
Namir Shammas New Root-Seeking Algorithms

 Page 1 of 19

New Root-Seeking Algorithms
By

Namir C Shammas

This article presents a pair of new root-seeking algorithms that use an innovative approach. Testing these
algorithms shows that they can reach a good approximation to the root in less iterations and/or fewer
function calls than Newton’s method.

Overview of Newton’s Method
Newton’s method starts with a guess for the root and iterates to refine that guess. Each iteration requires
the calculations of the function and the slope at the current guess, and yields a new guess for the root. The
algorithm discards the older guesses, replacing them with the new ones. Typically, the value of the slope
is approximated by a finite difference method. Thus, each iteration in Newton’s method requires two
function calls. Other algorithms that converge at a faster rate use approximations to higher derivatives and
thus make more function calls per iteration in order to approximate the higher derivatives. In the majority
of the root-seeking methods, that do not bracket the root, the iterations refine the guess for the root until it
converges to an acceptable value that is close enough to the actual root.

To solve for:

f(X*) = 0

Newton’s algorithm uses the following equation to refine the guess for the root:

X1 = X0 – f(X0) / f’(X0)

Where f’(X) is the derivative of f(X) with respect to X. You can evaluate an approximation to the
derivative using, among others, the following equation:

f’(X) = [f(X + h) – f(X)] / h

Where h is a small increment and can be estimated as:

h = 0.01 * (|X| + 1)

Probing Algorithms
The two new algorithms that I designed share a common approach, yet differ in the details of their
execution. The basic idea is to start with an initial guess which becomes a fixed vantage point. From this
vantage point, the algorithm uses probes to find the root. Each probe generates a new value for the
variable X and its corresponding function value. This function value gives an assessment of how good the

Namir Shammas New Root-Seeking Algorithms

 Page 2 of 19

probed value of X is. The iterations of the probing algorithms strive to obtain better probed values.
During the iterations, the initial guess remains fixed.

Here is the abstract version of the probing algorithms:

1. Given an initial guess X0.
2. Initialize an array of N probes. For each probe obtain a new value of X(i) and f(X(i)).
3. Sort the first three probes using the absolute value of f(X).
4. Repeat the next steps

a. Use the current array of N probes to interpolate a new probe value X(N+1) and its
function value f(X(N+1)).

b. Using the absolute value of f(X), insert the new probe in the array of probes, such that the
array of probes remains sorted. This step places the best probe at the array index 1.
Likewise, the worst probe appears at the array index N+1.

c. If the probes show that the convergence criteria have been met, resume in step 4.
Otherwise, perform another loop iteration.

5. The best guess for the root is X(1)

The Probing Slopes Algorithm
The first variant of the probing algorithms attempts to find the critical slope that would zoom in on the
root. In other words, the algorithm attempts to find the slope of the straight line connecting the initial
guess point with the root. The initial guess point is (X0, f(X0)),where initial guess X0. The root point is
(X*, 0). The critical straight line passing through these two points is:

Critical slope = (f(X0) – 0) / (X0 – X*)

Calculating the critical slope is not possible since we do not know the value of the root, X*. The
algorithm starts by calculating an array of three slopes, using the following equations:

S(1) = [f(X + h) – f(X)] / h

S(2) = (1 + r) S(1)

S(3) = (1 – r) S(1)

Where r is a small number like 0.15 and 0.10. Notice that calculating the values for slopes S(2) and S(3)
does not require evaluating the function f(x).

The algorithm uses the array of slopes to calculate the array of probed root values. The algorithm uses the
following equation:

X(i) = X0 – f(X0) / S(i), for i = 1,2, and 3

Next, the algorithm calculates the array of function values Fx(i) = f(X(i)). Finally, sort the first three
probes using the absolute values of the array Fx() as the sort key.

