0.940105 3.219295 3.610402 

0.897555 0.906866 0.925239 3.084399 2.025919 

0.890964 0.894640 0.917251 2.950401 2.527323 

0.888779 0.888418 0.914412 2.884086 2.925937 

0.887514 0.898110 0.912678 2.835334 1.622013 

0.886781 0.881662 0.911617 2.800776 3.397572 

0.886594 0.875805 0.911336 2.790745 4.056932 

0.886281 0.880867 0.910851 2.772229 3.403951 

0.886216 0.890544 0.910746 2.767999 2.268495 

0.886047 0.886942 0.910467 2.756117 2.652349 

0.885967 0.881701 0.910330 2.749878 3.246973 

0.885892 0.880606 0.910196 2.743462 3.360247 

 

R^2 = 0.265590 for comparing theoretical and calculated values 

R^2 = 0.274464 for comparing observed and calculated values 

For concentration os R 

0.067736 0.064976 0.115126 69.961921 77.181872 

0.093677 0.097287 0.141043 50.563193 44.976416 

0.107568 0.097790 0.155909 44.940373 59.431965 

0.114488 0.110628 0.163897 43.156370 48.151848 

0.116782 0.117161 0.166735 42.775104 42.312685 

0.118110 0.106984 0.168470 42.637588 57.471882 

0.118880 0.124255 0.169530 42.605897 36.437871 

0.119077 0.130404 0.169811 42.606890 30.219226 

0.119405 0.125090 0.170297 42.621401 36.139371 

0.119473 0.114928 0.170401 42.627157 48.267445 

0.119651 0.118711 0.170681 42.648666 43.778780 

0.119735 0.124214 0.170818 42.663437 37.519311 

0.119813 0.125364 0.170952 42.681538 36.364043 

 

R^2 = -0.591027 for comparing theoretical and calculated values 

R^2 = -0.563634 for comparing observed and calculated values 
 

The above results show A0 = 1.028834, B0 = 0.761905, R0 = 0.052314, S0 = 

0.078750,  k1 = 0.096000, and k2 = 0.047619. These values are still reasonably close 

to the theoretical ones of A0 = 1, B0 = 0.8, R0 = 0.05, S0 = 0.075, k1 = 0.1, and k2 

= 0.05. 

9/Using ODE Solver to Generate Data for Chain Reaction 
Section 6 presented the simple chain reaction that involved thee chemicals and two 

first-order chemical reactions: 

A  B  C 
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With the chemical reaction rates of: 
 

dA/dt = –k1A          (9.1) 

dB/dt = k1A – k2B          (9.2) 

dC/dt = k2B           (9.3) 
 

Where t is time, A is the concentration of reactant A, and k1 is the first reaction rate 

constant, B is the concentration of reactant B, and k2 is the second reaction rate 

constant. This section assumes that we don’t have the analytical solution for the 

above differential equations. The solution would be to use Runge-Kutta-Fehlberg to 

generate the data for the concentration of the chemicals A, B, and C. 
 

  

 The MATLAB files mentioned in this section are found in the folder 

\Chemical Reaction Modeling with Optimized ODEs\Chain Reaction First 

Order 3 Reactions - Ver 1 

 

Here is the listing for the special version of MATLAB function react2: 
 

function [ConcObs,ConcTh,tArr] = 

react2(A0,B0,C0,kr1,kr2,tArr,percErr) 

%REACT calculates the array of concentrations for 

% A --> B --> C  where B0 = C0 = 0 

  global incr 

  n = length(tArr); 

  ConcTh = zeros(n,3); 

