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Introduction 
This article presents a new root-bracketing algorithm and it’s variant. The new 

algorithms, named the Trisection and Trisection Plus, compete with and enhance 

the Bisection method which is the slowest root-seeking method. 

The Bisection Algorithm 
There are numerous algorithms that calculate the roots of single-variable nonlinear 

functions. The most popular of such algorithms is Newton’s method. The slowest 

and simplest root seeking algorithm is the Bisection method. This method has the 

user select an interval that contains the sought root. The method iteratively shrinks 

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code 

for the Bisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler, 

for the root of f(x): 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0. 

 Repeat  

o X =(A+B)/2 

o Fx = f(X) 

o If Fx*Fa > 0 then 

 A = X 

 Fa = Fx 

o Else 

 B = X 

 Fb = Fx 

o End 

 Until |A-B| < Toler 

 Return root as (A+B)/2 

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest 

converging method. It’s main virtue is that it is guaranteed to work if f(x) is 

continuous in the interval [A, B] and f(A)×f(B) is negative. 
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Newton’s Method 
I will also compare the new algorithms with Newton’s method. This comparison 

serves as an upper limit test. I am implementing Newton’s method based on the 

following pseudo-code: 

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler, 

for the root of f(x): 

 Calculate X = (A+B)/2 

 Repeat  

o h = 0.001 * (|X| + 1) 

o Fx = f(X) 

o Diff = h * Fx / (f(X+h) – Fx) 

o X = X – Diff 

 Until |Diff| < Toler 

 Return root as X 

The above code shows that the implementation of Newton’s method starts with the 

same interval [A, B] that is already available for the root-bracketing methods. 

Thus, the algorithm derives its single initial guess as the midpoint of that interval. 

The Trisection Algorithm 
The Trisection algorithm has each iteration divide the root-bracketing interval [A, 

B] into three parts, instead of two as does the Bisection. The algorithm chooses the 

first point X1 within the interval [A, B] closest to the end point A, or B, that has 

the smallest absolute function value (call this point Z). This strategy hopes that 

f(X1) would have a sign opposite that of f(Z). If this condition is true, then the 

iteration has finished its task. If not, the algorithm calculates X2 which lies closer 

to the other interval end point (call it Y). The algorithm then determines whether 

the interval [X1, X2] or [X2, Y] is the new root-bracketing interval. The values of 

the interval [A. B] are then updated accordingly. Here is the pseudo-code for the 

Trisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler, 

for the root of f(x): 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0. 

 Repeat  

o If |Fa| < |Fb| then 

 X1 = A + (B-A)/3 

 Fx1 = f(X1) 

 If Fa*Fx1 < 0 then 

 B = X1 

 Fb = Fx1 

 Else 

 X2 = B – (B-A)/3 

 Fx2 = f(X2) 
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 If Fx1*Fx2 < 0 then 

o A = X1 

o Fa = Fx1 

o B = X2 

o Fb = Fx2 

 Else 

o A = X2 

o Fa = Fx2 

 End  

 End 

o Else 

 X1 = B - (B-A)/3 

 Fx1 = f(X1) 

 If Fb*Fx1 < 0 then 

 A = X1 

 Fa = Fx1 

 Else 

 X2 = A + (B-A)/3 

 Fx2 = f(X2) 

 If Fx1*Fx2 < 0 then 

o A = X2 

o Fa = Fx2 

o B = X1 

o Fb = Fx1 

 Else 

o B = X2 

o Fb = Fx2 

 End  

 End 

 Until |A-B| < Toler 

 Return root as (A+B)/2 

The Trisection Plus Algorithm 
I have used the same approach in my previous efforts[4][5] to enhance the Bisection 

method, with the Trisection Plus algorithm. This variant of the Trisection 

algorithm carries out the same basic steps with the added step of performing an 

inverse linear interpolation within the new root-bracketing interval. This additional 

step enhances significantly the convergence to the root. 

