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Shammas Polynomials 

By 

Namir Shammas 
This article discusses a new brand of polynomial that is aimed at regression analysis. While 
traditional polynomials play a very important role in calculus, numerical analysis, and statistical 
curve fitting, using them in certain types of curve fitting can be frustrating.  I am talking about 
using polynomials to fit data whose X variable (that is, the independent variable) runs into high 
numbers. In these cases raising high values of X to high powers creates huge numbers. Solving 
the regression coefficients for such polynomials may well call error and instability in calculating 
the polynomial coefficients. I suggest a remedy for this problem—The Shammas Polynomial. I 
have to somewhat apologize for the polynomial name, since the other generic names I thought of 
turned out to be already taken. 

The goal of the Shammas Polynomials is to use lower-powers with the independent variable and 
obtain a better fit than normal polynomials with the same number of terms. 

What is a Shammas Polynomial? 
A typical polynomial of order N is defined as: 

Y(X) = A0 + ∑ AiXi  for i = 1 to N 

For a moment, let’s take a step back and redefine polynomials using the following and more 
general form: 

Y(X) = A0 + ∑ AiX
P(i)

  for i = 1 to N 

Where P(i) is a general function for the power of each term in the polynomial. In the case of 
traditional polynomials, P(i) is simply equal to i.  

What if we define P(i) in terms of i and some other constants? Here is an example: 

P(i) = i / α + β 

Let’s call α the state of the polynomial, and call β the shift factor. To tame the polynomials 
terms, you can have α set values higher than 1. Likewise, β can be 0.1 and higher. Values of α 
that exceed 1 reduce the value of the powers of XP(i). The higher α is the more damped the 
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powers are. The use of the shift factor β allows, if needed, a limited compensation to increase the 
calculator powers. 

You can assign different expressions for P(i). Each expression generates a variant of the 
Shammas Polynomial. The following table shows the proposed set of Shammas Polynomials. 

 

Type of Shammas 
Polynomial 

P(i) Comment 

Linear Shammas 
Polynomial 

i / α + β When α=1 and β=0 
The Shammas 
Polynomial is 
equivalent to a regular 
polynomial. 

Logarithmic Shammas 
Polynomial 

ln(i+1) * α + β  

Square root Shammas 
Polynomial 

◊i * α + β  

Reciprocal α / i + β  
 

You can define your own flavor of the Shammas Polynomial. You need to remember one simple 
rule. The expression for P(i) cannot generate the same value for any two different values of i. 
Such duplicate values create redundant terms in the models used for curve fitting. 

Fitting Data with a Shammas Polynomial 
To use a Shammas Polynomial in curve fitting I suggest the following method: 

1. Select the type of Shammas Polynomial to use. 
2. Select the number of terms (which is equivalent to the order of a regular polynomial).  
3. Select the values for α and β. 
4. For each observation, calculate the variable for each term. The value for each variable is 

based on the values of the independent variable X, the value of the power I, and the 
values of α and β. For example, if you have a 4-term Linear Shammas Polynomial, the 
variables for the regression are calculated using: 

X^(1/ α + β) 

X^(2/ α + β) 
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X^(3/ α + β) 

X^(4/ α + β) 

5. Perform a multiple regression to calculate the regression coefficients and also the 
regression statistics (such as R2, F statistic, error sum of squares, and so on). It is a good 
idea to calculate the entries for the regression ANOVA table. 

6. Repeat steps 3 to 5 for different values of α, until you find the best value for α. 
7. Repeat steps 3 to 5 for different values of β, until you find the best value for β. 
8. Repeat steps 1 to 7, if need be, to fit your data with other types of Shammas Polynomials. 

You can then select the very best model and its coefficients. 

I recommend that you start with α = 1 and β = 0. Alter the values for α until you get the best fit. 
Then alter the values of β until you get an even better fit. 

It is also a good idea to perform a polynomial regression to compare the results of fitting the data 
with a regular polynomial and with one or more types of Shammas Polynomials. 

Sample Results 
Shammas Polynomials are meant to produce improved curve fitting compared to regular 
polynomials that have the same number of terms. Of course not every case will put the Shammas 
Polynomials ahead of regular polynomials. 

