
Simulating and Fitting Data for Chemical Reactions 1

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Simulating and Fitting Data for Chemical
Reactions

by

Namir Clement Shammas

Contents
1/Introduction ... 1

2/Simulating the Data for Chemical Reactions .. 2

2.1/Using Mathematical Models .. 2

2.2/Using Numerical Methods for Integrating Ordinary Differential Equations .. 2

3/Forming the Optimized Function .. 3

4/Getting on with the Program ... 5

5/First Order Chemical Reaction ... 5

6/First Order Chained Chemical Reaction ...12

7/Reversible Chemical Reaction: Two Chemicals with First-Second Order Reacions

 ..28

8/Reversible Reaction: Two Reactants and Two Products with Second-Second Order

Reactions ..41

9/Using ODE Solver to Generate Data for Chain Reaction49

10/Conclusion ..59

11/Appendix ...59

12/Files Included ..61

13/Book References ...61

Document History ..61

1/Introduction
This study looks at simulating data of chemical reactions and performing nonlinear

curve fitting on that data. Simulating the data for chemical reactions is the first step

in the studied calculations. It replaces having a real (and very expensive) chemistry

Simulating and Fitting Data for Chemical Reactions 2

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

laboratory where one studies chemical reactions by measuring the concentration of

chemicals, at different times, during the progress of a chemical reaction. The second

step is to perform optimization-based curve fitting for nonlinear models that fit the

data collected for the chemical reaction. This study looks at general types of

chemical reactions.

2/Simulating the Data for Chemical Reactions
The first step is to simulate the measured concentrations of chemical reactants (and

sometimes products) involved in chemical reactions. The better scheme of this

simulation assumes that the concentrations of chemical are measured at time

intervals that are not necessarily equal. This unequal time intervals mimics real life

situations where a lab chemist measures concentrations of chemicals at her or his

own reasonable discretion.

There are two general schemes used to generate simulated concentrations of

chemicals in chemical reactions.

2.1/Using Mathematical Models

The first, and better choice, is to use integrated models that offer a direct way to

calculate the concentration of a chemical given:

1. The initial concentration of one or more chemicals involved in the chemical

reactions.

2. The values of one or more reaction rate constants.

The method starts with an array of time values for which the concentrations are

measured. This array mimics a timetable used by a lab chemist to measure

concentrations. Using the integrated equation(s) of the chemical reaction rate

equation(s), the method calculates the exact values for the concentrations for the

given timetable. In addition, the method generates another set of concentration

values that mimics actual values that include some errors in the measurements. Since

we are simulating such errors, we use a maximum percent of random errors that

occur in the measurements. These errors are calculated using uniformly distributed

random errors. You can alter the source code and use normally distributed random

numbers. Thus, the calculations generate two arrays of concentration values—one

theoretical and one observed (that includes random errors).

2.2/Using Numerical Methods for Integrating Ordinary Differential Equations

The available models for integrating differential equations for chemical reactions

represent a small fraction of all possible reactions and also the conditions involving

Simulating and Fitting Data for Chemical Reactions 3

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

the presence or absence of chemicals involved in chemical reactions. Often, the

integrated models make simplifications (such as the initial absence of one or more

chemicals involved in the chemical reactions) in order to perform the analytical

integration of the chemical reaction’s differential equation.

The general approach for calculating the concentration of chemicals uses a good

numerical method that solves one or more ordinary differential equations (one per

chemical reaction). You have more flexibility is choosing the initial conditions for

the differential equations of the chemical reactions. You also have a choice of good

numerical method for solving one or more ODE. In this study I use the Runge-Kutta-

Fehlberg method.

An important rule to observe in using numerical methods for solving ODEs in the

value of the increment h used by the numerical method. You need to make sure that

h is at least 1/10 (or better yet 1/100) the smallest least significant digit. Let me

explain with an example. If you take measurements at time units (minutes, seconds,

milliseconds, and so on) of 1.0, 2.1, 3.4, 5.6, and 7.75 then the smallest digit is the

0.05 in the value 7.75. The increment in time is therefore 0.01 and h is 0.001 or,

better yet, 0.0001. If the time measurements were at 1.0, 2.2, 3.4, 6, and 7.7, the

smallest digit is 0.2 in value 2.2. Thus, the normalized time value is 0.1 and h is 0.01

or 0.001. Also consider time readings of 20, 40, 50, 70 and 90, then the smallest

normalized time value is 10 in any two-digit value listed. Thus, the value of h is 1 or

0.1. If we include the value 15 in the last list, then the smallest digit is 1 found in the

value 15, and h is 0.1 or 0.001. The scheme for calculating the smallest normalized

increment and h allow you to find values for the concentrations that match the values

in the array of timed readings. The Appendix, located near the end of this document,

shows the listing of the MATLAB function findMinDigits which returns the smallest

digit found in an array of floating-point numbers.

3/Forming the Optimized Function
Once you obtain the simulated concentration values, you start the optimization stage.

This stage needs arrays that define the lower and upper bounds of the variables

(concentrations and reaction rate constants) involved in the optimization process.

This process of course needs a function to optimize. The general form for the

optimized function is:

Function sumErrorsSquared = rf5k(x)

…

Simulating and Fitting Data for Chemical Reactions 4

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Global variables defined here

A0 = x(1)

…

Kr1 = x(n)

Kr2 = x(n+1)

…

End

Function rate=fx(list of parameters)

…

rate = expression for the chemical reaction rate

end

The function rkf5 is a special version of the Runge-Kutta-Fehlberg method (or any

other good numerical ODE solver you choose). It takes one argument—x the array

of optimized variables. The function returns the sum of errors squared. The

optimization algorithm has the task of minimizing the sum of errors squared by fine-

tuning the values in array x. The function rkf5 uses global variables to pass the arrays

for the measured time values and concentrations. The values of the elements in array

x are mapped onto local variables (for the concentrations and reaction rate kinetics)

to make the equations a bit clearer to follow in the code. The rest of the calculations

in function rkf5 use a loop to iterate over the range of measured time readings. The

function uses a local helper function, fx, to calculate the reaction rate(s). It is

important to point out that function fx passes various values for the concentrations

and reaction rate constants, but never time values! This omission simplifies the

numerical integration steps in function rkf5. Normally this function calculates

intermediate values using coefficients k1 through k6 using x and y values (x is time

and y is a concentration or a concentration fraction). Since function fx does not

require the values of time, neither do the coefficients k1 through k6. Thus, we

implement the equations to calculate these coefficients using the concentration

values and any other values, such as initial reactant concentrations and reaction rate

constants. You can say that the procedure uses customized numerical ODE solvers

to calculate coefficients k1 through k6. This customization varies with the particulars

of each chemical reaction!

As for the optimization method, I recommend an evolutionary-based optimization

algorithm. There is a vast number of such methods. I have chosen to work with the

very popular particle swarm optimization (PSO) which MATLAB makes available

in the Optimization Toolbox. You tell this optimization method which function you

want to optimize, the arrays that define the lower and upper limits for the optimized

Simulating and Fitting Data for Chemical Reactions 5

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

variables, the size of the particle swarm population, and the maximum number of

iterations. Higher values of the last two parameters generally yield better results,

albeit at the cost of more CPU effort and longer computational time.

I would like to remind you that the evolutionary optimization method I am using

(and most of them do) relies on generating many random numbers. These random

numbers will cause the optimization method to generate different results each time

you execute the calculations. Thus, when you run the various scripts for the different

chemical reactions, you will see slightly different output.

 4/Getting on with the Program
Now that the preliminaries are behind us, you may ask, “What’s next?” I will start

with a very simple example to show proof of concept. The simple example is a first

order chemical reaction. Chemists usually use calculators or PC math software, like

Excel and MATLAB, to perform straightforward linearized regression on the set of

observed concentration and time readings. These calculations are deterministic and

do not involve the explicit use of an optimization function that utilizes random

numbers. However, to show you how the method I am studying works, we will start

with such a simple example.



 Keep in mind that most, if not all, nonlinear curve fitting (for chemical

reactions) that uses optimization algorithms encounters many local

minima. These local minima cause the values of the optimized variables to

fluctuate above and below their theoretical values.

5/First Order Chemical Reaction
Consider the following first order chemical reaction:



 Depending on the number of optimization variables, the chemical reaction

differential equation(s), and the errors in the simulated observed variables,

you may want to run the calculations several times and then average the

values of the optimization variables. These averages should diverge to the

true values.

Simulating and Fitting Data for Chemical Reactions 6

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

A  B

With the chemical reaction rate of:

dA/dt = –k1A (5.1)

Where t is time, A is the concentration of reactant A, and k1 is the reaction rate

constant. The analytical solution of the first rate chemical reaction is:

ln(A) = ln(A0) – k1 t (5.2)

Or,

A = A0 * exp(–k1 t) (5.3)

Equation 5.2 says that a semi-log plot of A vs t gives an intercept of ln(A0) and a

slope of minus k1. You can use the intercept to compare the value of the initial

concentration with measure value. Measuring the initial value of reactant A is not

required but helps to get an idea about errors. Of course, the regression analysis of

equation 5.2 also yields the coefficient of determination to examine how much error

was involved in the measurements of the concentrations.



 The MATLAB files mentioned in this section are found in the folder

\Chemical Reaction Modeling with Optimized ODEs\First Order

The MATLAB function react calculates the theoretical and error-deviating values

for reactant A, given the values for A0, k1, the array of time, and the maximum

percent error.

function [Aobs,Ath,tArr] = react(A0,k,tArr,percErr)

%REACT calculates the array of concentrations for

% A = B, with rA = -k1*A

 n = length(tArr);

 A = zeros(1,n);

 for i=1:n

 Ath(i) = A0*exp(-k*tArr(i));

 Aobs(i) = Ath(i) * (1+percErr/100*(2*rand-1));

 end

end

Simulating and Fitting Data for Chemical Reactions 7

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

The function react returns the theoretical values of A, the simulated observed values

of A (given the maximum percent error), and the time array. The function uses

uniformly distributed random numbers to simulate random errors. Notice that the

values for array Ath are based on equation 5.3. The statement that calculates the

values in array Aobs uses the MATLAB function rand to generate uniformly

distributed random numbers:

Aobs(i) = Ath(i) * (1+percErr/100*(2*rand-1));

You can alter the above code to replace function rand with randn to use normally

distributed random numbers:

Aobs(i) = randn(Ath(i), Ath(i) * percErr/100);

The above statement generates values for array Aobs that have a mean of Ath(i) and

a standard deviation of Ath(i) * percErr/100.

Working in parallel to function react is function rkf5 which yields the calculated

values of the concentration of reactant A and the sum of errors squared. These errors

are calculated by comparing the observed and calculated values of A.

function sumSqrErr = rkf5(x)

% rkf5 implements Runge-Kutta-Fehlberg

% rkf5 implements Runge-Kutta-Fehlberg

% A = B, with rA = -k1*A

 global tData

 global yData

 global incr;

 A0 = x(1);

 k = x(2);

 iData = 1;

 nData = length(tData);

 h = incr/10;

 nSteps = fix((tData(nData)-tData(1))/h + 0.5);

 sumSqrErr = 0;

 t = tData(1);

 y = A0;

 for iter=1:nSteps

 if t+h > tData(iData)

 sumSqrErr = sumSqrErr + (y - yData(iData))^2;

 iData = iData + 1;

 end

 k1 = h*fx(y,k);

 k2 = h*fx(y+k1/4,k);

Simulating and Fitting Data for Chemical Reactions 8

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 k3 = h*fx(y+(3*k1+9*k2)/32,k);

 k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,k);

 k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-845/4104*k4,k);

 k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,k);

 y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5

+ 2/55*k6;

 t = t + h;

 end

end

function y = fx(A,k)

 y = -k*A;

end

Function rkf5 has one parameter—the array x which contains the optimization

variables. The function also accesses the global values for the array of time, tData,

the array of observed concentrations yData, and the minimum time increment, incr.

