
The New Trisection Algorithms 1

Copyright © 2014 by Namir Clement Shammas

The New Trisection and Trisection Plus Root-
Seeking Algorithms

by
Namir Shammas

Introduction
This article presents a new root-bracketing algorithm and it’s variant. The new

algorithms, named the Trisection and Trisection Plus, compete with and enhance

the Bisection method which is the slowest root-seeking method.

The Bisection Algorithm
There are numerous algorithms that calculate the roots of single-variable nonlinear

functions. The most popular of such algorithms is Newton’s method. The slowest

and simplest root seeking algorithm is the Bisection method. This method has the

user select an interval that contains the sought root. The method iteratively shrinks

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code

for the Bisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler,

for the root of f(x):

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0.

 Repeat

o X =(A+B)/2

o Fx = f(X)

o If Fx*Fa > 0 then

 A = X

 Fa = Fx

o Else

 B = X

 Fb = Fx

o End

 Until |A-B| < Toler

 Return root as (A+B)/2

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest

converging method. It’s main virtue is that it is guaranteed to work if f(x) is

continuous in the interval [A, B] and f(A)×f(B) is negative.

The New Trisection Algorithms 2

Copyright © 2014 by Namir Clement Shammas

Newton’s Method
I will also compare the new algorithms with Newton’s method. This comparison

serves as an upper limit test. I am implementing Newton’s method based on the

following pseudo-code:

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler,

for the root of f(x):

 Calculate X = (A+B)/2

 Repeat

o h = 0.001 * (|X| + 1)

o Fx = f(X)

o Diff = h * Fx / (f(X+h) – Fx)

o X = X – Diff

 Until |Diff| < Toler

 Return root as X

The above code shows that the implementation of Newton’s method starts with the

same interval [A, B] that is already available for the root-bracketing methods.

Thus, the algorithm derives its single initial guess as the midpoint of that interval.

The Trisection Algorithm
The Trisection algorithm has each iteration divide the root-bracketing interval [A,

B] into three parts, instead of two as does the Bisection. The algorithm chooses the

first point X1 within the interval [A, B] closest to the end point A, or B, that has

the smallest absolute function value (call this point Z). This strategy hopes that

f(X1) would have a sign opposite that of f(Z). If this condition is true, then the

iteration has finished its task. If not, the algorithm calculates X2 which lies closer

to the other interval end point (call it Y). The algorithm then determines whether

the interval [X1, X2] or [X2, Y] is the new root-bracketing interval. The values of

the interval [A. B] are then updated accordingly. Here is the pseudo-code for the

Trisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler,

for the root of f(x):

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0.

 Repeat

o If |Fa| < |Fb| then

 X1 = A + (B-A)/3

 Fx1 = f(X1)

 If Fa*Fx1 < 0 then

 B = X1

 Fb = Fx1

 Else

 X2 = B – (B-A)/3

 Fx2 = f(X2)

The New Trisection Algorithms 3

Copyright © 2014 by Namir Clement Shammas

 If Fx1*Fx2 < 0 then

o A = X1

o Fa = Fx1

o B = X2

o Fb = Fx2

 Else

o A = X2

o Fa = Fx2

 End

 End

o Else

 X1 = B - (B-A)/3

 Fx1 = f(X1)

 If Fb*Fx1 < 0 then

 A = X1

 Fa = Fx1

 Else

 X2 = A + (B-A)/3

 Fx2 = f(X2)

 If Fx1*Fx2 < 0 then

o A = X2

o Fa = Fx2

o B = X1

o Fb = Fx1

 Else

o B = X2

o Fb = Fx2

 End

 End

 Until |A-B| < Toler

 Return root as (A+B)/2

The Trisection Plus Algorithm
I have used the same approach in my previous efforts[4][5] to enhance the Bisection

method, with the Trisection Plus algorithm. This variant of the Trisection

algorithm carries out the same basic steps with the added step of performing an

inverse linear interpolation within the new root-bracketing interval. This additional

step enhances significantly the convergence to the root.

