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New Root-Seeking Algorithms 
By 

Namir C Shammas 

This article presents a pair of new root-seeking algorithms that use an innovative approach. Testing these 
algorithms shows that they can reach a good approximation to the root in less iterations and/or fewer 
function calls than Newton’s method. 

Overview of Newton’s Method 
Newton’s method starts with a guess for the root and iterates to refine that guess. Each iteration requires 
the calculations of the function and the slope at the current guess, and yields a new guess for the root. The 
algorithm discards the older guesses, replacing them with the new ones. Typically, the value of the slope 
is approximated by a finite difference method. Thus, each iteration in Newton’s method requires two 
function calls. Other algorithms that converge at a faster rate use approximations to higher derivatives and 
thus make more function calls per iteration in order to approximate the higher derivatives. In the majority 
of the root-seeking methods, that do not bracket the root, the iterations refine the guess for the root until it 
converges to an acceptable value that is close enough to the actual root. 

To solve for: 

f(X*) = 0 

Newton’s algorithm uses the following equation to refine the guess for the root: 

X1 = X0 – f(X0) / f’(X0) 

Where f’(X) is the derivative of f(X) with respect to X. You can evaluate an approximation to the 
derivative using, among others, the following equation: 

f’(X) = [f(X + h) – f(X)] / h 

Where h is a small increment and can be estimated as: 

h = 0.01 * (|X| + 1) 

Probing Algorithms 
The two new algorithms that I designed share a common approach, yet differ in the details of their 
execution. The basic idea is to start with an initial guess which becomes a fixed vantage point. From this 
vantage point, the algorithm uses probes to find the root. Each probe generates a new value for the 
variable X and its corresponding function value. This function value gives an assessment of how good the 
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probed value of X is. The iterations of the probing algorithms strive to obtain better probed values. 
During the iterations, the initial guess remains fixed. 

Here is the abstract version of the probing algorithms: 

1. Given an initial guess X0. 
2. Initialize an array of N probes. For each probe obtain a new value of X(i) and f(X(i)). 
3. Sort the first three probes using the absolute value of f(X). 
4. Repeat the next steps 

a. Use the current array of N probes to interpolate a new probe value X(N+1) and its 
function value f(X(N+1)). 

b. Using the absolute value of f(X), insert the new probe in the array of probes, such that the 
array of probes remains sorted. This step places the best probe at the array index 1. 
Likewise, the worst probe appears at the array index N+1. 

c. If the probes show that the convergence criteria have been met, resume in step 4. 
Otherwise, perform another loop iteration. 

5. The best guess for the root is X(1) 

The Probing Slopes Algorithm 
The first variant of the probing algorithms attempts to find the critical slope that would zoom in on the 
root. In other words, the algorithm attempts to find the slope of the straight line connecting the initial 
guess point with the root. The initial guess point is (X0, f(X0)),where initial guess X0. The root point is 
(X*, 0). The critical straight line passing through these two points is: 

Critical slope = (f(X0) – 0) / (X0 – X*) 

Calculating the critical slope is not possible since we do not know the value of the root, X*. The 
algorithm starts by calculating an array of three slopes, using the following equations: 

S(1) =  [f(X + h) – f(X)] / h 

S(2) = (1 + r)  S(1) 

S(3) = (1 – r)  S(1)  

Where r is a small number like 0.15 and 0.10. Notice that calculating the values for slopes S(2) and S(3) 
does not require evaluating the function f(x). 

The algorithm uses the array of slopes to calculate the array of probed root values. The algorithm uses the 
following equation: 

X(i) = X0 – f(X0) / S(i), for i = 1,2, and 3 

Next, the algorithm calculates the array of function values Fx(i) = f(X(i)). Finally, sort the first three 
probes using the absolute values of the array Fx() as the sort key. 