Namir Shammas New Root-Seeking Algorithms

 Page 3 of 19

The steps up till now supply the algorithm with its initial probes. Each one of the three probes is made up
of the values of a slope S(i), probed root value X(i), and probed function value Fx(i). Armed with the
probes the algorithm starts its main loop. Each loop iteration performs the following tasks:

1. Interpolate the first three elements of arrays S() and Fx() to calculate the slope S(4) for when the
function value is 0. The calculated slope is designated as S(4) and represents a new element of the
array of slopes S().

2. Calculate the probed root value, X(4) = X0 – f(X0) / S(4), and then the probed function value,
Fx(4) = f(X(4)).

3. Using the absolute value of Fx(X), insert the new probe in the array of probes, such that the array
of probes remains sorted. This step places the best probe at the array index 1. Likewise, the worst
probe appears at the array index 4.

The above loop ends when one of the following conditions is true:

• The value |X(1) – X(2)| fall below an acceptable tolerance limit.
• The absolute value of Fx(1) is less than the function tolerance value.
• The sorting step in task 3 fails to rearrange the array.

Namir Shammas New Root-Seeking Algorithms

 Page 4 of 19

If the convergence conditions fail, the next iteration occurs. Since task 1 uses the first three elements of
arrays S(), X(), and Fx(), the values of the elements at index 4 are ignored. In fact, tasks1 and 2 overwrite
these values. As you can see in task 2, the algorithm retains the value of the initial guess X0. Why retain
this value and not update it with the value of X(1)? The answer lies with the fact that replacing X0 with a
new value requires calculating a new set of values for S(1), S(2), S(3), X(1), X(2), X(3), Fx(1), Fx(2), and
Fx(3). Calculating these values comes at a price of making more evaluations of function f(X). This rise in
the number of function evaluation makes the algorithm less efficient than Newton’s algorithm. By
keeping the original guess for the root, the algorithm economizes on the number of invocation of f(x)
without compromising on the speed of convergence. Since each iteration in the main loop requires only
one invocation of f(x), compared to two for Newton’s method, the Probing Slopes Algorithm tends has an
advantage. Using an efficient interpolation method, like the Lagrangian interpolation, adds to the overall
efficiency of the implementation of the algorithm. Thus, the Probing Slopes Algorithm gains more
advantage over Newton’s method.

The Probing Steps Algorithm
The second variant of the probing algorithms attempts to find the critical step that would zoom in on the
root in one swoop. Of course, such a magical step does not exist. Instead, we can modify the Probing
Slopes Algorithm to work with steps of X instead of function slopes.

Calculating the critical step is not possible since we do not know the value of the root, X*. The algorithm
starts by calculating an array of three steps, using the following equations:

St(1) = h * f(x) / [f(X + h) – f(X)]

St(2) = (1 + r) St(1)

St(3) = (1 – r) St(1)

Where r is a small number like 0.15 and 0.1. Notice that calculating the values for steps St(2) and St(3)
does not require evaluating the function f(x).

Namir Shammas New Root-Seeking Algorithms

 Page 5 of 19

The algorithm uses the array of slopes to calculate the array of probed root values. The algorithm uses the
following equation:

X(i) = X0 - St(i), for i = 1,2, and 3

Next, the algorithm calculates the array of function values Fx(i) = f(X(i)). Finally, sort the first three
probes using the absolute values of the array Fx() as the sort key.

The steps up till now supply the algorithm with its initial probes. Each one of the three probes is made up
of the values of a step St(i), probed root value X(i), and probed function value Fx(i). Armed with the
probes the algorithm starts its main loop. Each loop iteration performs the following tasks:

1. Interpolate the first three elements of arrays St() and Fx() to calculate the step St(4) for when the
function value is 0. The calculated step is designated as St(4) and represents a new element of the
array of steps St().

2. Calculate the probed root value, X(4) = X0 – St(4), and then the probed function value, Fx(4) =
f(X(4)).

3. Using the absolute value of Fx(X), insert the new probe in the array of probes, such that the array
of probes remains sorted. This step places the best probe at the array index 1. Likewise, the worst
probe appears at the array index 4.