The function copies the values of elements x(1) and x(2) into local variables A0 (the

initial concentration of reactant A) and k (the reaction rate constant). The function

calculates the integration step increment h as incr/10. Dividing incr by values one

or more orders higher than 10 will significantly increase the calculations time. The

function uses a for loop to obtain the calculated values for the concentration of A.

The if statement that appears as the first loop statement detects when to compare the

value of the calculate concentration of A with its observed counterpart. This

comparison calculates the sum of errors squared. The subsequent statements that

calculate coefficients k1 through k6 call local function fx and passes two

arguments—one for the value of the concertation of A (stored in variable y) and the

reaction rate coefficient k. The function fx calculates the reaction rate using equation

5.1. Notice that the function fx has no parameter for time since it is not required in

the calculations of the reaction rate.

The script file go.m is the main function that initializes the theorical and observed

data and then performs nonlinear curve fitting by using optimization.

% Reaction A = B

% using rA = -k*A

clc

close

clear all

global tData

global yData

Simulating and Fitting Data for Chemical Reactions 9

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

global incr

fprintf('A ==> B\n');

fprintf('A0 > 0\n');

fprintf('Reaction is first order\n');

fprintf('Wait please ...\n');

A0 = 100;

k = 0.05;

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10];

incr = findMinDigit(tArr);

[Aobs,Ath,tArr] = react(A0,k,tArr,10);

tData = tArr;

yData = Aobs;

fcn = @rkf5;

nvars = 2;

lb = [A0 k]/1.05;

ub = 1.05^2*lb;

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub);

fprintf('\nBest A0=%f, k=%f\n', bestX(1), bestX(2));

fprintf('Best fx = %e\n', bestFx);

% [bestX, bestFx] = scout([50 .01], [200 .1], [10 .01], [.1

.001], 10000, 100, 50, false, true)

n = length(tArr);

Acalc = zeros(n,1);

for i=1:n

 Acalc(i) = bestX(1)*exp(-bestX(2)*tArr(i));

end

plot(tArr,Ath,tArr,Aobs,'r',tArr,Acalc,'g');

grid;

for i=1:n

 err1 = (Acalc(i) - Ath(i))/Ath(i)*100;

 err2 = (Acalc(i) - Aobs(i))/Aobs(i)*100;

 fprintf('%f %f %f %f %f\n', Ath(i), Aobs(i), Acalc(i), err1,

err2);

end

fprintf('\n\n');

fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(Ath,Acalc));

fprintf('R^2 = %f for comparing observed and calculated

values\n', rsqr(Aobs,Acalc));

The go script performs the following tasks:

• Declares the global arrays tData and yData to store time and concentration

values, respectively. The script also declares the global variable incr.

Simulating and Fitting Data for Chemical Reactions 10

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

• Assigns the values of the initial concentration of reactant A and the reaction

rate constant to variables A0 and k, respectively.

• Assigns the time values to array tArr.

• Calculates the minimum digit in the time array by calling function

findMinDigit and passing it the argument tArr. The script stores the result of

this function call in the global variable incr.

• Calls function react to obtain the values of the theoretical and simulated

observed values of the concentration of reactant A. The function call stores

these values in arrays Ath and Aobs, respectively. The arguments for the

function call are A0, k, tsArr, and 10 (the maximum percentage of error used

in calculating the observed concentration values).

• Copies the values of arrays Aobs and tArr into the global arrays tData and

yData, respectively.

• Stores the handle of function rkf5 in the variable fcn.

• Assigns the number of optimization variables, 2, to variable nvars.

• Assigns values to the arrays lb and ub that store the lower and upper bounds

of the optimization variables, respectively.

• Calls the MATLAB function particleswarm to perform particle swarm

optimization. The arguments for this function call are fcn, nvars, lb, and ub.

The function particleswarm uses the default particle population and maximum

number of iterations. The function call stores the values of the best

optimization variables in array bestX. The call also stores the value of the best

optimized function in variable bestFx.

• Displays the values of the optimization variables and bets optimized function

value stored in array bestX and variable bestFx, respectively.

• Calculates the estimated concentration values (stored in array Acalc) using a

for loop. The loop uses the values of array bestX to calculate the values of

array Acalc.

• Plots the values in arrays Ath, Aobs, and Acalc. This plot allows you to

visually compare between the theoretical, observed, and calculated

concentration values of reactant A.

• Calculates and displays the array of errors between the theoretical and

calculated concentration values, and also between the observed and calculated

concentration values.

Simulating and Fitting Data for Chemical Reactions 11

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

• Calculates the coefficient determination between the theoretical and

calculated concentration values, and also between the observed and calculated

concentration values.

Here is a sample session with the script in file go.m:

A ==> B

A0 > 0

Reaction is first order

Wait please ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=102.990562, k=0.050538

Best fx = 3.561682e+02

100.000000 106.294474 102.990562 2.990562 -3.108263

94.176453 101.819662 96.930226 2.924056 -4.802055

89.583414 82.900255 92.153264 2.868668 11.161618

84.789370 91.799346 87.170066 2.807775 -5.042825

79.851622 81.965442 82.040665 2.741388 0.091774

76.720595 70.545207 78.789867 2.697154 11.687060

73.712337 70.446855 75.667880 2.652938 7.411297

70.822035 71.486084 72.669600 2.608742 1.655588

69.767633 76.151466 71.576131 2.592173 -6.008204

67.368004 73.631726 69.088262 2.553523 -6.170526

66.697681 62.130398 68.393459 2.542483 10.080509

64.403642 70.465220 66.016214 2.503852 -6.313761

62.813511 68.556763 64.368941 2.476267 -6.108547

60.653066 60.475664 62.131582 2.437661 2.738157

R^2 = 0.968644 for comparing theoretical and calculated values

R^2 = 0.855072 for comparing observed and calculated values

The calculated values for A0 and k are 102.990562 and 0.050538, respectively. They

are close to the assigned values of A0 = 100 and k = 0.05, respectively. Figure 5.1

shows the plot generated by the script. The blue line shows the theoretical values of

the concentration. The green line shows the calculated values of the concentration.

Both of these curves are smooth. The shift between these two curves is due to the

influence of the errors in the observed concentration values. These two curves are

contrasted by the zig zagging red line that represents the observed values of the

concentration.

Simulating and Fitting Data for Chemical Reactions 12

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 5.1. The plot generated for the simple first order reaction A B.

The results generated by the go.m script for the simple first order reaction shows

that the method of simulating concentration data and performing nonlinear fitting

using the optimization of ODE solvers works well.

Armed with the above positive conclusion, we venture into more advanced

chemical reactions.

6/First Order Chained Chemical Reaction
Consider the following first order chained chemical reaction:

A  B  C

With the chemical reaction rates of:

dA/dt = –k1A (6.1)

dB/dt = k1A – k2B (6.2)

dC/dt = k2B (6.3)

Where t is time, A is the concentration of reactant A, and k1 is the first reaction rate

constant, B is the concentration of intermediate reactant B, and k2 is the second

reaction rate constant. C is the concentration of the final product. The analytical

Simulating and Fitting Data for Chemical Reactions 13

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

solution of the chained chemical reaction (assuming that the initial concentrations

for reactants B and C are zero) is:

A = A0 * exp(–k1*t) (6.4)

B = A0 * k1/(k2 – k1)*(exp(–k1*t) – exp(–k2*t)) (6.5)

C = A0 – A – B (6.6)

Equation 6.4 can be solved easily using a linearized regression model that applies

logarithmic transformations to both left and right sides of the equation. Equation

6.5 is a nonlinear model and is typically solved using optimized regression with the

optimized variables A0, k1, and k2.

 FYI

 If B0 > 0, equation 6.5 becomes:

B = A0 * k1/(k2 – k1)*(exp(–k1*t) – exp(–k2*t)) + B0*exp(–k2*t)

The above equation has started to appear in recently published books

that deal with reaction kinetics. Equation 6.5 has previously been the

dominantly popular analytical equation for the chain reaction.

And equation 6.6 becomes:

C = A0 + B0 – A – B

You can find MATLAB files that handle the above case for the

chained chemical reaction where A0 and B0 are both positive in the

folder \Chemical Reaction Modeling with Optimized ODEs\Chain

Reaction First Order 2 Reactions - Ver 2.



 The MATLAB files mentioned in this section are found in the folder

\Chemical Reaction Modeling with Optimized ODEs\Chain Reaction First

Order 2 Reactions - Ver 1

Armed with the above equations, I present a new version of function react that

returns the matrices ConcTh and ConcObs. The matrix ConcTh has the theoretical

values for chemicals A, B, and C, stored in columns 1, 2, and 3, respectively. The

matrix ConcObs has the simulated observed values for chemicals A, B, and C,

Simulating and Fitting Data for Chemical Reactions 14

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

stored in columns 1, 2, and 3, respectively. The parameters for the function react

are A0, k1, k2, tArr, and percErr that pass the initial concentration of chemical A,

the first reaction rate constant, the second reaction rate constant, the array of time

values, and the maximum percent error, respectively. Here is the listing for

function react:

function [ConcObs,ConcTh,tArr] = react(A0,k1,k2,tArr,percErr)

%REACT calculates teh array of concenrations for

% A --> B --> C where B0 = C0 = 0

 n = length(tArr);

 ConcTh = zeros(n,3);

 ConcObs = zeros(n,3);

 rB = k1/(k2-k1);

 for i=1:n

 t = tArr(i);

 ConcTh(i,1) = A0*exp(-k1*t);

 ConcTh(i,2) = A0*rB*(exp(-k1*t) - exp(-k2*t));

 ConcTh(i,3) = A0 - ConcTh(i,1) - ConcTh(i,2);

 for j=1:3

 ConcObs(i,j) = ConcTh(i,j) * (1+percErr/100*(2*rand-1));

 end

 end

end

The above source code shows how the theoretical values for the concentrations of

chemicals A, B, and C are calculated using equations 6.4, 6.5, and 6.6, respectively.

Here is the listing for the version of function rkf5 that represents the optimized

function that is based on a custom version of the Runge-Kutta-Fehlberg method:

function sumSqrErr = rkf5(x)

% rkf5 implements Runge-Kutta-Fehlberg

% A --> B --> C where B0 = C0 = 0

 global tData

 global cData

 global incr;

 A0 = x(1);

 kr1 = x(2);

 kr2 = x(3);

 iData = 1;

 nData = length(tData);

 h = incr/10;

 nSteps = fix((tData(nData)-tData(1))/h + 0.5);

 sumSqrErr = 0;

 t = tData(1);

Simulating and Fitting Data for Chemical Reactions 15

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 y = [A0 0];

 for iter=1:nSteps

 if t+h > tData(iData)

 for j=1:2

 sumSqrErr = sumSqrErr + (y(j) - cData(iData,j))^2;

 end

 iData = iData + 1;

 end

 k1 = h*fx(y,kr1,kr2);

 k2 = h*fx(y+k1/4,kr1,kr2);

 k3 = h*fx(y+(3*k1+9*k2)/32,kr1,kr2);

 k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,kr2);

 k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,kr2);

 k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,kr2);

 y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5

+ 2/55*k6;

 t = t + h;

 end

end

function y = fx(x,k1,k2)

 y(1) = -k1*x(1);

 y(2) = k1*x(1)-k2*x(2);

end

The source code of the above version of rkf5 is similar to the first version of rkf5.

The new version is a bit more elaborate since it is handling a more elaborate set of

chained chemical reactions. The parameter of function rkf5 is array x that stores

values for A0, k1, and k2. The function copies the elements of array x into the local

variables A0, kr1, and kr2, respectively. I inserted the letter r after the letter k to

make the variables different from the other local variables k1, and k2 that are used

in the numerical solution of the ODEs. The function accesses the observed

concentration values using the global matrix cData. The function also accesses the

time values using the global array tData. Notice that the local function fx returns an

array of reaction rates calculated based on equations 6.1 and 6.2. Thus, the new

version of function rkf5 solves a system of two ODEs.