Let me present the pseudo-code for the Trisection Plus method:

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the

root of f(x), and the function tolerance value FxToler:

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0

 Repeat

o LastA = A

o LastB = B

o If |Fa| < |Fb)| then

 X1 = A + (B - A) / 3

The New Trisection Algorithms 4

Copyright © 2014 by Namir Clement Shammas

 Fx1 = f(X1)

 Comment-- case 1: [A,X1] has the root

 If Fx1 * Fa < 0 then

 X3 = Interpolate2(A, X1, Fa, Fx1)

 Fx3 = f(X3)

 If Fa * Fx3 < 0 then

o B = X3

o Fb = Fx3

 Else

o A = X3

o Fa = Fx3

o B = X1

o Fb = Fx1

 End

 Else

 X2 = A + 2 * (B - A) / 3

 Fx2 = f(X2)

 Comment-- case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 then

o X3 = Interpolate2(X1, X2, Fx1, Fx2)

o Fx3 = f(X3)

o If Fx1 * Fx3 < 0 then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

o Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

o End

 Else

o Comment := case 2: [X2,B] has root

o X3 = Interpolate2(X2, B, Fx2, Fb)

o Fx3 = f(X3)

o If Fx2 * Fx3 < 0 then

 A = X2

 Fa = Fx2

 B = X3

 Fb = Fx3

o Else

 A = X3

 Fa = Fx3

o End

 End

The New Trisection Algorithms 5

Copyright © 2014 by Namir Clement Shammas

 End

o Else

 X1 = A + 2 * (B - A) / 3

 Fx1 = f(X1)

 Comment-- case 4: [X1,B] has the root

 If Fx1 * Fb < 0 then

 X3 = Interpolate2(X1, B, Fx1, Fb)

 Fx3 = f(X3)

 If Fx1 * Fx3 < 0 then

o A = X1

o Fa = Fx1

o B = X3

o Fb = Fx3

 Else

o A = X3

o Fa = Fx3

 End

 Else

 X2 = A + (B - A) / 3

 Fx2 = f(X2)

 Comment-- case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 then

o X3 = Interpolate2(X1, X2, Fx1, Fx2)

o Fx3 = f(X3)

o If Fx1 * Fx3 < 0 then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

o Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

o End

 Else

o Comment-- case 6: [A,X2] has root

o X3 = Interpolate2(A, X2, Fa, Fx2)

o Fx3 = f(X3)

o If Fa * Fx3 < 0 then

 B = X3

The New Trisection Algorithms 6

Copyright © 2014 by Namir Clement Shammas

 Fb = Fx3

o Else

 A = X3

 Fa = X3

 B = X2

 Fb = Fx2

o End

 End

 End

o End

o If A > B then

 Swap A, B

 Swap Fa, Fb

 Swap LastA, LastB

o End

o If LastA <> A And |A – LastA| < Toler then exit loop

o If LastB <> B And |B – LastB| < Toler then exit loop

 Until |A – B| < Toler Or |Fa| < FxToler Or |Fb| < FxToler

 If |Fa| < |Fb| Then

o Return A

 Else

o Return B

 End

Despite the length of the pseudo-code, it is not really complicated. When the code

is executed in an implementation of the above pseudo-code, only a fraction of the

statements are executed in each iteration. It’s just there are many alternate sets of

statements to execute. The various segments of the pseudo-code perform basically

the same tasks on different combinations of X values. The function Interpolate2 in

the above pseudo-code performs an inverse linear interpolation to calculate the

value of X for f(X)=0. Here is the simple pseudo-code for function Interpolate2:

 Function Interpolate2(X1, X2, Fx1, Fx2)

 Return(X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1)

 End Function

The iterations in the main loop first test if f(A) is smaller than f(B) in

magnitude. The code contains two sets symmetrical statements. In each set, the

code determines which of the three sub-intervals contain the root. The

algorithm then performs an inverse linear interpolation to calculate a refined

guess for the root within the new (and smaller) root-bracketing interval. The last

The New Trisection Algorithms 7

Copyright © 2014 by Namir Clement Shammas

step is to further shrink the root-bracketing interval. The interpolation step

significantly accelerates the convergence to the root.

Testing with Excel VBA Code
I tested the new algorithms using Excel taking advantage of the application’s

worksheet for easy input and the display of intermediate calculations. The

following listing shows the Excel VBA code used for testing:

Option Explicit

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = UCase(sFx)

 sFx = Replace(sFx, "EXP(", "!!")

 sFx = Replace(sFx, "X", "(" & X & ")")

 sFx = Replace(sFx, "!!", "EXP(")

 MyFx = Evaluate(sFx)

End Function

Private Sub Swap(ByRef A As Double, ByRef B As Double)

 Dim Buff As Double

 Buff = A

 A = B

 B = Buff

End Sub

Function Interpolate2(ByVal X1 As Double, ByVal X2 As Double, _

 ByVal Fx1 As Double, ByVal Fx2 As Double) As Double

 Interpolate2 = (X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1)

End Function

Sub Go()