The above loop ends when one of the following conditions is true:

Namir Shammas New Root-Seeking Algorithms

 Page 6 of 19

• The value |X(1) – X(2)| fall below an acceptable tolerance limit.
• The absolute value of Fx(1) is less than the function tolerance value.
• The sorting step in task 3 fails to rearrange the array.

If the convergence conditions fail, the next iteration occurs. Since task number 1 uses the first three
elements of arrays St(), X(), and Fx(), the values of the elements at index 4 are not used. In fact, tasks1
and 2 overwrite these values. As you can see in task 2, the algorithm retains the value of the initial guess
X0, for the same reason as the Probing Slopes Algorithm.

Namir Shammas New Root-Seeking Algorithms

 Page 7 of 19

Testing the Probing Slopes Algorithm
This section presents the tests results that compare the Probing Slopes Algorithm with Newton’s method.
The test uses an Excel spreadsheet that has the following visual interface:

The VBA code used for this test is:

Option Explicit
Option Base 0

Function F(X As Double) As Double
 F = Exp(X) - 3 * X ^ 2
End Function

Sub RootByProbingSlopes()
 Const MAXITER = 100
 Const NUM_SLOPES = 3
 Const SLOPE_FACTOR = 0.15

 Dim XToler As Double, FxToler As Double
 Dim R As Integer, NumCalls As Integer, Iters As Integer
 Dim X As Double, S(NUM_SLOPES + 1) As Double, Fx(NUM_SLOPES + 1) As
Double
 Dim Xnew(NUM_SLOPES + 1) As Double, Xold As Double
 Dim I As Integer, J As Integer
 Dim Sum As Double, Prod As Double, FxVal As Double, Diff As Double
 Dim h As Double, Buff As Double
 Dim Fxtmp As Double, Stemp As Double, Xtem As Double
 Dim bNoSwap As Boolean

Namir Shammas New Root-Seeking Algorithms

 Page 8 of 19

 ' method of shift slopes
 X = Cells(2, 1)
 XToler = Cells(4, 1)
 FxToler = Cells(6, 1)
 R = 2
 FxVal = F(X)
 NumCalls = 1
 Range("B2:Z10000").Value = ""

 h = 0.01 * (1 + Abs(X))
 S(1) = (F(X + h) - FxVal) / h
 NumCalls = NumCalls + 1
 S(2) = S(1) * (1 + SLOPE_FACTOR)
 S(3) = S(1) * (1 - SLOPE_FACTOR)
 For I = 1 To 3
 Xnew(I) = X - FxVal / S(I)
 Fx(I) = F(Xnew(I))
 NumCalls = NumCalls + 1
 Next I

 ' Sort first three probes
 For I = 1 To NUM_SLOPES - 1
 For J = I + 1 To NUM_SLOPES
 If Abs(Fx(I)) > Abs(Fx(J)) Then

 Buff = Fx(I)
 Fx(I) = Fx(J)
 Fx(J) = Buff

 Buff = S(I)
 S(I) = S(J)
 S(J) = Buff

 Buff = Xnew(I)
 Xnew(I) = Xnew(J)
 Xnew(J) = Buff

 End If
 Next J
 Next I

 Iters = 0

 Do
 Iters = Iters + 1
 If Iters > MAXITER Then Exit Do
 Sum = 0
 For I = 1 To NUM_SLOPES

Namir Shammas New Root-Seeking Algorithms

 Page 9 of 19

 Prod = S(I)
 For J = 1 To NUM_SLOPES
 If I <> J Then
 Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J))
 End If
 Next J
 Sum = Sum + Prod
 Next I

 S(4) = Sum
 Xnew(4) = X - FxVal / S(4)
 Cells(R, 2) = S(4)
 Cells(R, 3) = Xnew(4)
 Fx(4) = F(Xnew(4))
 NumCalls = NumCalls + 1
 Cells(R, 4) = Fx(4)
 R = R + 1