The second version of script go.m deals with the case of the chained reaction. Here

is the source code for the script in that MATLAB file:

% Chain rection:

%

Simulating and Fitting Data for Chemical Reactions 16

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

% A --> B -- > C

%

% where [A0] > 0, [B0] = 0, and [C0] = 0

%

clc

close all

clear

global tData

global cData % a matrix

global incr

fprintf('Reaction: A --> B -- > C\n');

fprintf('where [A0] > 0, [B0] = 0, and [C0] = 0\n');

fprintf('All reactions are first order\n');

fprintf('Please wait ...\n');

A0 = 100;

k1 = 0.5;

k2 = 0.1;

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10];

incr = findMinDigit(tArr);

[ConcObs,ConcTh,tArr] = react(A0,k1,k2,tArr,10);

tData = tArr;

cData = ConcObs;

fcn = @rkf5;

nvars = 3;

lb = [A0 k1 k2]/1.1;

ub = 1.1^2*lb;

options = optimoptions('particleswarm', 'SwarmSize', 500,

'MaxIterations', 5000);

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options);

fprintf('\nBest A0=%f, k1=%f k2=%f\n', bestX(1), bestX(2),

bestX(3));

fprintf('Best fx = %e\n', bestFx);

n = length(tArr);

ConcCalc = zeros(n,3);

A00 = bestX(1);

kk1 = bestX(2);

kk2 = bestX(3);

rB = kk1/(kk2-kk1);

for i=1:n

 t = tArr(i);

 ConcCalc(i,1) = A00*exp(-kk1*t);

 ConcCalc(i,2) = A00*rB*(exp(-kk1*t) - exp(-kk2*t));

 ConcCalc(i,3) = A00 - ConcCalc(i,1) - ConcCalc(i,2);

Simulating and Fitting Data for Chemical Reactions 17

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

end

for j=1:3

 figure(j)

plot(tArr,ConcTh(:,j),tArr,ConcObs(:,j),'r',tArr,ConcCalc(:,j),'

g');

 if j == 1

 title('Concentration of A');

 elseif j == 2

 title('Concentration of B');

 else

 title('Concentration of C');

 end

 xlabel('Time');

 ylabel('Concentration');

 grid;

end

figure(4)

plot(tArr,ConcTh(:,1),tArr,ConcTh(:,2),'r',tArr,ConcTh(:,3),'g')

;

title('Theoretical concentrations of A, B, and C');

xlabel('Time');

ylabel('Concentration');

grid;

figure(5)

plot(tArr,ConcObs(:,1),tArr,ConcObs(:,2),'r',tArr,ConcObs(:,3),'

g');

title('Observed concentrations of A, B, and C');

xlabel('Time');

ylabel('Concentration');

grid;

figure(6)

plot(tArr,ConcCalc(:,1),tArr,ConcCalc(:,2),'r',tArr,ConcCalc(:,3

),'g');

title('Calculated concentrations of A, B, and C');

xlabel('Time');

ylabel('Concentration');

grid;

for j =1:3

Simulating and Fitting Data for Chemical Reactions 18

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 if j == 1

 fprintf('For concentration of A\n');

 elseif j == 2

 fprintf('For concentration of B\n');

 else

 fprintf('For concentration of C\n');

 end

 for i=1:n

 if ConcTh(i,j)~=0

 err1 = (ConcCalc(i,j) - ConcTh(i,j))/ConcTh(i,j)*100;

 err2 = (ConcCalc(i,j) - ConcObs(i,j))/ConcObs(i,j)*100;

 fprintf('%f %f %f %f %f\n', ConcTh(i,j), ConcObs(i,j),

ConcCalc(i,j), err1, err2);

 end

 end

 fprintf('\n');

 fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(ConcTh(:,j),ConcCalc(:,j)));

 fprintf('R^2 = %f for comparing observed and calculated

values\n\n', rsqr(ConcObs(:,j),ConcCalc(:,j)));

end

The go script performs the following tasks:

• Declares the global array tData and global matrix yData to store time and

concentration values, respectively. The script also declares the global variable

incr.

• Assigns the values of the initial concentration of reactant A and the reaction

rate constants to variables A0 and k1, and k2, respectively.

• Assigns the time values to array tArr.

• Calculates the minimum digit in the time array by calling function

findMinDigit and passing it the argument tArr. The script stores the result of

this function call in the global variable incr.

• Calls function react to obtain the values of the theoretical and simulated

observed values of the concentration of chemicals A, B, and C. The function

call stores these values in matrices ConcTh and ConcObs, respectively. The

arguments for the function call are A0, k1, k2, tsArr, and 0 (the percentage of

error used in calculating the observed concentration values).

• Copies the values of matrix Concobs and array tArr into the global variables

cData and tData respectively.

• Stores the handle of function rkf5 in variable fcn.

Simulating and Fitting Data for Chemical Reactions 19

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

• Assigns the number of optimization variables, 3, to variable nvars.

• Assigns values to the arrays lb and ub that store the lower and upper bounds

of the optimization variables, respectively. I used special expressions that

estimate the ranges to be about plus and minus 5% of the actual values of the

optimization variables.

• Sets the options for function particleswarm to use 500 particles and a

maximum number of iterations of 5000. The script stores these options in the

variable options.

• Calls the MATLAB function particleswarm to perform particle swarm

optimization. The arguments for this function call are fcn, nvars, lb, ub,

options. The function call stores the best optimization variables in array bestX.

The call also stores the best optimized function in variable bestFx.

• Displays the values of the optimization variables and bets optimized function

value stored in array bestX and variable bestFx.

• Calculates the estimated concentration values (stored in matrix ConcCalc)

using a for loop. The loop uses the values of array bestX to calculate the values

of matrix ConcCalc.

• Performs several plots for the various chemicals. Some of these plots

compares the concentrations of the chemicals A, B, and C. Other plots are for

the individual chemicals.

• Calculates and displays the array of errors between the theoretical and

calculated concentration values, and also between the observed and calculated

concentration values.

• Calculates the coefficient of determination between the theoretical and

calculated concentration values, and also between the observed and calculated

concentration values.

Here is a sample session with the script go:

Reaction: A --> B -- > C

where [A0] > 0, [B0] = 0, and [C0] = 0

All reactions are first order

Please wait ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=99.968911, k1=0.501053 k2=0.099937

Best fx = 9.395978e-02

Simulating and Fitting Data for Chemical Reactions 20

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

For concentration of A

100.000000 100.000000 99.968911 -0.031089 -0.031089

54.881164 54.881164 54.794842 -0.157288 -0.157288

33.287108 33.287108 33.199786 -0.262332 -0.262332

19.204991 19.204991 19.132443 -0.377753 -0.377753

10.539922 10.539922 10.486852 -0.503514 -0.503514

7.065121 7.065121 7.023630 -0.587267 -0.587267

4.735892 4.735892 4.704117 -0.670949 -0.670949

3.174564 3.174564 3.150610 -0.754561 -0.754561

2.732372 2.732372 2.710899 -0.785897 -0.785897

1.925470 1.925470 1.908931 -0.858976 -0.858976

1.742237 1.742237 1.726908 -0.879846 -0.879846

1.227734 1.227734 1.216035 -0.952857 -0.952857

0.956160 0.956160 0.946551 -1.004974 -1.004974

0.673795 0.673795 0.666532 -1.077892 -1.077892

R^2 = 0.999997 for comparing theoretical and calculated values

R^2 = 0.999997 for comparing observed and calculated values

For concentration of B

42.263600 42.263600 42.316545 0.125272 0.125272

58.705964 58.705964 58.757754 0.088218 0.088218

65.859228 65.859228 65.895719 0.055407 0.055407

66.528616 66.528616 66.547402 0.028238 0.028238

64.744220 64.744220 64.753642 0.014553 0.014553

61.998993 61.998993 62.001450 0.003962 0.003962

58.728804 58.728804 58.726502 -0.003919 -0.003919

57.428567 57.428567 57.424975 -0.006253 -0.006253

54.323762 54.323762 54.318042 -0.010528 -0.010528

53.429461 53.429461 53.423332 -0.011472 -0.011472

50.313196 50.313196 50.306197 -0.013912 -0.013912

48.124014 48.124014 48.116836 -0.014914 -0.014914

45.142687 45.142687 45.135725 -0.015423 -0.015423

R^2 = 0.999998 for comparing theoretical and calculated values

R^2 = 0.999998 for comparing observed and calculated values

For concentration of C

2.855236 2.855236 2.857524 0.080132 0.080132

8.006927 8.006927 8.011372 0.055506 0.055506

14.935781 14.935781 14.940748 0.033258 0.033258

22.931462 22.931462 22.934656 0.013930 0.013930

28.190659 28.190659 28.191639 0.003476 0.003476

33.265114 33.265114 33.263344 -0.005322 -0.005322

38.096632 38.096632 38.091799 -0.012687 -0.012687

39.839061 39.839061 39.833037 -0.015122 -0.015122

43.750768 43.750768 43.741938 -0.020184 -0.020184

Simulating and Fitting Data for Chemical Reactions 21

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

44.828301 44.828301 44.818670 -0.021483 -0.021483

48.459070 48.459070 48.446679 -0.025570 -0.025570

50.919826 50.919826 50.905524 -0.028089 -0.028089

54.183519 54.183519 54.166654 -0.031124 -0.031124

R^2 = 1.000000 for comparing theoretical and calculated values

R^2 = 1.000000 for comparing observed and calculated values

The results are A0 = 99.968911, k1 = 0.501053, and k2 = 0.099937. These values

are very close to the assigned values of A0 = 100, k1 = 0.5, and k2 = 0.1. This is not

a big surprise since the simulated observed concentrations were calculated using 0%

error and the trust region (i.e. the lower and upper ranges for the optimization

variables) is minus and plus 5% of the assigned values. The output tables show that

the first three columns of the various chemicals in close agreement, Again, this is

expected in an ideal problem.

Figures 6.1, 6.2, and 6.3 show the theoretical, observed, and calculated

concentrations for all three chemicals. These figures show the red line representing

chemical B rise to a maximum in the middle of the observed reaction time.

Figure 6.1. The theoretical concentrations of chemicals A, B, and C.

Simulating and Fitting Data for Chemical Reactions 22

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 6.2. The observed concentrations of chemicals A, B, and C.

Figure 6.3. The calculated concentrations of chemicals A, B, and C.

Here is the output with a maximum of 10% random errors used in calculating the

simulated observed concentration values.

Reaction: A --> B -- > C

where [A0] > 0, [B0] = 0, and [C0] = 0

All reactions are first order

Please wait ...