Let me present the pseudo-code for the Trisection Plus method: 

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the 

root of f(x), and the function tolerance value FxToler: 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0 

 Repeat 

o LastA = A 

o LastB = B 

o If |Fa| < |Fb)| then 

 X1 = A + (B - A) / 3 
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 Fx1 = f(X1) 

 Comment-- case 1: [A,X1] has the root 

 If Fx1 * Fa < 0 then 

 X3 = Interpolate2(A, X1, Fa, Fx1) 

 Fx3 = f(X3) 

 If Fa * Fx3 < 0 then  

o B = X3 

o Fb = Fx3 

 Else 

o A = X3 

o Fa = Fx3 

o B = X1 

o Fb = Fx1 

 End  

 Else 

 X2 = A + 2 * (B - A) / 3 

 Fx2 = f(X2) 

 Comment-- case 2: [X1,X2] has root 

 If Fx1 * Fx2 < 0 then 

o X3 = Interpolate2(X1, X2, Fx1, Fx2) 

o Fx3 = f(X3) 

o If Fx1 * Fx3 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X3 

 Fb = Fx3 

o Else 

 A = X3 

 Fa = Fx3 

 B = X2 

 Fb = Fx2 

o End 

 Else 

o Comment := case 2: [X2,B] has root 

o X3 = Interpolate2(X2, B, Fx2, Fb) 

o Fx3 = f(X3) 

o If Fx2 * Fx3 < 0 then 

 A = X2 

 Fa = Fx2 

 B = X3 

 Fb = Fx3 

o Else 

 A = X3 

 Fa = Fx3 

o End 

 End 
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 End 

o Else 

 X1 = A + 2 * (B - A) / 3 

 Fx1 = f(X1) 

 Comment-- case 4: [X1,B] has the root 

 If Fx1 * Fb < 0 then 

 X3 = Interpolate2(X1, B, Fx1, Fb) 

 Fx3 = f(X3) 

 If Fx1 * Fx3 < 0 then 

o A = X1 

o Fa = Fx1 

o B = X3 

o Fb = Fx3 

 Else 

o A = X3 

o Fa = Fx3 

 End 

 Else 

 X2 = A + (B - A) / 3 

 Fx2 = f(X2) 

 Comment-- case 5: [X1,X2] has root 

 If Fx1 * Fx2 < 0 then 

o X3 = Interpolate2(X1, X2, Fx1, Fx2) 

o Fx3 = f(X3) 

o If Fx1 * Fx3 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X3 

 Fb = Fx3 

o Else 

 A = X3 

 Fa = Fx3 

 B = X2 

 Fb = Fx2 

o End 

 Else 

o Comment-- case 6: [A,X2] has root 

o X3 = Interpolate2(A, X2, Fa, Fx2) 

o Fx3 = f(X3) 

o If Fa * Fx3 < 0 then 

 B = X3 
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 Fb = Fx3 

o Else 

 A = X3 

 Fa = X3 

 B = X2 

 Fb = Fx2 

o End 

 End 

 End 

o End 

o If A > B then 

 Swap A, B 

 Swap Fa, Fb 

 Swap LastA, LastB 

o End 

o If LastA <> A And |A – LastA| < Toler then exit loop  

o If LastB <> B And |B – LastB| < Toler then exit loop 

 Until |A – B| < Toler Or |Fa| < FxToler Or |Fb| < FxToler 

 If |Fa| < |Fb| Then 

o Return A 

 Else 

o Return B 

 End 

Despite the length of the pseudo-code, it is not really complicated.  When the code 

is executed in an implementation of the above pseudo-code, only a fraction of the 

statements are executed in each iteration. It’s just there are many alternate sets of 

statements to execute. The various segments of the pseudo-code perform basically 

the same tasks on different combinations of X values. The function Interpolate2 in 

the above pseudo-code performs an inverse linear interpolation to calculate the 

value of X for f(X)=0. Here is the simple pseudo-code for function Interpolate2: 