 Dim R As Integer, Col As Integer

 Dim A As Double, B As Double, Fa As Double, Fb As Double

 Dim X1 As Double, X2 As Double, Fx1 As Double, Fx2 As Double

 Dim X3 As Double, Fx3 As Double, Toler As Double, FxToler As Double

 Dim LastA As Double, LastB As Double, h As Double, Diff As Double

 Dim sFx As String, NumIters As Integer

 Range("B3:Z10000").Value = ""

 A = [A2].Value

 B = [A4].Value

 Toler = [A6].Value

 FxToler = [A8].Value

 sFx = [A10].Value

 ' Bisection

 Fa = MyFx(sFx, A)

 Fb = MyFx(sFx, B)

The New Trisection Algorithms 8

Copyright © 2014 by Namir Clement Shammas

 NumIters = 2

 R = 3

 Col = 2

 Do

 X1 = (A + B) / 2

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 If Fx1 * Fa > 0 Then

 A = X1

 Fa = Fx1

 Else

 B = X1

 Fb = Fx1

 End If

 Cells(R, Col) = A

 Cells(R, Col + 1) = B

 R = R + 1

 Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler

 If Abs(Fa) < Abs(Fb) Then

 Cells(R, Col) = A

 Else

 Cells(R, Col) = B

 End If

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

 ' Trisection

 A = [A2].Value

 B = [A4].Value

 If A > B Then Swap A, B

 Fa = MyFx(sFx, A)

 Fb = MyFx(sFx, B)

 NumIters = 2

 R = 3

 Col = Col + 2

 Do

 If Abs(Fa) < Abs(Fb) Then

 X1 = A + (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 1: [A,X1] has the root

 If Fx1 * Fa < 0 Then

 B = X1

 Fb = Fx1

 Else

 X2 = A + 2 * (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

 Else

The New Trisection Algorithms 9

Copyright © 2014 by Namir Clement Shammas

 ' case 2: [X2,B] has root

 A = X2

 Fa = Fx2

 End If

 End If

 Else

 X1 = B - (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 4: [X1,B] has the root

 If Fx1 * Fb < 0 Then

 A = X1

 Fa = Fx1

 Else

 X2 = B - 2 * (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

 Else

 ' case 6: [A,X2] has root

 B = X2

 Fb = Fx2

 End If

 End If

 End If

 Cells(R, Col) = A

 Cells(R, Col + 1) = B

 R = R + 1

 Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler

 If Abs(Fa) < Abs(Fb) Then

 Cells(R, Col) = A

 Else

 Cells(R, Col) = B

 End If

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

 ' Trisection Plus

 A = [A2].Value

 B = [A4].Value

 If A > B Then Swap A, B

 Fa = MyFx(sFx, A)

 Fb = MyFx(sFx, B)

 NumIters = 2

 R = 3

 Col = Col + 2

 Do

 LastA = A

 LastB = B

 If Abs(Fa) < Abs(Fb) Then

The New Trisection Algorithms 10

Copyright © 2014 by Namir Clement Shammas

 X1 = A + (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 1: [A,X1] has the root

 If Fx1 * Fa < 0 Then

 X3 = Interpolate2(A, X1, Fa, Fx1)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fa * Fx3 < 0 Then

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 B = X1

 Fb = Fx1

 End If

 Else

 X2 = A + 2 * (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 X3 = Interpolate2(X1, X2, Fx1, Fx2)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx1 * Fx3 < 0 Then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

 End If

 Else

 ' case 2: [X2,B] has root

 X3 = Interpolate2(X2, B, Fx2, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx2 * Fx3 < 0 Then

 A = X2

 Fa = Fx2

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 End If

 End If

 End If

 Else

 X1 = A + 2 * (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

The New Trisection Algorithms 11

Copyright © 2014 by Namir Clement Shammas

 ' case 4: [X1,B] has the root

 If Fx1 * Fb < 0 Then

 X3 = Interpolate2(X1, B, Fx1, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx1 * Fx3 < 0 Then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 End If

 Else

 X2 = A + (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 X3 = Interpolate2(X1, X2, Fx1, Fx2)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx1 * Fx3 < 0 Then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

 End If

 Else

 ' case 6: [A,X2] has root

 X3 = Interpolate2(A, X2, Fa, Fx2)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fa * Fx3 < 0 Then