Simulating and Fitting Data for Chemical Reactions 23

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=99.695925, k1=0.521301 k2=0.099264

Best fx = 1.886424e+02

For concentration of A

100.000000 97.191541 99.695925 -0.304075 2.576751

54.881164 49.749460 53.333461 -2.820098 7.204100

33.287108 34.920132 31.666622 -4.868210 -9.317005

19.204991 20.935836 17.846946 -7.071314 -14.754083

10.539922 10.647029 9.547425 -9.416552 -10.327803

7.065121 7.072374 6.291698 -10.947070 -11.038388

4.735892 4.684190 4.146192 -12.451728 -11.485399

3.174564 3.462640 2.732316 -13.930962 -21.091533

2.732372 2.729843 2.336746 -14.479209 -14.399982

1.925470 1.991316 1.622307 -15.744908 -18.530928

1.742237 1.902961 1.461684 -16.103084 -23.189006

1.227734 1.234943 1.014787 -17.344750 -17.827268

0.956160 0.993462 0.781944 -18.220387 -21.290958

0.673795 0.675124 0.542872 -19.430718 -19.589378

R^2 = 0.999096 for comparing theoretical and calculated values

R^2 = 0.995639 for comparing observed and calculated values

For concentration of B

42.263600 42.442163 43.438382 2.779654 2.347237

58.705964 59.661405 59.871340 1.985107 0.351877

65.859228 72.352095 66.702284 1.280088 -7.808772

66.528616 71.885129 66.987954 0.690437 -6.812501

64.744220 62.404527 64.995296 0.387797 4.151572

61.998993 64.655093 62.090408 0.147446 -3.966718

58.728804 53.049534 58.705880 -0.039035 10.662384

57.428567 53.426611 57.373024 -0.096716 7.386606

54.323762 57.987089 54.210546 -0.208410 -6.512732

53.429461 52.136034 53.303938 -0.234933 2.240110

50.313196 52.858353 50.156685 -0.311074 -5.111146

48.124014 46.007028 47.954987 -0.351231 4.234047

45.142687 43.914989 44.966441 -0.390419 2.394291

R^2 = 0.998948 for comparing theoretical and calculated values

R^2 = 0.964233 for comparing observed and calculated values

For concentration of C

2.855236 2.651952 2.924082 2.411212 10.261520

8.006927 7.678708 8.157963 1.886311 6.241352

14.935781 15.827193 15.146695 1.412139 -4.299547

Simulating and Fitting Data for Chemical Reactions 24

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

22.931462 20.677345 23.160546 0.998995 12.009282

28.190659 27.586918 28.408932 0.774273 2.979724

33.265114 30.958485 33.459325 0.583827 8.078044

38.096632 41.269052 38.257729 0.422864 -7.296806

39.839061 37.625054 39.986154 0.369219 6.275340

43.750768 45.725945 43.863073 0.256692 -4.073994

44.828301 47.700689 44.930304 0.227540 -5.807852

48.459070 46.322729 48.524453 0.134926 4.753011

50.919826 49.621599 50.958994 0.076920 2.695186

54.183519 48.773154 54.186612 0.005709 11.099259

R^2 = 0.999934 for comparing theoretical and calculated values

R^2 = 0.981958 for comparing observed and calculated values

The above output shows the results as A0 = 99.695925, k1 = 0.521301 k2 =

0.099264. They are close to the theoretical values of A0 = 100, k1 = 0.5, and k2 =

0.1. These results deviate a bit more than the ones in the first output on account of

the 10% maximum random error used in obtaining the simulated observed

concentrations. You can also notice that the set of coefficient of determination values

for the second output is less than their counterparts in the first output.

Figures 6.4, 6.5, and 6.6 show the theoretical, observed, and calculated

concentrations for all three chemicals. These figures show the red line representing

chemical B rise to a maximum in the middle of the observed reaction time. Figure

6.5 has more zigzags in the curves due to the random errors used in calculating the

simulated observed concentrations.

Simulating and Fitting Data for Chemical Reactions 25

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 6.4. The theoretical concentrations of chemicals A, B, and C.

Figure 6.5. The observed concentrations of chemicals A, B, and C.

Simulating and Fitting Data for Chemical Reactions 26

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 6.6. The calculated concentrations of chemicals A, B, and C.

Here is a third output set for the chain reaction calculations using 10% maximum

random error and plus and minus 10% for the upper and lower ranges, respectively.

Reaction: A --> B -- > C

where [A0] > 0, [B0] = 0, and [C0] = 0

All reactions are first order

Please wait ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=99.676403, k1=0.497518 k2=0.098598

Best fx = 1.293750e+02

For concentration of A

100.000000 103.019324 99.676403 -0.323597 -3.244946

54.881164 50.365868 54.866729 -0.026302 8.936331

33.287108 35.576133 33.361046 0.222122 -6.226328

19.204991 18.793794 19.300267 0.496101 2.694897

10.539922 11.009150 10.623804 0.795841 -3.500241

7.065121 7.443516 7.135502 0.996165 -4.138019

4.735892 4.833154 4.792576 1.196886 -0.839572

3.174564 3.486609 3.218944 1.398007 -7.676927

2.732372 2.843656 2.772635 1.473530 -2.497552

1.925470 1.928535 1.957240 1.649970 1.488404

1.742237 1.609845 1.771863 1.700437 10.064184

Simulating and Fitting Data for Chemical Reactions 27

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

1.227734 1.237920 1.250782 1.877271 1.038978

0.956160 1.004255 0.975319 2.003770 -2.881340

0.673795 0.686695 0.688491 2.181131 0.261576

R^2 = 0.999987 for comparing theoretical and calculated values

R^2 = 0.996564 for comparing observed and calculated values

For concentration of B

42.263600 40.231564 42.013365 -0.592081 4.428864

58.705964 61.958367 58.464789 -0.410819 -5.638590

65.859228 60.045716 65.715203 -0.218687 9.441949

66.528616 68.381529 66.517319 -0.016980 -2.726188

64.744220 62.752033 64.817665 0.113439 3.291736

61.998993 62.467556 62.148429 0.241029 -0.510869

58.728804 57.410698 58.943840 0.366151 2.670482

57.428567 56.748283 57.665464 0.412508 1.616228

54.323762 54.771993 54.606037 0.519617 -0.302994

53.429461 57.637032 53.723308 0.549970 -6.790294

50.313196 53.532814 50.642967 0.655435 -5.398273

48.124014 45.575314 48.475372 0.730111 6.363222

45.142687 43.325327 45.519120 0.833875 5.063534

R^2 = 0.999778 for comparing theoretical and calculated values

R^2 = 0.974260 for comparing observed and calculated values

For concentration of C

2.855236 3.009205 2.796308 -2.063852 -7.074847

8.006927 7.556217 7.850568 -1.952807 3.895474

14.935781 15.176698 14.660933 -1.840197 -3.398402

22.931462 23.670604 22.535280 -1.727678 -4.796344

28.190659 30.489497 27.723237 -1.658076 -9.072829

33.265114 33.099958 32.735399 -1.592407 -1.101390

38.096632 40.965723 37.513618 -1.530356 -8.426812

39.839061 36.343679 39.238304 -1.507960 7.964590

43.750768 44.106593 43.113126 -1.457443 -2.252424

44.828301 47.462124 44.181232 -1.443439 -6.912653

48.459070 46.964872 47.782654 -1.395850 1.741262

50.919826 53.779690 50.225711 -1.363153 -6.608404

54.183519 59.490145 53.468792 -1.319086 -10.121598

R^2 = 0.999139 for comparing theoretical and calculated values

R^2 = 0.980844 for comparing observed and calculated values

The above output shows the results as A0 = 99.676403, k1 = 0.497518, and k2 =

0.098598. They are still close to the theoretical values of A0 = 100, k1 = 0.5, and k2

Simulating and Fitting Data for Chemical Reactions 28

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

= 0.1. These results deviate a bit more than the ones in the two outputs on account

of:

1. The 10% maximum random error used in obtaining the simulated observed

concentrations.

2. The plus and minus 10% deviation from the theoretical values used in

calculating the upper and lower ranges for the optimization variables.

You can also notice that the coefficient of determination values for the third output

is slightly less than their counterparts in the first two outputs.

7/Reversible Chemical Reaction: Two Chemicals with First-Second Order

Reacions
This section deals with a reversible chemical reaction between compounds A and R:

A  R (7.1)

The differential equation describing the chemical reaction is:

dA/dt = –k1A + k2R
2 (7.2)

The author Ancheyta[1] has established tables 4.4 and 4.5 in his book to provide

analytical solutions for several reversible chemical reactions for one or two reactants

and one or two products. Ancheyta’s Table 4.4 (in his book) shows a set of four

reversible reactions where the products are initially absent. By contrast, Table 4.5

(in his book) shows a set of four reversible reactions where the products are initially

present. I will focus on the case of reversible reactions involving two chemicals. The

beauty of Ancheyta’s work is that he uses the same set of equations for all eight

reversible reactions. The only difference between these equations is how some basic

parameters that Ancheyta calls a, b, and c are calculated. The equations that

Ancheyta uses are based on xA which is the fraction of remaining reactant A and is

equal to A/A0. Thus, xA is initially 1. As the reversible reaction proceeds, xA reaches

an equilibrium value (greater than 0 and less than 1). Mots books that cover chemical

reaction kinetics use x as the fraction of reactant converted at time t. That version of

xA is equal to 1 – A/A0.



 Table 4.4 and Table 4.5 refer to tables in the book Chemical Reaction

Kinetics-Concepts, Methods and Case Studies, 2017, by Jorge Ancheyta.

Simulating and Fitting Data for Chemical Reactions 29

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

John Wiley & Sons Ltd. The information in these tables is most valuable

in calculating analytical values for the concentrations of chemicals

involved in various reversible chemical reactions.

The reaction rates for all eight reactions presented by Ancheyta is (I am simplifying

xA by dropping off the subscript A and just using x):

dx/dt = k1*(a*x2 + b*x + c) (7.3)

dA/dt = A0 * dx/dt

For the reaction modeled by equation 7.2, the values for coefficients a, b, and c are

calculated using the following set of equations:

K = k1/k2 (7.4)

MRA = R0/A0

a = A0 / K

b = –(1 + 2* MRA* A0 / K)

c = 1 – MRA
2 *A0 / K

Ancheyta presents the following sets of three equations used for all eight reversible

reactions he covers in Tables 4.4 and Table 4.5.

For b2 > 4*a*c and with D1 = √(b2 – 4*a*c) (7.5)

k1 = ln[(2*a*x+Bm)(2*a*x+Bp)*Bp/Bm]/(D1*t)

Bp = b + D1

Bm = b - D1

For b2< 4*a*c and with D2 = √(4*a*c – b2)

 k1 = 2/(D2*t)*[arctan((2*a*x+b)/D2) – arctan(b/D2)]

For b2= 4*a*c

 k1 = [3*a*x/(b*(2*a*x+b))]/t

While working with the equations in 7.5 may seem a bit intimidating, I was able to

rewrite and code these equations to be in the form x = f(t,…).



Simulating and Fitting Data for Chemical Reactions 30

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 The MATLAB files mentioned in this section are found in the folder

\Chemical Reaction Modeling with Optimized ODEs\Second-Second

Order reversible - Tables 4.4 & 4.5\Table 4.4 Reactions

Here is the source code for the MATLAB function react1 that generates the

theoretical and observed values of x:

function [Xobs,Xth,tArr] = react1(A0,R0,k1,k2,tArr,percErr)

%REACT calculates the array of concenration FRACTIONS for

% A <==> R, with [A0] > 0 and [R0] > 0

 n = length(tArr);

 Xth = zeros(1,n);

 Xobs = Xth;

 Keq = k1/k2;

 Mra = R0/A0;

 a = -A0 / Keq;

 b = -1 -2*R0/Keq;

 c = 1 - Mra^2*A0/Keq;

 if b^2 > 4*a*c

 D1 = sqrt(b^2 - 4*a*c);

 K = k1*D1;

 Bp = b+D1;

 Bm = b-D1;

 B1 = Bm/Bp;

 Cm = Bm/2/a;

 Cp = Bp/2/a;

 for i=1:n

 t = tArr(i);

 x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1);

 Xth(i) = x;

 Xobs(i) = x * (1 + percErr/100*(2*rand-1));

 end

 elseif b^2 < 4*a*c

 D2 = sqrt(4*a*c - b^2);

 K = k2*D2/2;

 for i=1:n

 t = tArr(i);

 x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a);

 Xth(i) = x;

 Xobs(i) = x * (1 + percErr/100*(2*rand-1));

 end

 else

 for i=1:n

 t = tArr(i);

 x = ((k1*t * b)*b/4/a) / (1 - (k1*t * b)/2);

Simulating and Fitting Data for Chemical Reactions 31

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 Xth(i) = x;

 Xobs(i) = x * (1 + percErr/100*(2*rand-1));

 end

 end

end

The parameters of function react1 are A0, R0, k1, k2, tArr, and percErr. The above

code is based on equations 7.4 and 7.5. The function returns the arrays Xth and Xobs

that contain the theoretical and observed values of the x (the fraction of chemical A

still remaining).