 Function Interpolate2(X1, X2, Fx1, Fx2) 

   Return(X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1) 

 End Function 

The iterations in the main loop first test if f(A) is smaller than f(B) in 

magnitude. The code contains two sets symmetrical statements. In each set, the 

code determines which of the three sub-intervals contain the root. The 

algorithm then performs an inverse linear interpolation to calculate a refined 

guess for the root within the new (and smaller) root-bracketing interval. The last 
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step is to further shrink the root-bracketing interval. The interpolation step 

significantly accelerates the convergence to the root. 

Testing with Excel VBA Code 
I tested the new algorithms using Excel taking advantage of the application’s 

worksheet for easy input and the display of intermediate calculations. The 

following listing shows the Excel VBA code used for testing: 

Option Explicit 

 

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double 

 

  sFx = UCase(sFx) 

  sFx = Replace(sFx, "EXP(", "!!") 

  sFx = Replace(sFx, "X", "(" & X & ")") 

  sFx = Replace(sFx, "!!", "EXP(") 

  MyFx = Evaluate(sFx) 

End Function 

 

Private Sub Swap(ByRef A As Double, ByRef B As Double) 

  Dim Buff As Double 

   

  Buff = A 

  A = B 

  B = Buff 

End Sub 

 

Function Interpolate2(ByVal X1 As Double, ByVal X2 As Double, _ 

                      ByVal Fx1 As Double, ByVal Fx2 As Double) As Double 

 

  Interpolate2 = (X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1) 

   

End Function 

 

Sub Go() 

  Dim R As Integer, Col As Integer 

  Dim A As Double, B As Double, Fa As Double, Fb As Double 

  Dim X1 As Double, X2 As Double, Fx1 As Double, Fx2 As Double 

  Dim X3 As Double, Fx3 As Double, Toler As Double, FxToler As Double 

  Dim LastA As Double, LastB As Double, h As Double, Diff As Double 

  Dim sFx As String, NumIters As Integer 

   

  Range("B3:Z10000").Value = "" 

  A = [A2].Value 

  B = [A4].Value 

  Toler = [A6].Value 

  FxToler = [A8].Value 

  sFx = [A10].Value 

   

   

  ' Bisection 

  Fa = MyFx(sFx, A) 

  Fb = MyFx(sFx, B) 
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  NumIters = 2 

  R = 3 

  Col = 2 

  Do 

    X1 = (A + B) / 2 

    Fx1 = MyFx(sFx, X1) 

    NumIters = NumIters + 1 

    If Fx1 * Fa > 0 Then 

      A = X1 

      Fa = Fx1 

    Else 

      B = X1 

      Fb = Fx1 

    End If 

    Cells(R, Col) = A 

    Cells(R, Col + 1) = B 

    R = R + 1 

 

  Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler 

  If Abs(Fa) < Abs(Fb) Then 

    Cells(R, Col) = A 

  Else 

    Cells(R, Col) = B 

  End If 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

   

   

  ' Trisection 

  A = [A2].Value 

  B = [A4].Value 

  If A > B Then Swap A, B 

  Fa = MyFx(sFx, A) 

  Fb = MyFx(sFx, B) 

  NumIters = 2 

  R = 3 

  Col = Col + 2 

  Do 

   

    If Abs(Fa) < Abs(Fb) Then 

      X1 = A + (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 1: [A,X1] has the root 

      If Fx1 * Fa < 0 Then 

        B = X1 

        Fb = Fx1 

      Else 

        X2 = A + 2 * (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 2: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          A = X1 

          Fa = Fx1 

          B = X2 

          Fb = Fx2 

        Else 
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          ' case 2: [X2,B] has root 

          A = X2 

          Fa = Fx2 

        End If 

      End If 

    Else 

      X1 = B - (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 4: [X1,B] has the root 