  ConcObs = zeros(n,3); 

  iData = 1;   

  h = incr/100; 

  nSteps = fix((tArr(n)-tArr(1))/h + 0.5); 

  t = tArr(1); 

  y = [A0 B0 C0]; 

  for iter=1:nSteps 

    if t+h > tArr(iData) 

      for j=1:3 

        ConcTh(iData,j) = y(j); 

      end 

      iData = iData + 1; 

    end 

    k1 = h*fx(y,kr1,kr2); 

    k2 = h*fx(y+k1/4,kr1,kr2); 

    k3 = h*fx(y+(3*k1+9*k2)/32,kr1,kr2); 

    k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,kr2); 
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    k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,kr2); 

    k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,kr2); 

    y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 

+ 2/55*k6; 

    t = t + h; 

  end 

   

  for j=1:3 

    ConcTh(iData,j) = y(j); 

  end 

 

  for i=1:n 

    for j=1:3 

      ConcObs(i,j) = ConcTh(i,j) * (1+percErr/100*(2*rand-1)); 

    end 

  end 

end 

 

function y = fx(x,k1,k2) 

  y(1) = -k1*x(1); 

  y(2) = k1*x(1)-k2*x(2); 

  y(3) = k2*x(2); 

end 
 

The parameters of function react2 are A0, B0, C0, kr1, kr2, tArr, and percErr. The 

first five parameters are related to the chemical reactions. Function react2 is a special 

version of Runge-Kutta-Fehlberg that generates the concentrations of the chemicals 

A, B, and C. The function react2 returns the matrices ConcTh and ConcObs that 

store the concentrations of chemicals A, B, and C in columns 1, 2, and 3, 

respectively, of these two matrices. Notice that function react2 calculates the 

integration increment, h, as incr/100 and not the usual incr/10 that you see in other 

versions of function react. The reason is two-fold. The first, and main reason, is that 

we need to generate more accurate concentrations values. Second, since the driving 

script calls react2 only once we can afford to have smaller values of h.  

 

The counterpart of function react2 is function rkf5_2, listed next: 
 

function sumSqrErr = rkf5_2(x) 

% rkf5 implements Runge-Kutta-Fehlberg 

% A --> B --> C --> D where B0 = C0 = D0 = 0 

  global tData 

  global cData   



Simulating and Fitting Data for Chemical Reactions  52 

 

Copyright© 2019 by Namir Clement Shammas Version 1.0.0 

 

  global incr; 

  A0 = x(1); 

  B0 = x(2); 

  C0 = x(3); 

  kr1 = x(4); 

  kr2 = x(5); 

  iData = 1;   

  nData = length(tData); 

  h = incr/10; 

  nSteps = fix((tData(nData)-tData(1))/h + 0.5); 

  sumSqrErr = 0; 

  t = tData(1); 

  y = [A0 B0 C0]; 

  for iter=1:nSteps 

    if t+h > tData(iData) 

      for j=1:3   

        sumSqrErr = sumSqrErr + (y(j) - cData(iData,j))^2; 

      end 

      iData = iData + 1; 

    end 

    k1 = h*fx(y,kr1,kr2); 

    k2 = h*fx(y+k1/4,kr1,kr2); 

    k3 = h*fx(y+(3*k1+9*k2)/32,kr1,kr2); 

    k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,kr2); 

    k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,kr2); 

    k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,kr2); 

    y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 

+ 2/55*k6; 

    t = t + h; 

  end 

end 

 

function y = fx(x,k1,k2) 

  y(1) = -k1*x(1); 

  y(2) = k1*x(1)-k2*x(2); 

  y(3) = k2*x(2); 

end 
 

The script go2.m contains the test code: 
 

% Chain rection: 

% 

%   A --> B -- > C --> D 

%    

%   where[A0] > 0, [B0] = 0, [C0] = 0, and [D0] = 0 
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% 

clc 

close all 

clear 

global tData 

global cData % a matrix 

global incr 

 

fprintf('Reaction: A --> B -- > C --> D\n'); 

fprintf('where[A0] > 0, [B0] = 0, [C0] = 0, and [D0] = 0\n'); 

fprintf('All reactions are first order\n'); 

fprintf('Please wait ...\n'); 

A0 = 100; 

k1 = 0.05; 

k2 = 0.5; 

k3 = 2; 

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10]; 

% tArr = [0 1 2 3 5 7 9 10 12]; 

incr = findMinDigit(tArr); 

[ConcObs,ConcTh,tArr] = react(A0,k1,k2,k3,tArr,10); 

tData = tArr; 

cData = ConcObs; 

 

fcn = @rkf5; 

nvars = 4; 

lb = [50 .01 0.1 1]; 

ub = [200 0.1 1 5]; 

options = optimoptions('particleswarm', 'SwarmSize', 500, 

'MaxIterations', 5000, ... 