The cases I am interested in deal with long range time series, such as stock prices and market 
indices that are taken over a long period of time. This section looks at how Shammas 
Polynomials perform with the DOW, CAC, DAX, and FTSE indices taken over a range of 
several years. 

The DOW Jones Index 
The following table shows the result of fitting the DOW Jones Index for the period between 
October 1995 and August 2008. The table compares the regression fitting using a 4-order 
polynomial against the Linear, Logarithmic, Square Root, and Reciprocal Shammas 
Polynomials. 

Shammas 
Model 

Regular 
Polynomials 

Linear Logarithmic Square Root Reciprocal 

Adjusted R2  0.850606274 0.915507486 0.851800446 0.916048831 0.849788444 
Residual SS 1963027605 1110228262 1947336226 1103115016 1973773856 

F Stat 4578.752091 8712.635906 4622.117542 8773.995839 4549.451035 
      
α  1 2.4 2 2 
β  1 1 0.3 0.2 
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Shammas 
Model 

Regular 
Polynomials 

Linear Logarithmic Square Root Reciprocal 

      
A0 3473.45326 5120.85312 6702.908709 5186.324407 7344.807524 
A1 15.42880386 0.020777917 -375.811575 0.004586171 0.001378591 
A2 -0.012893107 -2.36355E-05 85.27016985 -2.67224E-05 -24.32871434 
A3 4.32508E-06 9.32045E-09 -13.26792501 2.26198E-07 596.738466 
A4 -4.68235E-10 -1.21795E-12 1.048469326 -1.34395E-09 -1140.874048 
 

The Square Root Shammas Polynomial shows the best results, and is closely followed by the 
Linear Shammas Model. The other two Shammas Polynomials performed about the same as the 
regular 4-order polynomial. 

The Linear Shammas Polynomial fits the DJI index with the following polynomial: 

DJI = A0 + A1 t2 + A2 t3 + A3 t4 + A4 t5 

The above polynomial skips the term of time raised to power 1. Performing a 5-order polynomial 
curve fit confirms that the term of time raised to 1 is statistically insignificant. 

The Square Root Shammas Polynomial fits the following model: 

DJI = A0 + A1 t2.3 + A2 t3.13 + A3 t3.76 + A4 t4.3 

The powers of the Linear and Square Root Shammas Polynomials are somewhat close to each 
other and are able to fit the data with similar goodness of fit. 
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The CAC Index 
Here is another example that uses the French CAC index data from January 1990 to August 
2008. The following table compares the regression fitting using a 4-order polynomial against the 
Linear, Logarithmic, Square Root, and Reciprocal Shammas Polynomials. 

 

Shammas 
Model 

Regular 
Polynomials 

Linear Logarithmic Square Root Reciprocal 

Adjusted R2  0.70924439 0.718937076 0.645753745 0.720806724 0.645450616 
Residual SS 2898180137 2801565835 3531039210 2782929646 3534060722 

F Stat 2836.703159 2974.584483 2120.115493 3002.28222 2117.309814 
      
α  1 1 2 1 
β  0.5 0.2 0 0.2 
      
A0 2668.289144 2139.773236 -439.4167468 2022.088205 -1051.996037 
A1 -4.813418407 -0.096367857 4394.147687 -0.004401385 -2.100878531 
A2 0.005543048 0.000121317 -5115.195614 2.68621E-05 1060.836605 
A3 -1.81679E-06 -4.10031E-08 2723.202135 -2.10301E-07 -8206.282973 
A4 1.89512E-10 4.30067E-12 -565.5951761 1.13403E-09 9140.411051 
 

The Square Root Shammas Polynomial shows the best results, and is closely followed by the 
Linear Shammas Model. The other two Shammas Polynomials performed not as well as the 
regular 4-order polynomial. 