      If Fx1 * Fb < 0 Then 

        A = X1 

        Fa = Fx1 

      Else 

        X2 = B - 2 * (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 5: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          A = X1 

          Fa = Fx1 

          B = X2 

          Fb = Fx2 

        Else 

          ' case 6: [A,X2] has root 

          B = X2 

          Fb = Fx2 

        End If 

      End If 

    End If 

    

    Cells(R, Col) = A 

    Cells(R, Col + 1) = B 

    R = R + 1 

 

  Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler 

  If Abs(Fa) < Abs(Fb) Then 

    Cells(R, Col) = A 

  Else 

    Cells(R, Col) = B 

  End If 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

   

  ' Trisection Plus 

  A = [A2].Value 

  B = [A4].Value 

  If A > B Then Swap A, B 

  Fa = MyFx(sFx, A) 

  Fb = MyFx(sFx, B) 

  NumIters = 2 

  R = 3 

  Col = Col + 2 

  Do 

    LastA = A 

    LastB = B 

     

    If Abs(Fa) < Abs(Fb) Then 
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      X1 = A + (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 1: [A,X1] has the root 

      If Fx1 * Fa < 0 Then 

        X3 = Interpolate2(A, X1, Fa, Fx1) 

        Fx3 = MyFx(sFx, X3) 

        NumIters = NumIters + 1 

        If Fa * Fx3 < 0 Then 

          B = X3 

          Fb = Fx3 

        Else 

          A = X3 

          Fa = Fx3 

          B = X1 

          Fb = Fx1 

        End If 

      Else 

        X2 = A + 2 * (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 2: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          X3 = Interpolate2(X1, X2, Fx1, Fx2) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fx1 * Fx3 < 0 Then 

            A = X1 

            Fa = Fx1 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = Fx3 

            B = X2 

            Fb = Fx2 

          End If 

        Else 

          ' case 2: [X2,B] has root 

          X3 = Interpolate2(X2, B, Fx2, Fb) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fx2 * Fx3 < 0 Then 

            A = X2 

            Fa = Fx2 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = Fx3 

          End If 

        End If 

      End If 

    Else 

      X1 = A + 2 * (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 
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      ' case 4: [X1,B] has the root 

      If Fx1 * Fb < 0 Then 

        X3 = Interpolate2(X1, B, Fx1, Fb) 

        Fx3 = MyFx(sFx, X3) 

        NumIters = NumIters + 1 

        If Fx1 * Fx3 < 0 Then 

          A = X1 

          Fa = Fx1 

          B = X3 

          Fb = Fx3 

        Else 

          A = X3 

          Fa = Fx3 

        End If 

      Else 

        X2 = A + (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 5: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          X3 = Interpolate2(X1, X2, Fx1, Fx2) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fx1 * Fx3 < 0 Then 

            A = X1 

            Fa = Fx1 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = Fx3 

            B = X2 

            Fb = Fx2 

          End If 

        Else 

          ' case 6: [A,X2] has root 

          X3 = Interpolate2(A, X2, Fa, Fx2) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fa * Fx3 < 0 Then 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = X3 

            B = X2 

            Fb = Fx2 

          End If 

        End If 

      End If 

    End If 

    

    If A > B Then 

      Swap A, B 

      Swap Fa, Fb 

      Swap LastA, LastB 

    End If 
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    Cells(R, Col) = A 

    Cells(R, Col + 1) = B 

    R = R + 1 

    If LastA <> A And Abs(A - LastA) < Toler Then Exit Do 

    If LastB <> B And Abs(B - LastB) < Toler Then Exit Do 

  Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler 

   

  If Abs(Fa) < Abs(Fb) Then 

    Cells(R, Col) = A 

  Else 

    Cells(R, Col) = B 

  End If 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

 

 