The listing for function rkf5_1 is:

function sumSqrErr = rkf5_1(x)

% rkf5_1 implements Runge-Kutta-Fehlberg

% for A <--> R with dR/dt = k1*A - k2*R

 global tData

 global xData

 global incr

 A0 = x(1);

 R0 = x(2);

 kr1 = x(3);

 kr2 = x(4);

 iData = 1;

 nData = length(tData);

 h = incr/10;

 nSteps = fix((tData(nData)-tData(1))/h + 0.5);

 sumSqrErr = 0;

 t = tData(1);

 y = 0;

 Keq = kr1/kr2;

 Mra = R0/A0;

 a = -A0 / Keq;

 b = -1 -2*R0/Keq;

 c = 1 - Mra^2*A0/Keq;

 for iter=1:nSteps

 if t+h > tData(iData)

 sumSqrErr = sumSqrErr + (y - xData(iData))^2;

 iData = iData + 1;

 end

 k1 = h*fx(y,kr1,a,b,c);

 k2 = h*fx(y+k1/4,kr1,a,b,c);

 k3 = h*fx(y+(3*k1+9*k2)/32,kr1,a,b,c);

 k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,a,b,c);

 k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,a,b,c);

Simulating and Fitting Data for Chemical Reactions 32

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,a,b,c);

 y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5

+ 2/55*k6;

 t = t + h;

 end

end

function r = fx(y,k1,a,b,c)

 r = k1*(a*y^2 + b*y + c);

end

The above function has a single array-type parameter x. The function copies the

elements of array x into the local variables A0, R0, kr1, and kr2. The function then

uses these values to calculate coefficients a, b, c. The local function fx uses these

coefficients to calculate dx/dt, the normalized reaction rate. The parameters of

function fx are y, k1, a, b, and c. The code in function fx simply implements equation

7.3.

The file go1.m drives the calculations for the reversible equation studied in this

section. Here is the listing for that script file:

% A <==> R, with [A0] > 0 and [R0] = 0

% (-rA) = k1*A - k2*R^2

% source of equations is

% "Chemical Reaction Kinetics=Concepts, Methods and Case

Studies"

% by Jorge Ancheyta

clc

close

clear all

global tData

global xData

global incr

fprintf('A <==> R at (-rA) = k1*A - k2*R^2\n');

fprintf('Please wait ...\n');

A0 = 1;

R0 = .0;

k1 = 0.1;

k2 = 0.05;

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10];

% tArr = [0 1 2 3 5 7 9 10 12];

incr = findMinDigit(tArr);

[Xobs,Xth,tArr] = react1(A0,R0,k1,k2,tArr,0);

tData = tArr;

Simulating and Fitting Data for Chemical Reactions 33

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

xData = Xobs;

n = length(tArr);

Ath = A0 * (1-Xth);

Aobs = A0 * (1-Xobs);

Rth = (A0+R0) * Xth;

Robs = (A0+R0) * Xobs;

fcn = @rkf5_1;

nvars = 4;

lb = [A0/1.05 0 k1/1.05 k2/1.05];

ub = [A0*1.05 A0 k1*1.05 k2*1.05];

Vmax = (ub - lb)/10;

options = optimoptions('particleswarm', 'SwarmSize', 500,

'MaxIterations', 5000, ...

 'DisplayInterval', 100);

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options);

% % % tic;

% % % [bestX,bestFx] = pso(fcn,lb,ub,Vmax,500,5000);

% % % toc

fprintf('\nBest A0=%f, R0 =%f, k1=%f, k2=%f\n', bestX(1),

bestX(2), bestX(3), bestX(4));

fprintf('Best fx = %e\n', bestFx);

fprintf('Estimated xeq = %f\n', newton1(0.5,1e-

6,100,k1/k2,A0,R0/A0));

Acalc = zeros(n,1);

Rcalc = zeros(n,1);

A00 = bestX(1);

R00 = bestX(2);

kk1 = bestX(3);

kk2 = bestX(4);

Keq = kk1/kk2;

Mra = R00/A00;

a = -A00 / Keq;

b = -1 -2*R00/Keq;

c = 1 - Mra^2*A00/Keq;

if b^2 > 4*a*c

 D1 = sqrt(b^2 - 4*a*c);

 K = kk1*D1;

 Bp = b+D1;

 Bm = b-D1;

 B1 = Bm/Bp;

 Cm = Bm/2/a;

 Cp = Bp/2/a;

 for i=1:n

 t = tArr(i);

 x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1);

 Acalc(i) = A00 * (1- x);

 Rcalc(i) = A00 + R00 - Acalc(i);

Simulating and Fitting Data for Chemical Reactions 34

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 Acalc(i) = Acalc(i); % correction

 end

elseif b^2 < 4*a*c

 D2 = sqrt(4*a*c - b^2);

 K = kk2*D2/2;

 for i=1:n

 t = tArr(i);

 x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a);

 Acalc(i) = A00 * (1- x);

 Rcalc(i) = A00 + R00 - Acalc(i);

 Acalc(i) = Acalc(i); % correction

 end

else

 for i=1:n

 t = tArr(i);

 x = (kk1*t * b)/2 * x + (kk1*t * b)*b/4/a;

 Acalc(i) = A00 * (1- x);

 Rcalc(i) = A00 + R00 - Acalc(i);

 Acalc(i) = Acalc(i) + A0 - A00; % correction

 end

end

figure(1)

plot(tArr,Ath,tArr,Aobs,'r',tArr,Acalc,'g');

title('Concentration of A');

xlabel('Time');

ylabel('Concentration');

grid;

figure(2)

plot(tArr,Rth,tArr,Robs,'r',tArr,Rcalc,'g');

title('Concentration of R');

xlabel('Time');

ylabel('Concentration');

grid;

fprintf('For concentration os A\n');

for i=1:n

 if Ath(i)~=0

 err1 = (Acalc(i) - Ath(i))/Ath(i)*100;

 err2 = (Acalc(i) - Aobs(i))/Aobs(i)*100;

 fprintf('%f %f %f %f %f\n', Ath(i), Aobs(i), Acalc(i), err1,

err2);

 end

end

Simulating and Fitting Data for Chemical Reactions 35

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

fprintf('\n');

fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(Ath,Acalc));

fprintf('R^2 = %f for comparing observed and calculated

values\n', rsqr(Aobs,Acalc));

fprintf('For concentration os R\n');

for i=1:n

 if Rth(i)~=0

 err1 = (Rcalc(i) - Rth(i))/Rth(i)*100;

 err2 = (Rcalc(i) - Robs(i))/Robs(i)*100;

 fprintf('%f %f %f %f %f\n', Rth(i), Robs(i), Rcalc(i), err1,

err2);

 end

end

fprintf('\n');

fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(Rth,Rcalc));

fprintf('R^2 = %f for comparing observed and calculated

values\n', rsqr(Robs,Rcalc));

The above listing is similar to previous go.m script files that I presented earlier.

Please notice the following differences:

• The problem has four variables, A0, R0, k1, and k2. The initial value for R0

is 0.

• The call to function react1 returns arrays Xth and Xobs. The script uses the

values in these arrays to calculate values for arrays Ath, Aobs, Rth, and Robs.

• After calling function particleswarm, the script copies the values of array

bestX into variables A00, R00, kk1, and kk2. The script uses these values to

calculate the values for arrays Acalc and Rcalc.

• The values for parameters a, b, and c that appear in equation set 7.4 are

calculated in functions react1 and rkf5_1 and also in script go1.m. I usually

write the MATLAB statements to calculate a, b, and c in function react1 (and

any other version of react) and then copy (and edit if needed) these statements

in functions rkf5_1 and script go1 (and any versions of the function and script

I happen to be working with).

Here is a sample session with script go1.m:

A <==> R at (-rA) = k1*A - k2*R^2

Please wait ...

Optimization ended: relative change in the objective value

Simulating and Fitting Data for Chemical Reactions 36

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=0.952705, R0 =0.022754, k1=0.100377, k2=0.048442

Best fx = 5.251261e-07

Estimated xeq = 0.666667

For concentration of A

1.000000 1.000000 0.952705 -4.729500 -4.729500

0.887175 0.887175 0.844985 -4.755577 -4.755577

0.803934 0.803934 0.765667 -4.759970 -4.759970

0.723172 0.723172 0.688799 -4.753083 -4.753083

0.647092 0.647092 0.616426 -4.739076 -4.739076

0.602775 0.602775 0.574266 -4.729692 -4.729692

0.563143 0.563143 0.536549 -4.722569 -4.722569

0.527813 0.527813 0.502904 -4.719293 -4.719293

0.515595 0.515595 0.491263 -4.719315 -4.719315

0.489124 0.489124 0.466026 -4.722408 -4.722408

0.482059 0.482059 0.459286 -4.724124 -4.724124

0.458960 0.458960 0.437236 -4.733196 -4.733196

0.443919 0.443919 0.422865 -4.742664 -4.742664

0.424735 0.424735 0.404518 -4.760109 -4.760109

R^2 = 0.969315 for comparing theoretical and calculated values

R^2 = 0.969315 for comparing observed and calculated values

For concentration os R

0.112825 0.112825 0.130474 15.643062 15.643062

0.196066 0.196066 0.209792 7.000670 7.000670

0.276828 0.276828 0.286659 3.551635 3.551635

0.352908 0.352908 0.359033 1.735607 1.735607

0.397225 0.397225 0.401193 0.999018 0.999018

0.436857 0.436857 0.438910 0.470121 0.470121

0.472187 0.472187 0.472555 0.077924 0.077924

0.484405 0.484405 0.484196 -0.043045 -0.043045

0.510876 0.510876 0.509433 -0.282387 -0.282387

0.517941 0.517941 0.516173 -0.341355 -0.341355

0.541040 0.541040 0.538223 -0.520779 -0.520779

0.556081 0.556081 0.552594 -0.627159 -0.627159

0.575265 0.575265 0.570941 -0.751517 -0.751517

R^2 = 0.997065 for comparing theoretical and calculated values

R^2 = 0.997065 for comparing observed and calculated values

The output shows the results A0 = 0.952705, R0 = 0.022754, k1 = 0.100377, and k2

= 0.048442. These values are close to the theoretical values A0 = 1, R0 = 0, k1 =

0.1, and k2 = 0.05.

Simulating and Fitting Data for Chemical Reactions 37

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 7.1 and 7.2 show the curves for the theoretical, observed, and calculated

values for chemicals A and R, respectively. The curves are close since the script is

using 0% errors.

Figure 7.1. The theoretical, observed, and calculated concentrations of chemical A.

Simulating and Fitting Data for Chemical Reactions 38

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 7.2. The theoretical, observed, and calculated concentrations of chemical R.

Adjusting the maximum random errors to 10% in the go1.m script file yields the

following sample session:

A <==> R at (-rA) = k1*A - k2*R^2

Please wait ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=1.050000, R0 =0.158779, k1=0.105000, k2=0.052500

Best fx = 7.624325e-03

Estimated xeq = 0.666667

For concentration of A

1.000000 1.000000 1.050000 5.000000 5.000000

0.887175 0.894700 0.928692 4.679658 3.799219

0.803934 0.797280 0.841436 4.664799 5.538255

0.723172 0.701306 0.758876 4.937015 8.208919

0.647092 0.633141 0.683258 5.589026 7.915596

0.602775 0.570238 0.640302 6.225655 12.286805

0.563143 0.604822 0.602646 7.014689 -0.359711

0.527813 0.566094 0.569740 7.943656 0.644148

0.515595 0.538617 0.558518 8.324929 3.694971

Simulating and Fitting Data for Chemical Reactions 39

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

0.489124 0.456429 0.534500 9.277005 17.104735

0.482059 0.528002 0.528162 9.563710 0.030238

0.458960 0.498811 0.507663 10.611805 1.774777

0.443919 0.473858 0.494512 11.397062 4.358769

0.424735 0.439967 0.477981 12.536277 8.640265

R^2 = 0.935470 for comparing theoretical and calculated values

R^2 = 0.933682 for comparing observed and calculated values

For concentration of R

0.112825 0.105300 0.280087 148.250073 165.991063

0.196066 0.202720 0.367344 87.357033 81.207731

0.276828 0.298694 0.449904 62.521328 50.623623

0.352908 0.366859 0.525521 48.911681 43.248927

0.397225 0.429762 0.568477 43.112312 32.277259

0.436857 0.395178 0.606133 38.748782 53.382232

0.472187 0.433906 0.639039 35.335930 47.275873

0.484405 0.461383 0.650261 34.239233 40.937242

0.510876 0.543571 0.674279 31.984932 24.046247

0.517941 0.471998 0.680618 31.408336 44.199284

0.541040 0.501189 0.701116 29.586604 39.890435

0.556081 0.526142 0.714267 28.446501 35.755550

0.575265 0.560033 0.730798 27.036843 30.491971

R^2 = 0.074024 for comparing theoretical and calculated values

R^2 = -0.145325 for comparing observed and calculated values

The output shows the results A0 = 1.050000, R0 = 0.158779, k1 = 0.105000, and k2

= 0.052500. These values are still close to the theoretical values A0 = 1, R0 = 0, k1

= 0.1, and k2 = 0.05.