   'DisplayInterval', 100); 

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options); 

fprintf('\nBest A0=%f, k1=%f, k2=%f, k3=%f\n', bestX(1), 

bestX(2), bestX(3), bestX(4)); 

fprintf('Best fx = %e\n', bestFx); 

% [bestX, bestFx] = scout([50 .01], [200 .1], [10 .01], [.1 

.001], 10000, 100, 50, false, true) 

n = length(tArr); 

ConcCalc = zeros(n,4); 

A00 = bestX(1); 

kk1 = bestX(2); 

kk2 = bestX(3); 

kk3 = bestX(4); 

rB = kk1/(kk2-kk1); 

c0 = kk1*kk2; 

c1 = (kk2-kk1)*(kk3-kk1); 

c2 = (kk1-kk2)*(kk3-kk2); 

c3 = (kk1-kk3)*(kk2-kk3); 
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for i=1:n 

  t = tArr(i); 

  ConcCalc(i,1) = A00*exp(-kk1*t); 

  ConcCalc(i,2) = A00*rB*(exp(-kk1*t) - exp(-kk2*t)); 

  ConcCalc(i,3) = A00*c0*(exp(-kk1*t)/c1 + exp(-kk2*t)/c2 + 

exp(-kk3*t)/c3); 

  ConcCalc(i,4) = A00 - ConcCalc(i,1) - ConcCalc(i,2) - 

ConcCalc(i,3); 

end   

 

for j=1:4 

  figure(j) 

  

plot(tArr,ConcTh(:,j),tArr,ConcObs(:,j),'r',tArr,ConcCalc(:,j),'

g');  

  if j == 1 

    title('Concentration of A'); 

  elseif j == 2 

    title('Concentration of B'); 

  elseif j == 3 

    title('Concentration of C'); 

  else 

    title('Concentration of D'); 

  end 

  xlabel('Time'); 

  ylabel('Concentration'); 

  grid; 

end 

 

figure(5) 

plot(tArr,ConcTh(:,1),tArr,ConcTh(:,2),'r',tArr,ConcTh(:,3),'g',

tArr,ConcTh(:,4),'y');  

title('Theoretical concentrations of A, B, and C'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

figure(6) 

plot(tArr,ConcObs(:,1),tArr,ConcObs(:,2),'r',tArr,ConcObs(:,3),'

g',tArr,ConcObs(:,4),'y');  

title('Observed concentrations of A, B, and C'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

figure(7) 
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plot(tArr,ConcCalc(:,1),tArr,ConcCalc(:,2),'r',tArr,ConcCalc(:,3

),'g',tArr,ConcCalc(:,4),'y');  

title('Calculated concentrations of A, B, and C'); 

xlabel('Time'); 

ylabel('Concentration'); 

grid; 

 

 

for j =1:4 

  if j == 1 

    fprintf('For concentration of A\n'); 

  elseif j == 2 

    fprintf('For concentration of B\n'); 

  elseif j == 3 

    fprintf('For concentration of C\n'); 

  else 

    fprintf('For concentration of D\n');     

  end 

  for i=1:n 

    if ConcTh(i,j)~=0 

      err1 = (ConcCalc(i,j) - ConcTh(i,j))/ConcTh(i,j)*100; 

      err2 = (ConcCalc(i,j) - ConcObs(i,j))/ConcObs(i,j)*100; 

      fprintf('%f %f %f %f %f\n', ConcTh(i,j), ConcObs(i,j), 

ConcCalc(i,j), err1, err2); 

    end 

  end 

  fprintf('\n'); 

  fprintf('R^2 = %f for comparing theoretical and calculated 

values\n', rsqr(ConcTh(:,j),ConcCalc(:,j))); 