  ' Newton's method 

  A = [A2].Value 

  B = [A4].Value 

  X1 = (A + B) / 2 

  NumIters = 0 

  R = 3 

  Col = Col + 2 

  Do 

    h = 0.001 * (1 + Abs(X1)) 

    Fx1 = MyFx(sFx, X1) 

    NumIters = NumIters + 2 

    Diff = h * Fx1 / (MyFx(sFx, X1 + h) - Fx1) 

    X1 = X1 - Diff 

    Cells(R, Col) = X1 

    Cells(R, Col + 1) = Fx() 

    R = R + 1 

  Loop Until Abs(Diff) < Toler 

  Cells(R, Col) = X1 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

End Sub 
 

The VBA function MyFX calculates the function value based on a string that 

contains the function’s expression. This expression must use X as the variable 

name. Note that the implementation of MyFX differs from previous ones (the 

Bisection Plus and Bisection++ methods) in that the name of the variable is X and 

not $X. Using function MyFX allows you to specify the function f(X)=0 in the 

spreadsheet and not hard code it in the VBA program. Granted that this approach 

trades speed of execution for flexibility. However, with most of today’s PCs you 

will hardly notice the difference in execution times. 

The subroutine Go performs the root-seeking calculations that compare the 

Bisection method, Trisection method, Trisection Plus method, and Newton’s 

method. Figure 1 shows a snapshot of the Excel spreadsheet used in the 

calculations for the methods mentioned above. 
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Figure 1. The Excel spreadsheet used to compare the Bisection, Trisection, 

Trisection Plus, and Newton’s methods. 

The Input Cells 

The VBA code relies on the following cells to obtain data: 

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B]. 

 Cell A6 contains the tolerance value. 

 Cells A8 contains the function tolerance value. 

 Cell A10 contains the expression for f(X)=0. Notice that the contents of cell 

A10 use X as the variable name. The expression is case insensitive. 

Output 

The spreadsheet displays output in the following four sets of columns: 

 Columns B and C display the updated values for the root-bracketing interval 

[A, B] for the Bisection method. This interval shrinks with each iteration 

until the Bisection method zooms on the root. The bottom most value, in 

column B, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

 Columns D, and E display the updated values for the root-bracketing interval 

[A, B] for the Trisection method. The bottom most value, in column D, is 

the best estimate for the root. To its right is the total number of function calls 

made during the iterations. 

A Newton

1 A B A B A B X

B 1.5 2 1.666666667 2 1.840376801 2 1.986679131 0

2 1.75 2 1.888888889 1.777777778 1.856820732 1.893584534 1.865982452 0

Toler 1.75 1.875 1.888888889 1.851851852 1.857181284 1.869075332 1.857244749 0

1.00E-10 1.8125 1.875 1.864197531 1.851851852 1.857183854 1.861145967 1.857183967 0

FxToler 1.84375 1.875 1.855967078 1.860082305 1.857183854 Fx Calls=10 1.85718386 0

1.00E-07 1.84375 1.859375 1.855967078 1.85733882 1.85718386 0

Function 1.8515625 1.859375 1.856881573 1.85733882 1.85718386 0

EXP(X)-X^3 1.85546875 1.859375 1.857186405 1.857033989 1.85718386 Fx Calls=14

1.85546875 1.857421875 1.857186405 1.857135599

1.856445313 1.857421875 1.857186405 1.857169469

1.856933594 1.857421875 1.857186405 1.857180759

1.857177734 1.857421875 1.857184523 1.857182641

1.857177734 1.857299805 1.857183896 1.857183268

1.857177734 1.85723877 1.857183896 1.857183687

1.857177734 1.857208252 1.857183896 1.857183826

1.857177734 1.857192993 1.857183849 1.857183872

1.857177734 1.857185364 1.857183849 Fx Calls=24

1.857181549 1.857185364

1.857183456 1.857185364

1.857183456 1.85718441

1.857183456 1.857183933

1.857183695 1.857183933

Bisection Trisection Trisection Plus
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 Columns F, and G display the updated values for the root-bracketing interval 

[A, B] for the Trisection Plus method. The bottom most value, in column F, 

is the best estimate for the root. To its right is the total number of function 

calls made during the iterations. 