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = X3

 B = X2

 Fb = Fx2

 End If

 End If

 End If

 End If

 If A > B Then

 Swap A, B

 Swap Fa, Fb

 Swap LastA, LastB

 End If

The New Trisection Algorithms 12

Copyright © 2014 by Namir Clement Shammas

 Cells(R, Col) = A

 Cells(R, Col + 1) = B

 R = R + 1

 If LastA <> A And Abs(A - LastA) < Toler Then Exit Do

 If LastB <> B And Abs(B - LastB) < Toler Then Exit Do

 Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler

 If Abs(Fa) < Abs(Fb) Then

 Cells(R, Col) = A

 Else

 Cells(R, Col) = B

 End If

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

 ' Newton's method

 A = [A2].Value

 B = [A4].Value

 X1 = (A + B) / 2

 NumIters = 0

 R = 3

 Col = Col + 2

 Do

 h = 0.001 * (1 + Abs(X1))

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 2

 Diff = h * Fx1 / (MyFx(sFx, X1 + h) - Fx1)

 X1 = X1 - Diff

 Cells(R, Col) = X1

 Cells(R, Col + 1) = Fx()

 R = R + 1

 Loop Until Abs(Diff) < Toler

 Cells(R, Col) = X1

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

End Sub

The VBA function MyFX calculates the function value based on a string that

contains the function’s expression. This expression must use X as the variable

name. Note that the implementation of MyFX differs from previous ones (the

Bisection Plus and Bisection++ methods) in that the name of the variable is X and

not $X. Using function MyFX allows you to specify the function f(X)=0 in the

spreadsheet and not hard code it in the VBA program. Granted that this approach

trades speed of execution for flexibility. However, with most of today’s PCs you

will hardly notice the difference in execution times.

The subroutine Go performs the root-seeking calculations that compare the

Bisection method, Trisection method, Trisection Plus method, and Newton’s

method. Figure 1 shows a snapshot of the Excel spreadsheet used in the

calculations for the methods mentioned above.

The New Trisection Algorithms 13

Copyright © 2014 by Namir Clement Shammas

Figure 1. The Excel spreadsheet used to compare the Bisection, Trisection,

Trisection Plus, and Newton’s methods.

The Input Cells

The VBA code relies on the following cells to obtain data:

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B].

 Cell A6 contains the tolerance value.

 Cells A8 contains the function tolerance value.

 Cell A10 contains the expression for f(X)=0. Notice that the contents of cell

A10 use X as the variable name. The expression is case insensitive.

Output

The spreadsheet displays output in the following four sets of columns:

 Columns B and C display the updated values for the root-bracketing interval

[A, B] for the Bisection method. This interval shrinks with each iteration

until the Bisection method zooms on the root. The bottom most value, in

column B, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

 Columns D, and E display the updated values for the root-bracketing interval

[A, B] for the Trisection method. The bottom most value, in column D, is

the best estimate for the root. To its right is the total number of function calls

made during the iterations.

A Newton

1 A B A B A B X

B 1.5 2 1.666666667 2 1.840376801 2 1.986679131 0

2 1.75 2 1.888888889 1.777777778 1.856820732 1.893584534 1.865982452 0

Toler 1.75 1.875 1.888888889 1.851851852 1.857181284 1.869075332 1.857244749 0

1.00E-10 1.8125 1.875 1.864197531 1.851851852 1.857183854 1.861145967 1.857183967 0

FxToler 1.84375 1.875 1.855967078 1.860082305 1.857183854 Fx Calls=10 1.85718386 0

1.00E-07 1.84375 1.859375 1.855967078 1.85733882 1.85718386 0

Function 1.8515625 1.859375 1.856881573 1.85733882 1.85718386 0

EXP(X)-X^3 1.85546875 1.859375 1.857186405 1.857033989 1.85718386 Fx Calls=14

1.85546875 1.857421875 1.857186405 1.857135599

1.856445313 1.857421875 1.857186405 1.857169469

1.856933594 1.857421875 1.857186405 1.857180759

1.857177734 1.857421875 1.857184523 1.857182641

1.857177734 1.857299805 1.857183896 1.857183268

1.857177734 1.85723877 1.857183896 1.857183687

1.857177734 1.857208252 1.857183896 1.857183826

1.857177734 1.857192993 1.857183849 1.857183872

1.857177734 1.857185364 1.857183849 Fx Calls=24

1.857181549 1.857185364

1.857183456 1.857185364

1.857183456 1.85718441

1.857183456 1.857183933

1.857183695 1.857183933

Bisection Trisection Trisection Plus

The New Trisection Algorithms 14

Copyright © 2014 by Namir Clement Shammas

 Columns F, and G display the updated values for the root-bracketing interval

[A, B] for the Trisection Plus method. The bottom most value, in column F,

is the best estimate for the root. To its right is the total number of function

calls made during the iterations.