  fprintf('R^2 = %f for comparing observed and calculated 

values\n\n', rsqr(ConcObs(:,j),ConcCalc(:,j))); 

end 
 

The above script is like the one in section 6 with the following noted difference. The 

above script calls function react2 twice. The first call returns the theoretical and 

observed concentration values. The second call returns the calculated concentrations 

of the chemicals. The return list contains the matrix ConcDummy. You can replace 

that matrix name with the tilde character (~) to tell MATLAB to discard the returned 

value for the corresponding return parameter. The second call to function react2 is 

necessary since we are not using the analytical equations for the solutions of the 

differential equations. The normal use for this method is for when the analytical 

solutions are not available. 

 

Here is a sample session with the above script: 
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Reaction: A --> B -- > C --> D 

where[A0] > 0, [B0] = 0, [C0] = 0, and [D0] = 0 

All reactions are first order 

Please wait ... 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

Best A0=98.164769, k1=0.525000, B0=21.000000, k2=0.100533, and 

C0 =9.523810 

Best fx = 1.602221e+02 

For concentration of A 

100.000000 97.572487 98.164769 -1.835231 0.607017 

54.881164 51.293188 52.281751 -4.736439 1.927279 

33.287108 31.619224 30.927550 -7.088504 -2.187509 

19.204991 17.988198 17.359630 -9.608758 -3.494335 

10.539922 11.561227 9.245596 -12.280223 -20.029279 

7.068655 6.542167 6.077980 -14.015041 -7.095305 

4.738261 5.083712 3.993517 -15.717658 -21.444851 

3.176151 2.996903 2.623928 -17.386560 -12.445359 

2.733739 2.728553 2.241561 -18.003843 -17.848006 

1.926433 2.030953 1.552199 -19.426293 -23.572877 

1.743109 1.801868 1.397482 -19.828156 -22.442590 

1.228348 1.267552 0.967705 -21.218958 -23.655550 

0.956638 0.966972 0.744288 -22.197592 -23.029003 

0.673795 0.644774 0.515121 -23.549201 -20.108260 

 

R^2 = 0.997788 for comparing theoretical and calculated values 

R^2 = 0.998989 for comparing observed and calculated values 

 

For concentration of B 

20.000000 20.321844 21.000000 5.000000 3.337081 

60.002009 59.349868 61.565267 2.605343 3.732779 

74.756340 81.414332 75.903930 1.535107 -6.768345 

80.237703 84.989672 80.734227 0.618817 -5.007014 

79.281179 74.057905 79.154765 -0.159450 6.882263 

76.520437 75.393722 76.080494 -0.574936 0.910913 

72.870929 74.110641 72.198455 -0.922829 -2.580178 

68.765614 65.759882 67.931453 -1.213049 3.302274 

67.168962 64.023244 66.289753 -1.308952 3.540133 

63.406035 60.165346 62.449351 -1.508822 3.796214 

62.331984 61.780274 61.359395 -1.560337 -0.681250 

58.614102 59.908642 57.603907 -1.723467 -3.847083 

56.020211 56.425835 54.997598 -1.825437 -2.531177 

52.500276 53.510854 51.475953 -1.951080 -3.802782 

 

R^2 = 0.996041 for comparing theoretical and calculated values 
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R^2 = 0.965536 for comparing observed and calculated values 

 

For concentration of C 

10.000000 9.696440 9.523810 -4.761905 -1.780351 

15.116828 14.876896 14.841560 -1.820934 -0.237522 

21.956551 21.438653 21.857098 -0.452954 1.951828 

30.557306 29.192957 30.594721 0.122441 4.801720 

40.178899 41.381369 40.288217 0.272078 -2.641654 

46.410908 47.155129 46.530105 0.256829 -1.325464 

52.390810 52.564667 52.496606 0.201936 -0.129481 

58.058235 58.216840 58.133197 0.129116 -0.143674 

60.097299 60.080603 60.157265 0.099781 0.127598 

64.667532 59.567473 64.687029 0.030149 8.594549 

65.924907 64.916292 65.931701 0.010305 1.564181 

70.157550 73.552919 70.116966 -0.057847 -4.671402 

73.023150 74.060945 72.946693 -0.104703 -1.504507 

76.825930 78.020466 76.697504 -0.167165 -1.695661 

 