 ' store last probe in index 0
 S(0) = S(4)
 Fx(0) = Fx(4)
 Xnew(0) = Xnew(4)

 ' remove worst fx() value
 bNoSwap = True
 For I = 1 To NUM_SLOPES - 1
 If Abs(Fx(0)) < Abs(Fx(I)) Then
 bNoSwap = False
 For J = NUM_SLOPES To I Step -1
 Fx(J) = Fx(J - 1)
 S(J) = S(J - 1)
 Xnew(J) = Xnew(J - 1)
 Next J
 ' restore latest probem
 S(I) = S(0)
 Fx(I) = Fx(0)
 Xnew(I) = Xnew(0)
 End If
 Exit For
 Next I

 Loop Until bNoSwap Or Abs(Xnew(1) - Xnew(2)) <= XToler Or Abs(Fx(1))
<= FxToler

 Cells(R + 2, 2) = "Num Fx Calls"
 Cells(R + 3, 2) = NumCalls
 ' flag end of iteration because the last guess failed to improve
 Cells(R + 4, 2) = IIf(bNoSwap, "Iter Halted", "")

 ' now test Newton's method

Namir Shammas New Root-Seeking Algorithms

 Page 10 of 19

 X = Cells(2, 1)
 FxVal = F(X)
 R = 2
 NumCalls = 1

 Iters = 0

 Do
 Iters = Iters + 1
 If Iters > MAXITER Then Exit Do
 h = 0.01 * (1 + Abs(X))
 Diff = h * FxVal / (F(X + h) - FxVal)
 NumCalls = NumCalls + 1
 X = X - Diff
 FxVal = F(X)
 NumCalls = NumCalls + 1
 Cells(R, 6) = X
 Cells(R, 7) = FxVal
 R = R + 1
 Loop Until Abs(Diff) <= XToler Or Abs(FxVal) < FxToler

 Cells(R + 2, 6) = "Num Fx Calls"
 Cells(R + 3, 6) = NumCalls

End Sub

The above code shows the function F which contains a sample test f(x) function. The code for function F
changes as the test function f(x) changes.

The Function f(X)=Exp(X)-3*X^2
The first test function is f(X) = Exp(X)-3^X2. The following figure shows a graph for this function.

Namir Shammas New Root-Seeking Algorithms

 Page 11 of 19

Table 1. Test results for f(X)=Exp(X)-3*X^2 for Xtoler =1E-8 and FxToler = 1E-8.

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx
Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

7 8 13 3.73307902
7.658E-12

12 25 3.73307902
3.0184E-09

6 7 12 3.73307902
1.758E-13

11 23 3.73307902
1.7948E-9

5 6 11 3.73307902
-7.105E-15

10 21 3.73307902
6.4740E-10

4 4 9 3.73307902
2.0605E-13

8 17 3.73307902
7.0187E-10

3 10 15 3.73307902
6.7501E-14

12 25 3.73307902
1.2888E-09

1 3 8 0.91000757
9.9503E-11

5 11 0.91000757258
-2.8452E-10

0 6 11 -0.4589622
-3.538E-10

7 15 -0.4589622
-1.9023E-10

-1 4 9 -0.4589622
-3.2224E-14

6 13 -0.4589622
-2.187558E-10

-2 5 10 -0.4589622
-1.4488E-14

7 15 -0.4589622
-2.041214E-10

-3 5 10 -0.4589622
-6.7522E-10

5 15 -0.4589622
7.5226654E-09

Namir Shammas New Root-Seeking Algorithms

 Page 12 of 19

Table 1 shows the results for function f(X) = eX – 3X2 for X tolerance of 1E-8 and function tolerance of
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSlopes. The
tested function has three roots near 3.733, 0.9100, and -0.4589. The table shows that for each initial guess,
the Probing Slopes Algorithm required less iterations and functions calls than Newton’s method.

The Function f(X) = exp(-X) – exp(-3)
The second function is f(X) = = exp(-X) – exp(-3) whose graph appears in the next figure:

Table 2. Test results for f(X)=Exp(-X)- Exp(-3) for Xtoler =1E-8 and FxToler = 1E-8

.