Figure 7.3 and 7.4 show the curves for the theoretical, observed, and calculated

values for chemicals A and R, respectively. The curves show the effect of using 10%

maximum random error on the red line which represents the observed values.

Simulating and Fitting Data for Chemical Reactions 40

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 7.3. The theoretical, observed, and calculated concentrations of chemical A.

Figure 7.4. The theoretical, observed, and calculated concentrations of chemical R.

Simulating and Fitting Data for Chemical Reactions 41

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

8/Reversible Reaction: Two Reactants and Two Products with Second-

Second Order Reactions
This section deals with a reversible chemical reaction between compounds A, B, R

and S:

A + B  R + S (8.1)

The differential equation describing the chemical reaction is:

dA/dt = –k1*A*B + k2*R*S (8.2)

I again use Ancheyta[1] and he how he models reversible reactions. Again, the rate

of change in x (the remaining fraction of compound A) is:

dx/dt = k1*(a*x2 + b*x + c) (8.3)

For the reaction modeled by equation 13, the values for coefficients a, b, and c are

calculated using the following equations (taken from Tale 4.5[1]):

K = k1/k2

MRA = R0/A0 (8.4)

MBA = B0/A0

MSA = S0/A0

MBS = B0/S0

a = A0 * (1 + 1/ K)

b = –A0 *(1 + MBA + (MRA + MBS) / K))

c = A0 *(MBA – MRA * MSA/ K)



 The MATLAB files mentioned in this section are found in the folder

\Chemical Reaction Modeling with Optimized ODEs\Second-Second

Order reversible - Tables 4.4 & 4.5\Table 4.5 Reactions

The listing of react1 (based on Table 4.5) is:

function [Xobs,Xth,tArr] =

react1(A0,B0,R0,S0,k1,k2,tArr,percErr)

%REACT calculates the array of concentration FRACTIONS for

% A + B <==> R + S, with all chemicals' conc > 0

% (-rA) = k1*A*B - k2*R*S

Simulating and Fitting Data for Chemical Reactions 42

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 n = length(tArr);

 Xth = zeros(1,n);

 Xobs = Xth;

 Keq = k1/k2;

 Mra = R0/A0;

 Msa = S0/A0;

 Mba = B0/A0;

 Mbs = B0/S0;

 a = A0 *(1 + 1/Keq);

 b = -A0*(1 + Mba + (Mra + Mbs)/Keq);

 c = A0*(Mba - Mra*Msa/Keq);

 if b^2 > 4*a*c

 D1 = sqrt(b^2 - 4*a*c);

 K = k1*D1;

 Bp = b+D1;

 Bm = b-D1;

 B1 = Bm/Bp;

 Cm = Bm/2/a;

 Cp = Bp/2/a;

 for i=1:n

 t = tArr(i);

 x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1);

 Xth(i) = x;

 Xobs(i) = x * (1 + percErr/100*(2*rand-1));

 end

 elseif b^2 < 4*a*c

 D2 = sqrt(4*a*c - b^2);

 K = k2*D2/2;

 for i=1:n

 t = tArr(i);

 x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a);

 Xth(i) = x;

 Xobs(i) = x * (1 + percErr/100*(2*rand-1));

 end

 else

 for i=1:n

 t = tArr(i);

 x = ((k1*t * b)*b/4/a) / (1 - (k1*t * b)/2);

 Xth(i) = x;

 Xobs(i) = x * (1 + percErr/100*(2*rand-1));

 end

 end

end

The function react1 has six optimization variables that pass as parameters—A0, B0,

R0, S0, k1, and k2. Other parameters include the usual tArr and percErr. The function

Simulating and Fitting Data for Chemical Reactions 43

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

react1 implements the equation set 8.4 to calculate the array of x values, Xth and

Xobs.

The listing of rkf5_1 is:

function sumSqrErr = rkf5_1(x)

% rkf5_1 implements Runge-Kutta-Fehlberg

% A + B <==> R + S, with all chemcials's conc > 0

% (-rA) = k1*A*B - k2*R*S

 global tData

 global xData

 global incr

 A0 = x(1);

 B0 = x(2);

 R0 = x(3);

 S0 = x(4);

 kr1 = x(5);

 kr2 = x(6);

 iData = 1;

 nData = length(tData);

 h = incr/10;

 nSteps = fix((tData(nData)-tData(1))/h + 0.5);

 sumSqrErr = 0;

 t = tData(1);

 y = 0;

 Keq = kr1/kr2;

 Mra = R0/A0;

 Msa = S0/A0;

 Mba = B0/A0;

 Mbs = B0/S0;

 a = A0 *(1 + 1/Keq);

 b = -A0*(1 + Mba + (Mra + Mbs)/Keq);

 c = A0*(Mba - Mra*Msa/Keq);

 for iter=1:nSteps

 if t+h > tData(iData)

 sumSqrErr = sumSqrErr + (y - xData(iData))^2;

 iData = iData + 1;

 end

 k1 = h*fx(y,kr1,a,b,c);

 k2 = h*fx(y+k1/4,kr1,a,b,c);

 k3 = h*fx(y+(3*k1+9*k2)/32,kr1,a,b,c);

 k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,a,b,c);

 k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,a,b,c);

 k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,a,b,c);

Simulating and Fitting Data for Chemical Reactions 44

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5

+ 2/55*k6;

 t = t + h;

 end

end

function r = fx(y,k1,a,b,c)

 r = k1*(a*y^2 + b*y + c);

end

The parameter of the above function is x—an array passing six optimization

variables. The function copies the elements of array x into the local variables A0,

B0, R0, S0, kr1, and kr2. Notice that the local function fx is coded just like the one

in the last section.

The listing for the script file go1.m, for the reaction examined in this section, is:

% A + B <==> R + S, with all chemicals's conc > 0

% (-rA) = k1*A*B - k2*R*S

% source of equations is

% "Chemical Reaction Kinetics=Concepts, Methods and Case

Studies"

% by Jorge Ancheyta

clc

close

clear all

global tData

global xData

global incr

fprintf('A + B <==> R + S at (-rA) = k1*A*B - k2*R*S\n');

fprintf('Please wait ...\n');

A0 = 1;

B0 = 0.8;

R0 = 0.05;

S0 = 0.075;

k1 = 0.1;

k2 = 0.05;

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10];

% tArr = [0 1 2 3 5 7 9 10 12];

incr = findMinDigit(tArr);

[Xobs,Xth,tArr] = react1(A0,B0,R0,S0,k1,k2,tArr,0); %0 % error

tData = tArr;

xData = Xobs;

n = length(tArr);

Ath = A0 * (1-Xth);

Aobs = A0 * (1-Xobs);

Simulating and Fitting Data for Chemical Reactions 45

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Rth = (A0+R0) * Xth;

Robs = (A0+R0) * Xobs;

fcn = @rkf5_1;

nvars = 6;

lb = [A0 B0 R0 S0 k1 k2]/1.05;

ub = 1.05^2*lb;

Vmax = (ub - lb)/10;

options = optimoptions('particleswarm', 'SwarmSize', 500,

'MaxIterations', 5000, ...

 'DisplayInterval', 100);

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options);

fprintf('\nBest A0=%f, B0=%f\n', bestX(1), bestX(2));

fprintf('Best R0=%f, S0=%f\n', bestX(3), bestX(4));

fprintf('Best k1=%f, k2=%f\n', bestX(5), bestX(6));

fprintf('Best fx = %e\n', bestFx);

%fprintf('Estimated xeq = %f\n', newton1(0.5,1e-

6,100,k1/k2,A0,R0/A0));

Acalc = zeros(n,1);

Rcalc = zeros(n,1);

A00 = bestX(1);

B00 = bestX(2);

R00 = bestX(3);

S00 = bestX(4);

kk1 = bestX(5);

kk2 = bestX(6);

Keq = kk1/kk2;

Mba = B00/A00;

Mra = R00/A00;

Msa = S00/A00;

Mbs = B00/S00;

a = A00 *(1 + 1/Keq);

b = -A00*(1 + Mba + (Mra + Mbs)/Keq);

c = A00*(Mba - Mra*Msa/Keq);

if b^2 > 4*a*c

 D1 = sqrt(b^2 - 4*a*c);

 K = kk1*D1;

 Bp = b+D1;

 Bm = b-D1;

 B1 = Bm/Bp;

 Cm = Bm/2/a;

 Cp = Bp/2/a;

 for i=1:n

 t = tArr(i);

 x = (Cp*B1 - Cm*exp(-K*t))/(exp(-K*t) - B1);

 Acalc(i) = A00 * (1- x);

 Rcalc(i) = A00 + R00 - Acalc(i);

 Acalc(i) = Acalc(i); % correction

Simulating and Fitting Data for Chemical Reactions 46

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 end

elseif b^2 < 4*a*c

 D2 = sqrt(4*a*c - b^2);

 K = kk2*D2/2;

 for i=1:n

 t = tArr(i);

 x = (D2*tan(K*t + atan(b/D2)) - b)/(2*a);

 Acalc(i) = A00 * (1- x);

 Rcalc(i) = A00 + R00 - Acalc(i);

 Acalc(i) = Acalc(i); % correction

 end

else

 for i=1:n

 t = tArr(i);

 x = (kk1*t * b)/2 * x + (kk1*t * b)*b/4/a;

 Acalc(i) = A00 * (1- x);

 Rcalc(i) = A00 + R00 - Acalc(i);

 Acalc(i) = Acalc(i) + A0 - A00; % correction

 end

end

figure(1)

plot(tArr,Ath,tArr,Aobs,'r',tArr,Acalc,'g');

title('Concentration of A');

xlabel('Time');

ylabel('Concentration');

grid;

figure(2)

plot(tArr,Rth,tArr,Robs,'r',tArr,Rcalc,'g');

title('Concentration of R');

xlabel('Time');

ylabel('Concentration');

grid;

fprintf('For concentration of A\n');

for i=1:n

 if Ath(i)~=0

 err1 = (Acalc(i) - Ath(i))/Ath(i)*100;

 err2 = (Acalc(i) - Aobs(i))/Aobs(i)*100;

 fprintf('%f %f %f %f %f\n', Ath(i), Aobs(i), Acalc(i), err1,

err2);

 end

end

fprintf('\n');

Simulating and Fitting Data for Chemical Reactions 47

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(Ath,Acalc));

fprintf('R^2 = %f for comparing observed and calculated

values\n', rsqr(Aobs,Acalc));

fprintf('For concentration os R\n');

for i=1:n

 if Rth(i)~=0

 err1 = (Rcalc(i) - Rth(i))/Rth(i)*100;

 err2 = (Rcalc(i) - Robs(i))/Robs(i)*100;

 fprintf('%f %f %f %f %f\n', Rth(i), Robs(i), Rcalc(i), err1,

err2);

 end

end

fprintf('\n');

fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(Rth,Rcalc));

fprintf('R^2 = %f for comparing observed and calculated

values\n', rsqr(Robs,Rcalc));

The code for the above listing is an extended version of the one that appear in the

last section. The main difference is the presence of data for chemicals B and S. Thus,

the script in go1.m optimizes a function with six variables. Here is a sample session

with the script in file go1.m:

A + B <==> R + S at (-rA) = k1*A*B - k2*R*S

Please wait ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=0.952381, B0=0.765337

Best R0=0.052380, S0=0.071429

Best k1=0.104966, k2=0.052500

Best fx = 6.488403e-08

For concentration of A

1.000000 1.000000 0.952381 -4.761905 -4.761905

0.935489 0.935489 0.890792 -4.777914 -4.777914

0.910784 0.910784 0.867283 -4.776152 -4.776152

0.897555 0.897555 0.854733 -4.770922 -4.770922

0.890964 0.890964 0.848501 -4.765920 -4.765920

0.888779 0.888779 0.846442 -4.763530 -4.763530

0.887514 0.887514 0.845252 -4.761823 -4.761823

0.886781 0.886781 0.844564 -4.760648 -4.760648

0.886594 0.886594 0.844389 -4.760314 -4.760314

0.886281 0.886281 0.844097 -4.759708 -4.759708

Simulating and Fitting Data for Chemical Reactions 48

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

0.886216 0.886216 0.844036 -4.759572 -4.759572

0.886047 0.886047 0.843878 -4.759197 -4.759197

0.885967 0.885967 0.843804 -4.759004 -4.759004

0.885892 0.885892 0.843734 -4.758810 -4.758810

R^2 = -0.494633 for comparing theoretical and calculated values

R^2 = -0.494633 for comparing observed and calculated values

For concentration os R

0.067736 0.067736 0.113968 68.252587 68.252587

0.093677 0.093677 0.137477 46.756613 46.756613

0.107568 0.107568 0.150028 39.472809 39.472809

0.114488 0.114488 0.156259 36.485365 36.485365

0.116782 0.116782 0.158319 35.567899 35.567899

0.118110 0.118110 0.159509 35.050364 35.050364

0.118880 0.118880 0.160196 34.754404 34.754404

0.119077 0.119077 0.160372 34.679294 34.679294

0.119405 0.119405 0.160664 34.553901 34.553901

0.119473 0.119473 0.160725 34.527783 34.527783

0.119651 0.119651 0.160883 34.459903 34.459903

0.119735 0.119735 0.160957 34.427799 34.427799

0.119813 0.119813 0.161027 34.397741 34.397741

R^2 = -0.440060 for comparing theoretical and calculated values

R^2 = -0.440060 for comparing observed and calculated values

The results in the above output show A0 = 0.952381, B0 = 0.765337, R0 = 0.052380,

S0 = 0.071429, k1 = 0.104966, and k2 = 0.052500. Compare these values with the

theoretical ones of A0 = 1, B0 = 0.8, R0 = 0.05, S0 = 0.075, k1 = 0.1, and k2 = 0.05.

The results are close enough. The tabulated values show some deviation between the

calculated concentrations of the chemicals A and R and their theoretical (and also

observed counterpart, calculated with 0% error).

Here is another sample output with observed concentrations calculated at 10%

maximum random error:

A + B <==> R + S at (-rA) = k1*A*B - k2*R*S

Please wait ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=1.028834, B0=0.761905

Best R0=0.052314, S0=0.078750

Best k1=0.096000, k2=0.047619

Best fx = 4.116528e-04

Simulating and Fitting Data for Chemical Reactions 49

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

For concentration of A

1.000000 1.000000 1.028834 2.883361 2.883361

0.935489 0.938118 0.966021 3.263793 2.974432

0.910784 0.907346 0.940105 3.219295 3.610402

0.897555 0.906866 0.925239 3.084399 2.025919

0.890964 0.894640 0.917251 2.950401 2.527323

0.888779 0.888418 0.914412 2.884086 2.925937

0.887514 0.898110 0.912678 2.835334 1.622013

0.886781 0.881662 0.911617 2.800776 3.397572

0.886594 0.875805 0.911336 2.790745 4.056932

0.886281 0.880867 0.910851 2.772229 3.403951

0.886216 0.890544 0.910746 2.767999 2.268495

0.886047 0.886942 0.910467 2.756117 2.652349

0.885967 0.881701 0.910330 2.749878 3.246973

0.885892 0.880606 0.910196 2.743462 3.360247

R^2 = 0.265590 for comparing theoretical and calculated values

R^2 = 0.274464 for comparing observed and calculated values

For concentration os R

0.067736 0.064976 0.115126 69.961921 77.181872

0.093677 0.097287 0.141043 50.563193 44.976416

0.107568 0.097790 0.155909 44.940373 59.431965

0.114488 0.110628 0.163897 43.156370 48.151848

0.116782 0.117161 0.166735 42.775104 42.312685

0.118110 0.106984 0.168470 42.637588 57.471882

0.118880 0.124255 0.169530 42.605897 36.437871

0.119077 0.130404 0.169811 42.606890 30.219226

0.119405 0.125090 0.170297 42.621401 36.139371

0.119473 0.114928 0.170401 42.627157 48.267445

0.119651 0.118711 0.170681 42.648666 43.778780

0.119735 0.124214 0.170818 42.663437 37.519311

0.119813 0.125364 0.170952 42.681538 36.364043

R^2 = -0.591027 for comparing theoretical and calculated values

R^2 = -0.563634 for comparing observed and calculated values

The above results show A0 = 1.028834, B0 = 0.761905, R0 = 0.052314, S0 =

0.078750, k1 = 0.096000, and k2 = 0.047619. These values are still reasonably close

to the theoretical ones of A0 = 1, B0 = 0.8, R0 = 0.05, S0 = 0.075, k1 = 0.1, and k2

= 0.05.

9/Using ODE Solver to Generate Data for Chain Reaction
Section 6 presented the simple chain reaction that involved thee chemicals and two

first-order chemical reactions:

A  B  C

Simulating and Fitting Data for Chemical Reactions 50

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

With the chemical reaction rates of:

dA/dt = –k1A (9.1)

dB/dt = k1A – k2B (9.2)

dC/dt = k2B (9.3)

Where t is time, A is the concentration of reactant A, and k1 is the first reaction rate

constant, B is the concentration of reactant B, and k2 is the second reaction rate

constant. This section assumes that we don’t have the analytical solution for the

above differential equations. The solution would be to use Runge-Kutta-Fehlberg to

generate the data for the concentration of the chemicals A, B, and C.



 The MATLAB files mentioned in this section are found in the folder

\Chemical Reaction Modeling with Optimized ODEs\Chain Reaction First

Order 3 Reactions - Ver 1

Here is the listing for the special version of MATLAB function react2:

function [ConcObs,ConcTh,tArr] =

react2(A0,B0,C0,kr1,kr2,tArr,percErr)

%REACT calculates the array of concentrations for

% A --> B --> C where B0 = C0 = 0

 global incr

 n = length(tArr);

 ConcTh = zeros(n,3);

 ConcObs = zeros(n,3);

 iData = 1;

 h = incr/100;

 nSteps = fix((tArr(n)-tArr(1))/h + 0.5);

 t = tArr(1);

 y = [A0 B0 C0];

 for iter=1:nSteps

 if t+h > tArr(iData)

 for j=1:3

 ConcTh(iData,j) = y(j);

 end

 iData = iData + 1;

 end

 k1 = h*fx(y,kr1,kr2);

 k2 = h*fx(y+k1/4,kr1,kr2);

 k3 = h*fx(y+(3*k1+9*k2)/32,kr1,kr2);

 k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,kr2);

Simulating and Fitting Data for Chemical Reactions 51

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,kr2);

 k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,kr2);

 y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5

+ 2/55*k6;

 t = t + h;

 end

 for j=1:3

 ConcTh(iData,j) = y(j);

 end

 for i=1:n

 for j=1:3

 ConcObs(i,j) = ConcTh(i,j) * (1+percErr/100*(2*rand-1));

 end

 end

end

function y = fx(x,k1,k2)

 y(1) = -k1*x(1);

 y(2) = k1*x(1)-k2*x(2);

 y(3) = k2*x(2);

end

The parameters of function react2 are A0, B0, C0, kr1, kr2, tArr, and percErr. The

first five parameters are related to the chemical reactions. Function react2 is a special

version of Runge-Kutta-Fehlberg that generates the concentrations of the chemicals

A, B, and C. The function react2 returns the matrices ConcTh and ConcObs that

store the concentrations of chemicals A, B, and C in columns 1, 2, and 3,

respectively, of these two matrices. Notice that function react2 calculates the

integration increment, h, as incr/100 and not the usual incr/10 that you see in other

versions of function react. The reason is two-fold. The first, and main reason, is that

we need to generate more accurate concentrations values. Second, since the driving

script calls react2 only once we can afford to have smaller values of h.

The counterpart of function react2 is function rkf5_2, listed next:

function sumSqrErr = rkf5_2(x)

% rkf5 implements Runge-Kutta-Fehlberg

% A --> B --> C --> D where B0 = C0 = D0 = 0

 global tData

 global cData

Simulating and Fitting Data for Chemical Reactions 52

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 global incr;

 A0 = x(1);

 B0 = x(2);

 C0 = x(3);

 kr1 = x(4);

 kr2 = x(5);

 iData = 1;

 nData = length(tData);

 h = incr/10;

 nSteps = fix((tData(nData)-tData(1))/h + 0.5);

 sumSqrErr = 0;

 t = tData(1);

 y = [A0 B0 C0];

 for iter=1:nSteps

 if t+h > tData(iData)

 for j=1:3

 sumSqrErr = sumSqrErr + (y(j) - cData(iData,j))^2;

 end

 iData = iData + 1;

 end

 k1 = h*fx(y,kr1,kr2);

 k2 = h*fx(y+k1/4,kr1,kr2);

 k3 = h*fx(y+(3*k1+9*k2)/32,kr1,kr2);

 k4 = h*fx(y+(1932*k1-7200*k2+7296*k3)/2197,kr1,kr2);

 k5 = h*fx(y+439/216*k1-8*k2+3680/513*k3-

845/4104*k4,kr1,kr2);

 k6 = h*fx(y - 8/27*k1 + 2*k2 -3544/2565*k3 +1859/4104*k4 -

11/40*k5,kr1,kr2);

 y = y + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5

+ 2/55*k6;

 t = t + h;

 end

end

function y = fx(x,k1,k2)

 y(1) = -k1*x(1);

 y(2) = k1*x(1)-k2*x(2);

 y(3) = k2*x(2);

end

The script go2.m contains the test code:

% Chain rection:

%

% A --> B -- > C --> D

%

% where[A0] > 0, [B0] = 0, [C0] = 0, and [D0] = 0

Simulating and Fitting Data for Chemical Reactions 53

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

%

clc

close all

clear

global tData

global cData % a matrix

global incr

fprintf('Reaction: A --> B -- > C --> D\n');

fprintf('where[A0] > 0, [B0] = 0, [C0] = 0, and [D0] = 0\n');

fprintf('All reactions are first order\n');

fprintf('Please wait ...\n');

A0 = 100;

k1 = 0.05;

k2 = 0.5;

k3 = 2;

tArr = [0 1.2 2.2 3.3 4.5 5.3 6.1 6.9 7.2 7.9 8.1 8.8 9.3 10];

% tArr = [0 1 2 3 5 7 9 10 12];

incr = findMinDigit(tArr);

[ConcObs,ConcTh,tArr] = react(A0,k1,k2,k3,tArr,10);

tData = tArr;

cData = ConcObs;

fcn = @rkf5;

nvars = 4;

lb = [50 .01 0.1 1];

ub = [200 0.1 1 5];

options = optimoptions('particleswarm', 'SwarmSize', 500,

'MaxIterations', 5000, ...