 Columns H and I display the refined guess for the root and the refinement

value, respectively, using Newton’s method. The bottom most value, in

column H, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

The Results
My aim is to significantly accelerate the Trisection method compared to the

Bisection method. I was also hoping that the Trisection Plus method perform

comparable to Newton’s method. The results proved my optimism to be well

founded. Table 1 shows a summary of the results. The metrics for comparing the

algorithms include the number of iterations and, perhaps more importantly, the

number of function calls. I consider the number of function calls as the underlying

cost of doing business, so to speak. I have come across new root-seeking

algorithms that require fewer iterations than popular algorithms like Newton’s

method and Halley’s method. However, these new algorithms require more

function calls to zoom in on the root in fewer iterations. The best results in Table 1

appear in red.

Function [A, B] Toler /

FxToler

Root Iterations Num Fx Calls

Exp(X) –

X^3

[1, 2] 1E–10

1E–7

1.857183 Bisec= 24

Trisec= 16

Trisec+ = 4

Newton= 7

Bisec= 26

Trisec = 24

Trisec+= 10

Newton= 14

Exp(X) –

3*X^2

[3, 4] 1E–10

1E–7

3.73307 Bisec= 26

Trisec= 17

Trisec+ = 5

Newton= 7

Bisec= 28

Trisec= 24

Trisec+ = 12

Newton= 14

Cos(X) – X [0, 1] 1E–10

1E–7

0.73908 Bisec= 23

Trisec= 14

Trisec+ = 4

Newton= 5

Bisec= 25

Trisec= 21

Trisec+ = 10

Newton= 10

The New Trisection Algorithms 15

Copyright © 2014 by Namir Clement Shammas

Function [A, B] Toler /

FxToler

Root Iterations Num Fx Calls

(X–1.234) *

(X–5.678) *

(X+12.345)

[5, 6] 1E–10

1E–7

5.678 Bisec= 28

Trisec= 18

Trisec+ = 4

Newton=6

Bisec= 30

Trisec= 23

Trisec+ = 10

Newton=12

(X–1.234) *

(X–5.678) *

(X+12.345)

[1, 2] 1E–10

1E–7

1.234 Bisec= 28

Trisec= 17

Trisec+ = 4

Newton= 5

Bisec= 30

Trisec= 23

Trisec+ = 10

Newton= 10

(X–1.234) *

(X–5.678) *

(X+12.345)

[5,11] 1E–10

1E–7

5.678 Bisec= 29

Trisec= 19

Trisec+ = 6

Newton= 7

Bisec= 31

Trisec= 32

Trisec+ = 14

Newton= 14

(X–1.234) *

(X–5.678) *

(X+12.345)

[–8,

–15]

1E–10

1E–7

–12.345 Bisec= 33

Trisec= 20

Trisec+ = 5

Newton= 5

Bisec= 35

Trisec= 30

Trisec+ = 13

Newton= 10

Table 1. Summary of the results comparing the Bisection, Trisection, Trisection

Plus, and Newton’s methods.

The above table shows that the Trisection method performs better than the

Bisection method, but not as good as Newton’s method. This is within my initial

expectations. I am glad to see that, on the other hand, the Trisection Plus performs

as good as or better than Newton’s method. Of course there is a huge number of

test cases that vary the tested function and root-bracketing range. Due to time

limitation, I have chosen the above few test cases which succeeded in proving my

goals.

Conclusion
The Trisection Plus algorithm offers significant improvement over the Bisection

method. The new algorithm has an efficiency that is somewhat comparable to that

of Newton’s method.

References
1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition,

Cambridge University Press; 3rd edition, September 10, 2007.

The New Trisection Algorithms 16

Copyright © 2014 by Namir Clement Shammas

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage

Learning, 9th edition, August 9, 2010.

3. Namir Shammas, Root-Bracketing Quartile Algorithm,

http://www.namirshammas.com/NEW/quartile.htm.

4. Namir Shammas, The New Bisection Plus root-seeking algorithm,

http://www.namirshammas.com/NEW/BisPls.pdf

5. Namir Shammas, The New Bisection++ root-seeking algorithm,

http://www.namirshammas.com/NEW/BisPls2.pdf

Document Information
Version Date Comments

1.0.0 3/8/2014 Initial release.

http://www.namirshammas.com/NEW/quartile.htm
http://www.namirshammas.com/NEW/BisPls.pdf
http://www.namirshammas.com/NEW/BisPls2.pdf