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx
Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

-2 8 13 2.9999999998
7.62157E-12

10 21 3.000000016057
-7.994606E-10

-1 7 12 2.99999999987
6.11515E-12

9 19 3.00000001687
-8.402010E-10

0 6 11 2.99999999984 8 17 3.00000001601

Namir Shammas New Root-Seeking Algorithms

 Page 13 of 19

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx
Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

7.8517956E-12 -7.973450E-10
1 4 9 2.99999999967

1.6284092E-11
7 15 3.00000001166

-5.805927E-10
2 5 10 2.99999999918

4.0644182E-11
5 11 2.99999987482

6.2321192E-09
4 5 10 2.99999992977

3.4963635E-09
6 13 3.00000008045

-4.005808E-09
5 11 16 2.99999999999

3.5638159E-14
 10 21 3.000000065888

-3.280370E-09
6 24 29 2.9999999950

2.4448264E-10
22 45 3.00000004812

-2.395785E-09

Table 2 shows the results for function f(X) = e-X – e-3 for X tolerance of 1E-8 and function tolerance of
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSlopes. The
tested function has a root of 3. The table shows that for each initial guess below the root value, the
Probing Slopes Algorithm required less iterations and functions calls than Newton’s method. The value of
X = 6 is an exception since Newton’s method required 2 iterations less, but made 16 additional function
calls.

The Test Polynomial
The third test function is:

f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1)

Which has the following figure shows a graph of the test polynomial.

Namir Shammas New Root-Seeking Algorithms

 Page 14 of 19

Table 3. Test results for f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1) for Xtoler =1E-8 and FxToler = 1E-8.

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

7 7 12 5
0

12 35 5.00000000005101
9.7944052873E-10

6 5 10 5.000000000042
8.20591594E-10

10 21 5.00000000031603
6.0677564328E-09

4 4 9 2.999999999928
2.73922751E-10

7 15 3.00000000140738
-5.404344282E-09

2 4 9 -0.99999999999
-3.82030407E-12

5 11 -0.9999999999541
-8.7987856999E-
11

0 28 33 5.000000000068
1.31813067E-09

28 57 5.00000000005315
1.0205553736E-09

Table 3 shows the results for the test polynomial for X tolerance of 1E-8 and function tolerance of 1E-8.
The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSlopes. The
tested function has roots at 5, 3, 1, -1, -3, and -5. The table shows that for each initial guess below the
root value, the Probing Slopes Algorithm required less iterations and functions calls than Newton’s
method. The value of X = 0 is an exception since both algorithms required the same number of iterations
to reach the root of 5.

Namir Shammas New Root-Seeking Algorithms

 Page 15 of 19

Testing the Probing Steps Algorithm
This section presents the tests results that compare the Probing Steps Algorithm with Newton’s method.
The test uses an Excel spreadsheet that has the following visual interface:

The VBA code used for this test is:

Option Explicit
Option Base 0

Function F(X As Double) As Double
 F = Exp(X) - 3 * X ^ 2
End Function

Sub RootByProbingSteps()
 Const NUM_STEPS = 3
 Const SLOPE_SHIFT = 5
 Const STEP_FACTOR = 0.15

 Dim XToler As Double, FxToler As Double
 Dim R As Integer, NumCalls As Integer
 Dim X As Double, St(NUM_STEPS + 1) As Double, Fx(NUM_STEPS + 1) As
Double
 Dim Xnew(NUM_STEPS + 1) As Double, Xold As Double
 Dim I As Integer, J As Integer
 Dim Sum As Double, Prod As Double, FxVal As Double, Diff As Double
 Dim h As Double, Buff As Double
 Dim bNoSwap As Boolean

 X = Cells(2, 1)
 XToler = Cells(4, 1)
 FxToler = Cells(6, 1)