R^2 = 0.999940 for comparing theoretical and calculated values 

R^2 = 0.993039 for comparing observed and calculated values 
 

The results show A0 = 98.164769, k1 = 0.525000, B0 = 21.000000, k2 = 0.100533, 

and C0 = 9.523810. These values are close to the actual values of A0 = 100, B0 = 

20, C0 = 10, k1 = 0.5, and k2 = 0.1. Moreover, the correlation coefficients for all the 

tabulated observed and calculated concentrations are close to 1. Thus, using ODE 

solvers to calculate the theoretical and observed concentrations of chemical works 

well. 

 

Figures 9.1, 9.2, and 9.3 show the curves for the theoretical, observed, and calculated 

concentrations of chemicals A, B, and C, respectively. 
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Figure 9.1. The theoretical concentrations of chemicals A, B, and C. 

 
Figure 9.2. The observed concentrations of chemicals A, B, and C. 
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Figure 9.2. The calculated concentrations of chemicals A, B, and C. 

 

10/Conclusion 
The method described in this study can simulate the concentrations of chemicals 

involved in chemical reactions. Once such data is at hand, you can optimize special 

functions that are based on good ODE overs. Of course, the error contaminating data 

plays in important role in the quality of the results. Also affecting the quality of the 

results is the differential models for the chemical reaction, the number of 

optimization variables, the optimization algorithm used, and the parameters used to 

operate the optimization algorithm. 

11/Appendix 
This appendix has the listings of the MATLAB functions findMinDigit and rsqr. 

Here is the listing of function findMinDigit: 
 

function d = findMinDigit(X) 

%FINDMINDIGIT Summary of this function goes here 

%   Detailed explanation goes here 

  d = 1e+99; 

  n = length(X); 

  for i=1:n 

    dd = mindigit(X(i)); 

    if dd < d 

      d = dd; 
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    end 

  end 

end 

 

function d = mindigit(x) 

%MINDIGIT Summary of this function goes here 

%   Detailed explanation goes here 

  if x==0 

    d=1; 

    return; 

  end 

  s = num2str(x); 

  n = length(s); 

  if isempty(strfind(s,'.'))  

    d = 1; 

    i = n; 

    while i>0 && strcmp(s(i),'0') 

      i = i - 1; 

      d = 10*d; 

    end 

  else 

    i = strfind(s,'.'); 

    d = 1/10^(n-i); 

  end 

end 

 

The function findMinDigit and its helper function minDigit find the minimum digit 

by converting reals into strings and attempting to locate the decimal character. If one 

is found, the function minDigit counts, n, the number of digits after the decimal and 

returns 10-n as the answer. If the converted string has no decimal character, the 

function minDigit counts, m, the index of the first non-zero digit scanned from right 

to left. The function returns 10(m-1) as the answer. 

 

Here is the listing of function rsqr which calculates the coefficient of determination 

between two arrays of similar values: 
 

function r = rsqr(y,f) 

%RSQR Summary of this function goes here 

%   Detailed explanation goes here 

 n=length(y); 

 ymean = mean(y); 

 SSres = 0; 

 SStot = 0; 

 for i=1:n 

   SSres = SSres + (y(i) - f(i))^2; 
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   SStot = SStot + (y(i) - ymean)^2; 

 end 

 r = 1 - SSres/SStot; 

end 

12/Files Included 
When you download this document from my website you will also see a link to a zip 

file that contains many sets of MATLAB files. Each set resides in different folders. 

Some similar calculations (like those of Table 4,4 and Table 4.5 in [1]) are placed in 

the same folders 

 

I highly recommend that you get Jorge Ancheyta’s book, Chemical Reaction 

Kinetics-Concepts, Methods and Case Studies. 
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