The Square Root Shammas Polynomial fits the following model: 

CAC = A0 + A1 t2 + A2 t2.83 + A3 t3.46 + A4 t4 

The Linear Shammas Polynomial fits the DJI index with the following polynomial: 

CAC = A0 + A1 t1.5 + A2 t2.5 + A3 t3.5 + A4 t4.5 

The powers of the Linear and Square Root Shammas Polynomials are somewhat close to each 
other and are able to fit the data with similar goodness of fit. 
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The DAX Index 
A third example uses the German DAX index data from October 1995 to August 2008. The 
following table compares the regression fitting using a 4-order polynomial against the Linear, 
Logarithmic, Square Root, and Reciprocal Shammas Polynomials. 

 

Shammas 
Model 

Regular 
Polynomials 

Linear Logarithmic Square Root Reciprocal 

Adjusted R2  0.670293782 0.690664248 0.694065346 0.711687097 0.682368394 
Residual SS 2573816826 2414796933 2388246622 2250684280 2479557641 

F Stat 1648.74906 1810.630375 1839.758555 2001.681848 1742.19821 
      
α  1.9 3 1.9 3 
β  0 -0.2 0 -0.2 
      
A0 500.9412185 5045.750141 3978.654248 5953.837282 5589.118881 
A1 13.66240913 -749.2136901 -288.2143597 -892.3167915 6.51819E-06 
A2 -0.011832878 53.13958177 30.55482752 60.19979533 -4.749848283 
A3 3.60308E-06 -1.188852656 -2.769392949 -1.325560379 391.4127767 
A4 -3.14521E-10 0.008467432 0.142931859 0.009373356 -1390.732181 
 

The Square Root Shammas Polynomial shows the best results. The other Shammas Polynomials 
did better than the 4-order polynomial. 

The Square Root Shammas Polynomial fits the following model: 

DAX = A0 + A1 t1.9 + A2 t2.69 + A3 t3.29 + A4 t3.8 

The example presented show that the Square Root Shammas Polynomial performs well with the 
three cases studied.  Generalizing this conclusion may not serve best fitting other data. 
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The FTSE Index 
The fourth example uses the British FTSE index data from October 1995 to August 2008. The 
following table compares the regression fitting using a 4-order polynomial against the Linear, 
Logarithmic, Square Root, and Reciprocal Shammas Polynomials. 

Shammas 
Model 

Regular 
Polynomials 

Linear Logarithmic Square Root Reciprocal 

Adjusted R2  0.652536202 0.899474907 0.639355625 0.904651481 0.631488047 
Residual SS 969783354.2 280270333.6 1006570798 266120979.8 1028529478 

F Stat 1523.586611 7253.163526 1438.30946 7693.266209 1390.314319 
      
α  1 2 2 2 
β  1.2 0.1 0.4 0.2 
      
A0 2168.709723 3531.330906 5764.235357 3449.107705 5337.953954 
A1 11.4505974 0.003365689 -652.1151752 0.001567875 0.001085756 
A2 -0.011403113 -4.13839E-06 227.5555516 -9.61996E-06 -18.79870601 
A3 4.12897E-06 1.68542E-09 -50.45793724 8.3239E-08 455.5978755 
A4 -4.84747E-10 -2.241E-13 5.285896627 -5.00924E-10 -876.1792613 
 

The Square Root and Linear Shammas Polynomials yield good fits with the data. These fits are 
significantly better than fitting the data with the 4-order polynomial. By contrast, the polynomial 
fit give better results than the Logorithmic and Reciprocal Shammas Polynomials.  

The Square Root Shammas Polynomial fits the following model: 

FTSE = A0 + A1 t2.4 + A2 t3.23 + A3 t3.86 + A4 t4.4 

The Linear Shammas Polynomial fits the DJI index with the following polynomial: 

FTSE = A0 + A1 t2.2 + A2 t3.2 + A3 t4.2 + A4 t5.2 

Conclusion 
This article has shown that the Shammas Polynomials provide better curve fit than comparable 
polynomial. Since this study is limited, more analysis is needed to generalize the conclusion 
drawn in this article. This article serves to open the door for further investigating Shammas 
Polynomials. 

One of the surprises of using the Shammas Polynomials with the four cases studied, is that the 
polynomials seem to skip the linear terms and opt for terms with powers that exceed the power 4 
present in the 4-order polynomial used for comparison. These results seem a bit counter intuitive 
regarding the original intention for defining the Shammas Polynomials. 