Namir Shammas New Root-Seeking Algorithms

 Page 16 of 19

 Range("B2:Z10000").Value = ""

 R = 2
 FxVal = F(X)
 NumCalls = 1

 h = 0.01 * (1 + Abs(X))
 St(1) = h * FxVal / (F(X + h) - FxVal)
 NumCalls = NumCalls + 1
 St(2) = St(1) * (1 + STEP_FACTOR)
 St(3) = St(1) * (1 - STEP_FACTOR)
 For I = 1 To 3
 Xnew(I) = X - St(I)
 Fx(I) = F(Xnew(I))
 NumCalls = NumCalls + 1
 Next I

 ' remove worst fx() value
 For I = 1 To NUM_STEPS - 1
 For J = I + 1 To NUM_STEPS
 If Abs(Fx(I)) > Abs(Fx(J)) Then

 Buff = Fx(I)
 Fx(I) = Fx(J)
 Fx(J) = Buff

 Buff = St(I)
 St(I) = St(J)
 St(J) = Buff

 Buff = Xnew(I)
 Xnew(I) = Xnew(J)
 Xnew(J) = Buff

 End If
 Next J
 Next I

 Do
 Sum = 0
 For I = 1 To NUM_STEPS
 Prod = St(I)
 For J = 1 To NUM_STEPS
 If I <> J Then
 Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J))
 End If
 Next J
 Sum = Sum + Prod
 Next I

Namir Shammas New Root-Seeking Algorithms

 Page 17 of 19

 St(4) = Sum
 Xnew(4) = X - St(4)
 Cells(R, 2) = St(4)
 Cells(R, 3) = Xnew(4)
 Fx(4) = F(Xnew(4))
 NumCalls = NumCalls + 1
 Cells(R, 4) = Fx(4)

 ' store last probe in index 0
 St(0) = St(4)
 Fx(0) = Fx(4)
 Xnew(0) = Xnew(4)

 ' remove worst fx() value
 bNoSwap = True
 For I = 1 To NUM_STEPS - 1
 If Abs(Fx(0)) < Abs(Fx(I)) Then
 bNoSwap = False
 For J = NUM_STEPS To I Step -1
 Fx(J) = Fx(J - 1)
 St(J) = St(J - 1)
 Xnew(J) = Xnew(J - 1)
 Next J
 ' restore latest probem
 St(I) = St(0)
 Fx(I) = Fx(0)
 Xnew(I) = Xnew(0)
 End If
 Exit For
 Next I

 R = R + 1

 Loop Until bNoSwap Or Abs(Xnew(1) - Xnew(2)) <= XToler Or Abs(Fx(1))
<= FxToler

 Cells(R + 2, 2) = "Num Fx Calls"
 Cells(R + 3, 2) = NumCalls
 ' flag end of iteration because the last guess failed to improve
 Cells(R + 4, 2) = IIf(bNoSwap, "Iter Halted", "")

 ' now test Newton's method
 X = Cells(2, 1)
 FxVal = F(X)
 R = 2
 NumCalls = 1

 Do
 h = 0.01 * (1 + Abs(X))

Namir Shammas New Root-Seeking Algorithms

 Page 18 of 19

 Diff = h * FxVal / (F(X + h) - FxVal)
 NumCalls = NumCalls + 1
 X = X - Diff
 FxVal = F(X)
 NumCalls = NumCalls + 1
 Cells(R, 6) = X
 Cells(R, 7) = FxVal
 R = R + 1
 Loop Until Abs(Diff) <= XToler Or Abs(FxVal) < FxToler

 Cells(R + 2, 6) = "Num Fx Calls"
 Cells(R + 3, 6) = NumCalls

End Sub

Sub RootByMovingSteps()
 Const NUM_STEPS = 3
 Const SLOPE_SHIFT = 5
 Const STEP_FACTOR = 0.15