 'DisplayInterval', 100);

[bestX, bestFx] = particleswarm(fcn,nvars,lb,ub,options);

fprintf('\nBest A0=%f, k1=%f, k2=%f, k3=%f\n', bestX(1),

bestX(2), bestX(3), bestX(4));

fprintf('Best fx = %e\n', bestFx);

% [bestX, bestFx] = scout([50 .01], [200 .1], [10 .01], [.1

.001], 10000, 100, 50, false, true)

n = length(tArr);

ConcCalc = zeros(n,4);

A00 = bestX(1);

kk1 = bestX(2);

kk2 = bestX(3);

kk3 = bestX(4);

rB = kk1/(kk2-kk1);

c0 = kk1*kk2;

c1 = (kk2-kk1)*(kk3-kk1);

c2 = (kk1-kk2)*(kk3-kk2);

c3 = (kk1-kk3)*(kk2-kk3);

Simulating and Fitting Data for Chemical Reactions 54

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

for i=1:n

 t = tArr(i);

 ConcCalc(i,1) = A00*exp(-kk1*t);

 ConcCalc(i,2) = A00*rB*(exp(-kk1*t) - exp(-kk2*t));

 ConcCalc(i,3) = A00*c0*(exp(-kk1*t)/c1 + exp(-kk2*t)/c2 +

exp(-kk3*t)/c3);

 ConcCalc(i,4) = A00 - ConcCalc(i,1) - ConcCalc(i,2) -

ConcCalc(i,3);

end

for j=1:4

 figure(j)

plot(tArr,ConcTh(:,j),tArr,ConcObs(:,j),'r',tArr,ConcCalc(:,j),'

g');

 if j == 1

 title('Concentration of A');

 elseif j == 2

 title('Concentration of B');

 elseif j == 3

 title('Concentration of C');

 else

 title('Concentration of D');

 end

 xlabel('Time');

 ylabel('Concentration');

 grid;

end

figure(5)

plot(tArr,ConcTh(:,1),tArr,ConcTh(:,2),'r',tArr,ConcTh(:,3),'g',

tArr,ConcTh(:,4),'y');

title('Theoretical concentrations of A, B, and C');

xlabel('Time');

ylabel('Concentration');

grid;

figure(6)

plot(tArr,ConcObs(:,1),tArr,ConcObs(:,2),'r',tArr,ConcObs(:,3),'

g',tArr,ConcObs(:,4),'y');

title('Observed concentrations of A, B, and C');

xlabel('Time');

ylabel('Concentration');

grid;

figure(7)

Simulating and Fitting Data for Chemical Reactions 55

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

plot(tArr,ConcCalc(:,1),tArr,ConcCalc(:,2),'r',tArr,ConcCalc(:,3

),'g',tArr,ConcCalc(:,4),'y');

title('Calculated concentrations of A, B, and C');

xlabel('Time');

ylabel('Concentration');

grid;

for j =1:4

 if j == 1

 fprintf('For concentration of A\n');

 elseif j == 2

 fprintf('For concentration of B\n');

 elseif j == 3

 fprintf('For concentration of C\n');

 else

 fprintf('For concentration of D\n');

 end

 for i=1:n

 if ConcTh(i,j)~=0

 err1 = (ConcCalc(i,j) - ConcTh(i,j))/ConcTh(i,j)*100;

 err2 = (ConcCalc(i,j) - ConcObs(i,j))/ConcObs(i,j)*100;

 fprintf('%f %f %f %f %f\n', ConcTh(i,j), ConcObs(i,j),

ConcCalc(i,j), err1, err2);

 end

 end

 fprintf('\n');

 fprintf('R^2 = %f for comparing theoretical and calculated

values\n', rsqr(ConcTh(:,j),ConcCalc(:,j)));

 fprintf('R^2 = %f for comparing observed and calculated

values\n\n', rsqr(ConcObs(:,j),ConcCalc(:,j)));

end

The above script is like the one in section 6 with the following noted difference. The

above script calls function react2 twice. The first call returns the theoretical and

observed concentration values. The second call returns the calculated concentrations

of the chemicals. The return list contains the matrix ConcDummy. You can replace

that matrix name with the tilde character (~) to tell MATLAB to discard the returned

value for the corresponding return parameter. The second call to function react2 is

necessary since we are not using the analytical equations for the solutions of the

differential equations. The normal use for this method is for when the analytical

solutions are not available.

Here is a sample session with the above script:

Simulating and Fitting Data for Chemical Reactions 56

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Reaction: A --> B -- > C --> D

where[A0] > 0, [B0] = 0, [C0] = 0, and [D0] = 0

All reactions are first order

Please wait ...

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Best A0=98.164769, k1=0.525000, B0=21.000000, k2=0.100533, and

C0 =9.523810

Best fx = 1.602221e+02

For concentration of A

100.000000 97.572487 98.164769 -1.835231 0.607017

54.881164 51.293188 52.281751 -4.736439 1.927279

33.287108 31.619224 30.927550 -7.088504 -2.187509

19.204991 17.988198 17.359630 -9.608758 -3.494335

10.539922 11.561227 9.245596 -12.280223 -20.029279

7.068655 6.542167 6.077980 -14.015041 -7.095305

4.738261 5.083712 3.993517 -15.717658 -21.444851

3.176151 2.996903 2.623928 -17.386560 -12.445359

2.733739 2.728553 2.241561 -18.003843 -17.848006

1.926433 2.030953 1.552199 -19.426293 -23.572877

1.743109 1.801868 1.397482 -19.828156 -22.442590

1.228348 1.267552 0.967705 -21.218958 -23.655550

0.956638 0.966972 0.744288 -22.197592 -23.029003

0.673795 0.644774 0.515121 -23.549201 -20.108260

R^2 = 0.997788 for comparing theoretical and calculated values

R^2 = 0.998989 for comparing observed and calculated values

For concentration of B

20.000000 20.321844 21.000000 5.000000 3.337081

60.002009 59.349868 61.565267 2.605343 3.732779

74.756340 81.414332 75.903930 1.535107 -6.768345

80.237703 84.989672 80.734227 0.618817 -5.007014

79.281179 74.057905 79.154765 -0.159450 6.882263

76.520437 75.393722 76.080494 -0.574936 0.910913

72.870929 74.110641 72.198455 -0.922829 -2.580178

68.765614 65.759882 67.931453 -1.213049 3.302274

67.168962 64.023244 66.289753 -1.308952 3.540133

63.406035 60.165346 62.449351 -1.508822 3.796214

62.331984 61.780274 61.359395 -1.560337 -0.681250

58.614102 59.908642 57.603907 -1.723467 -3.847083

56.020211 56.425835 54.997598 -1.825437 -2.531177

52.500276 53.510854 51.475953 -1.951080 -3.802782

R^2 = 0.996041 for comparing theoretical and calculated values

Simulating and Fitting Data for Chemical Reactions 57

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

R^2 = 0.965536 for comparing observed and calculated values

For concentration of C

10.000000 9.696440 9.523810 -4.761905 -1.780351

15.116828 14.876896 14.841560 -1.820934 -0.237522

21.956551 21.438653 21.857098 -0.452954 1.951828

30.557306 29.192957 30.594721 0.122441 4.801720

40.178899 41.381369 40.288217 0.272078 -2.641654

46.410908 47.155129 46.530105 0.256829 -1.325464

52.390810 52.564667 52.496606 0.201936 -0.129481

58.058235 58.216840 58.133197 0.129116 -0.143674

60.097299 60.080603 60.157265 0.099781 0.127598

64.667532 59.567473 64.687029 0.030149 8.594549

65.924907 64.916292 65.931701 0.010305 1.564181

70.157550 73.552919 70.116966 -0.057847 -4.671402

73.023150 74.060945 72.946693 -0.104703 -1.504507

76.825930 78.020466 76.697504 -0.167165 -1.695661

R^2 = 0.999940 for comparing theoretical and calculated values

R^2 = 0.993039 for comparing observed and calculated values

The results show A0 = 98.164769, k1 = 0.525000, B0 = 21.000000, k2 = 0.100533,

and C0 = 9.523810. These values are close to the actual values of A0 = 100, B0 =

20, C0 = 10, k1 = 0.5, and k2 = 0.1. Moreover, the correlation coefficients for all the

tabulated observed and calculated concentrations are close to 1. Thus, using ODE

solvers to calculate the theoretical and observed concentrations of chemical works

well.

Figures 9.1, 9.2, and 9.3 show the curves for the theoretical, observed, and calculated

concentrations of chemicals A, B, and C, respectively.

Simulating and Fitting Data for Chemical Reactions 58

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 9.1. The theoretical concentrations of chemicals A, B, and C.

Figure 9.2. The observed concentrations of chemicals A, B, and C.

Simulating and Fitting Data for Chemical Reactions 59

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

Figure 9.2. The calculated concentrations of chemicals A, B, and C.

10/Conclusion
The method described in this study can simulate the concentrations of chemicals

involved in chemical reactions. Once such data is at hand, you can optimize special

functions that are based on good ODE overs. Of course, the error contaminating data

plays in important role in the quality of the results. Also affecting the quality of the

results is the differential models for the chemical reaction, the number of

optimization variables, the optimization algorithm used, and the parameters used to

operate the optimization algorithm.

11/Appendix
This appendix has the listings of the MATLAB functions findMinDigit and rsqr.

Here is the listing of function findMinDigit:

function d = findMinDigit(X)

%FINDMINDIGIT Summary of this function goes here

% Detailed explanation goes here

 d = 1e+99;

 n = length(X);

 for i=1:n

 dd = mindigit(X(i));

 if dd < d

 d = dd;

Simulating and Fitting Data for Chemical Reactions 60

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 end

 end

end

function d = mindigit(x)

%MINDIGIT Summary of this function goes here

% Detailed explanation goes here

 if x==0

 d=1;

 return;

 end

 s = num2str(x);

 n = length(s);

 if isempty(strfind(s,'.'))

 d = 1;

 i = n;

 while i>0 && strcmp(s(i),'0')

 i = i - 1;

 d = 10*d;

 end

 else

 i = strfind(s,'.');

 d = 1/10^(n-i);

 end

end

The function findMinDigit and its helper function minDigit find the minimum digit

by converting reals into strings and attempting to locate the decimal character. If one

is found, the function minDigit counts, n, the number of digits after the decimal and

returns 10-n as the answer. If the converted string has no decimal character, the

function minDigit counts, m, the index of the first non-zero digit scanned from right

to left. The function returns 10(m-1) as the answer.

Here is the listing of function rsqr which calculates the coefficient of determination

between two arrays of similar values:

function r = rsqr(y,f)

%RSQR Summary of this function goes here

% Detailed explanation goes here

 n=length(y);

 ymean = mean(y);

 SSres = 0;

 SStot = 0;

 for i=1:n

 SSres = SSres + (y(i) - f(i))^2;

Simulating and Fitting Data for Chemical Reactions 61

Copyright© 2019 by Namir Clement Shammas Version 1.0.0

 SStot = SStot + (y(i) - ymean)^2;

 end

 r = 1 - SSres/SStot;

end

12/Files Included
When you download this document from my website you will also see a link to a zip

file that contains many sets of MATLAB files. Each set resides in different folders.

Some similar calculations (like those of Table 4,4 and Table 4.5 in [1]) are placed in

the same folders

I highly recommend that you get Jorge Ancheyta’s book, Chemical Reaction

Kinetics-Concepts, Methods and Case Studies.

13/Book References
1. Chemical Reaction Kinetics-Concepts, Methods and Case Studies, 2017, by

Jorge Ancheyta. John Wiley & Sons Ltd.

2. Chemical Kinetics of Homogeneous Systems, 1971, by Robert Schaal. D.

Reidel Publishing Company.

3. Introduction to Chemical Engineering Kinetics and Reactor Design, 2nd

Edition, 2014, by Charles G. Hill and Thatcher W. Root. John Wiley & Sons

Ltd.

Document History
I developed this document using numbered sections to compartmentalize the

reference numbers of equations and figures. Thus, I can number equations and

listings using the format sectionNumber.sequenceNumber where the sectionNumber

starts at the value of 1 for each separate section. This approach allows me to insert

more equations and figure later, if need be, without having to renumber all

subsequent equations and/or figures that appear after the newly inserted material in

the document. Any renumbering needed occurs only in that section where new

equations and figures are inserted.

Version Date Comments

1.0.0 November 25, 2019 Initial release.