 Columns H and I display the refined guess for the root and the refinement 

value, respectively, using Newton’s method. The bottom most value, in 

column H, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

The Results 
My aim is to significantly accelerate the Trisection method compared to the 

Bisection method. I was also hoping that the Trisection Plus method perform 

comparable to Newton’s method. The results proved my optimism to be well 

founded. Table 1 shows a summary of the results. The metrics for comparing the 

algorithms include the number of iterations and, perhaps more importantly, the 

number of function calls. I consider the number of function calls as the underlying 

cost of doing business, so to speak. I have come across new root-seeking 

algorithms that require fewer iterations than popular algorithms like Newton’s 

method and Halley’s method. However, these new algorithms require more 

function calls to zoom in on the root in fewer iterations.  The best results in Table 1 

appear in red. 

Function [A, B] Toler / 

FxToler 

Root Iterations Num Fx Calls 

Exp(X) – 

X^3 

[1, 2] 1E–10 

1E–7 

1.857183 Bisec= 24 

Trisec= 16 

Trisec+ = 4 

Newton= 7 

Bisec= 26 

Trisec = 24 

Trisec+= 10 

Newton= 14 

Exp(X) –

3*X^2 

[3, 4] 1E–10 

1E–7 

3.73307 Bisec= 26  

Trisec= 17 

Trisec+ = 5 

Newton= 7 

Bisec= 28 

Trisec= 24 

Trisec+ = 12 

Newton= 14 

Cos(X) – X [0, 1] 1E–10 

1E–7 

0.73908 Bisec= 23  

Trisec= 14 

Trisec+ = 4 

Newton= 5 

Bisec= 25 

Trisec= 21 

Trisec+ = 10 

Newton= 10 



The New Trisection Algorithms  15 

 

Copyright © 2014 by Namir Clement Shammas 

Function [A, B] Toler / 

FxToler 

Root Iterations Num Fx Calls 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[5, 6] 1E–10 

1E–7 

5.678 Bisec= 28 

Trisec= 18 

Trisec+ = 4 

Newton=6 

Bisec= 30 

Trisec= 23 

Trisec+ = 10 

Newton=12 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[1, 2] 1E–10 

1E–7 

1.234 Bisec= 28 

Trisec= 17 

Trisec+ = 4 

Newton= 5 

Bisec= 30 

Trisec= 23 

Trisec+ = 10 

Newton= 10 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[5,11] 1E–10 

1E–7 

5.678 Bisec= 29 

Trisec= 19 

Trisec+ = 6 

Newton= 7 

Bisec= 31 

Trisec= 32 

Trisec+ = 14 

Newton= 14 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[–8,     

–15] 

1E–10 

1E–7 

–12.345 Bisec= 33 

Trisec= 20 

Trisec+ = 5 

Newton= 5 

Bisec= 35 

Trisec= 30 

Trisec+ = 13 

Newton= 10 

Table 1. Summary of the results comparing the Bisection, Trisection, Trisection 

Plus, and Newton’s methods. 

The above table shows that the Trisection method performs better than the 

Bisection method, but not as good as Newton’s method. This is within my initial 

expectations. I am glad to see that, on the other hand, the Trisection Plus performs 

as good as or better than Newton’s method. Of course there is a huge number of 

test cases that vary the tested function and root-bracketing range. Due to time 

limitation, I have chosen the above few test cases which succeeded in proving my 

goals. 

Conclusion 
The Trisection Plus algorithm offers significant improvement over the Bisection 

method. The new algorithm has an efficiency that is somewhat comparable to that 

of Newton’s method. 
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