 Dim XToler As Double, FxToler As Double, CHS As Double
 Dim R As Integer, NumCalls As Integer
 Dim X As Double, St(NUM_STEPS + 1) As Double, Fx(NUM_STEPS + 1) As
Double
 Dim Xnew(NUM_STEPS + 1) As Double, Xold As Double
 Dim I As Integer, J As Integer
 Dim Sum As Double, Prod As Double, FxVal As Double, Diff As Double
 Dim h As Double, Buff As Double

 X = Cells(2, 1)
 XToler = Cells(4, 1)
 FxToler = Cells(6, 1)
 Range("B2:Z10000").Value = ""

 R = 2
 FxVal = F(X)
 NumCalls = 1

 h = 0.01 * (1 + Abs(X))
 St(1) = h * FxVal / (F(X + h) - FxVal)
 NumCalls = NumCalls + 1
 St(2) = St(1) * (1 + STEP_FACTOR)
 St(3) = St(1) * (1 - STEP_FACTOR)
 For I = 1 To 3
 Xnew(I) = X - St(I)
 Fx(I) = F(Xnew(I))
 NumCalls = NumCalls + 1
 Next I

 Do

Namir Shammas New Root-Seeking Algorithms

 Page 19 of 19

 Sum = 0
 For I = 1 To NUM_STEPS
 Prod = Xnew(I)
 For J = 1 To NUM_STEPS
 If I <> J Then
 Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J))
 End If
 Next J
 Sum = Sum + Prod
 Next I

 Xnew(4) = Sum
 Cells(R, 3) = Xnew(4)
 Fx(4) = F(Xnew(4))
 NumCalls = NumCalls + 1
 Cells(R, 4) = Fx(4)

 ' remove worst fx() value
 For I = 1 To NUM_STEPS
 For J = I + 1 To NUM_STEPS + 1
 If Abs(Fx(I)) > Abs(Fx(J)) Then
 Buff = Fx(I)
 Fx(I) = Fx(J)
 Fx(J) = Buff

 Buff = Xnew(I)
 Xnew(I) = Xnew(J)
 Xnew(J) = Buff

 End If
 Next J
 Next I

 R = R + 1
 If R > 100 Then Exit Do

 Loop Until Abs(Xnew(1) - Xnew(2)) <= XToler Or Abs(Fx(1)) <= FxToler

 Cells(R + 2, 3) = NumCalls

 ' now test Newton's method
 X = Cells(2, 1)
 FxVal = F(X)
 R = 2
 NumCalls = 1

 Do
 h = 0.01 * (1 + Abs(X))
 Diff = h * FxVal / (F(X + h) - FxVal)

Namir Shammas New Root-Seeking Algorithms

 Page 20 of 19

 NumCalls = NumCalls + 1
 X = X - Diff
 FxVal = F(X)
 NumCalls = NumCalls + 1
 Cells(R, 6) = X
 Cells(R, 7) = FxVal
 R = R + 1
 Loop Until Abs(Diff) <= XToler Or Abs(FxVal) < FxToler

 Cells(R + 2, 6) = NumCalls

End Sub

The above code shows the function F which contains a sample test f(x) function. The code for function F
changes as the test function f(x) changes.

The Function f(x)=Exp(x)-3*X^2
The first test function is f(X) = Exp(X)-3^X2. The following figure shows a graph for this function.

Table 4. Test results for f(X)=Exp(X)-3*X^2 for Xtoler =1E-8 and FxToler = 1E-8.

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx
Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

7 8 13 3.73307902
7.090203E-10

12 25 3.73307902
3.01841573E-09

6 7 12 3.73307902
2.623679E-12

11 23 3.73307902
1.79482562E-09

5 5 10 3.73307902
3.932557E-09

10 21 3.73307902
6.47405684E-10

4 3 8 3.73307902
5.015543E-11

8 17 3.73307902
7.01874114E-10

3 8 13 3.73307902
2.646771E-13

12 25 3.73307902
1.2888E-09

1 2 7 0.91000757
-5.476774E-11

5 11 0.91000757258
-2.8452E-10

0 5 10 -0.4589622
-1.033062E-13

7 15 -0.4589622
-1.9023E-10

-1 3 8 -0.4589622
-2.575483E-09

6 13 -0.4589622
-2.187558E-10

-2 5 10 -0.4589622
-7.580047E-14

7 15 -0.4589622
-2.041214E-10

-3 5 10 -0.4589622
-6.848205E-09

5 15 -0.4589622
7.5226654E-09

Namir Shammas New Root-Seeking Algorithms

 Page 21 of 19

Table 4 shows the results for function f(X) = eX – 3X2 for X tolerance of 1E-8 and function tolerance of
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSteps. The
tested function has three roots near 3.733, 0.9100, and -0.4589. The table shows that for each initial guess,
the Probing Steps Algorithm required less iterations and functions calls than Newton’s method.

The Function f(X) = exp(-X) – exp(-3)
The second function is f(X) = = exp(-X) – exp(-3) whose graph appears in the next figure:

Table 5. Test results for f(X)=Exp(-X)- Exp(-3) for Xtoler =1E-8 and FxToler = 1E-8.

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx
Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

-2 9 14 2.9999999999
1.3929135E-13

10 21 3.000000016057
-7.994606E-10

-1 7 12 2.99999990245
4.8563936E-09

9 19 3.00000001687
-8.402010E-10

0 6 11 2.99999999045
4.7515362E-10

8 17 3.00000001601
-7.973450E-10

1 5 10 2.99999999969
1.5068467E-11

7 15 3.00000001166
-5.805927E-10

2 4 9 2.9999999999
1.3974932E-14

5 11 2.99999987482
6.2321192E-09

4 4 9 2.99999992977
6.3310566E-10

6 13 3.00000008045
-4.005808E-09

5 9 14 2.99999999999
9.9669231E-12

 10 21 3.000000065888
-3.280370E-09

6 22 27 2.99999892082
3.3237995E-13

22 45 3.00000004812
-2.395785E-09

Table 5 shows the results for function f(X) = e-X – e-3 for X tolerance of 1E-8 and function tolerance of
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSteps. The
tested function has a root of 3. The table shows that for each initial guess below the root value, the
Probing Slteps Algorithm required less iterations and functions calls than Newton’s method. The value of
X = 6 is an exception since Newton’s method required the same number of iterations, but made 18
additional function calls.

The Test Polynomial
The third test function is:

f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1)

Namir Shammas New Root-Seeking Algorithms

 Page 22 of 19

Table 6. Test results for f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1) for Xtoler =1E-8 and FxToler = 1E-8.

Initial
Guess

PSA
Iterations

PSA
Fx Calls

PSA
Result/Fx Value

Newton
Iterations

Newton
Fx Calls

Newton
Result/Fx Value

7 7 12 5
8.526512829E-14

12 35 5.00000000005101
9.7944052873E-10

6 5 10 5.000000953793
2.595470505E-10

10 21 5.00000000031603
6.0677564328E-09

4 5 10 2.999999999928
3.410605131E-15

7 15 3.00000000140738
-5.404344282E-09

2 4 9 -1.00000000000067
1.290914042E-12

5 11 -0.9999999999541
-8.7987856999E-
11

0 25 30 5.00000000002342
4.49603021491E-10

28 57 5.00000000005315
1.0205553736E-09

Table 6 shows the results for the test polynomial for X tolerance of 1E-8 and function tolerance of 1E-8.
The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSteps. The tested
function has roots at 5, 3, 1, -1, -3, and -5. The table shows that for each initial guess below the root
value, the Probing Slope Algorithm required less iterations and functions calls than Newton’s method.

Conclusions
The Probing Slopes Algorithm and the Probing Steps Algorithms demonstrated in the three examples that
they outperform Newton’s method. The tests also show that the Probing Steps Algorithm slightly
outperforms the Probing Slopes Algorithm. The recommendation is to use the Probing Steps Algorithm,
with the Probing Slopes Algorithm as plan B.