Namir Shammas  New Root-Seeking Algorithms  
 

 Page 3 of 19 
 

 

 

The steps up till now supply the algorithm with its initial probes. Each one of the three probes is made up 
of the values of a slope S(i), probed root value X(i), and probed function value Fx(i). Armed with the 
probes the algorithm starts its main loop. Each loop iteration performs the following tasks: 

1. Interpolate the first three elements of arrays S() and Fx() to calculate the slope S(4) for when the 
function value is 0. The calculated slope is designated as S(4) and represents a new element of the 
array of slopes S(). 

2. Calculate the probed root value, X(4) = X0 – f(X0) / S(4), and then the probed function value, 
Fx(4) = f(X(4)). 

3. Using the absolute value of Fx(X), insert the new probe in the array of probes, such that the array 
of probes remains sorted. This step places the best probe at the array index 1. Likewise, the worst 
probe appears at the array index 4. 

The above loop ends when one of the following conditions is true: 

• The value |X(1) – X(2)| fall below an acceptable tolerance limit.  
• The absolute value of Fx(1) is less than the function tolerance value.  
• The sorting step in task 3 fails to rearrange the array. 
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If the convergence conditions fail, the next iteration occurs. Since task 1 uses the first three elements of 
arrays S(), X(), and Fx(), the values of the elements at index 4 are ignored. In fact, tasks1 and 2 overwrite 
these values. As you can see in task 2, the algorithm retains the value of the initial guess X0. Why retain 
this value and not update it with the value of X(1)? The answer lies with the fact that replacing X0 with a 
new value requires calculating a new set of values for S(1), S(2), S(3), X(1), X(2), X(3), Fx(1), Fx(2), and 
Fx(3). Calculating these values comes at a price of making more evaluations of function f(X). This rise in 
the number of function evaluation makes the algorithm less efficient than Newton’s algorithm. By 
keeping the original guess for the root, the algorithm economizes on the number of invocation of f(x) 
without compromising on the speed of convergence. Since each iteration in the main loop requires only 
one invocation of f(x), compared to two for Newton’s method, the Probing Slopes Algorithm tends has an 
advantage. Using an efficient interpolation method, like the Lagrangian interpolation, adds to the overall 
efficiency of the implementation of the algorithm. Thus, the Probing Slopes Algorithm gains more 
advantage over Newton’s method. 

The Probing Steps Algorithm 
The second variant of the probing algorithms attempts to find the critical step that would zoom in on the 
root in one swoop. Of course, such a magical step does not exist. Instead, we can modify the Probing 
Slopes Algorithm to work with steps of X instead of function slopes. 

Calculating the critical step is not possible since we do not know the value of the root, X*. The algorithm 
starts by calculating an array of three steps, using the following equations: 

St(1) =  h * f(x) / [f(X + h) – f(X)] 

St(2) = (1 + r) St(1) 

St(3) = (1 – r) St(1) 

Where r is a small number like 0.15 and 0.1. Notice that calculating the values for steps St(2) and St(3) 
does not require evaluating the function f(x).  
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The algorithm uses the array of slopes to calculate the array of probed root values. The algorithm uses the 
following equation: 

X(i) = X0 - St(i), for i = 1,2, and 3 

Next, the algorithm calculates the array of function values Fx(i) = f(X(i)). Finally, sort the first three 
probes using the absolute values of the array Fx() as the sort key. 

The steps up till now supply the algorithm with its initial probes. Each one of the three probes is made up 
of the values of a step St(i), probed root value X(i), and probed function value Fx(i). Armed with the 
probes the algorithm starts its main loop. Each loop iteration performs the following tasks: 

1. Interpolate the first three elements of arrays St() and Fx() to calculate the step St(4) for when the 
function value is 0. The calculated step is designated as St(4) and represents a new element of the 
array of steps St(). 

2. Calculate the probed root value, X(4) = X0 – St(4), and then the probed function value, Fx(4) = 
f(X(4)). 

3. Using the absolute value of Fx(X), insert the new probe in the array of probes, such that the array 
of probes remains sorted. This step places the best probe at the array index 1. Likewise, the worst 
probe appears at the array index 4.  

The above loop ends when one of the following conditions is true: 
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• The value |X(1) – X(2)| fall below an acceptable tolerance limit.  
• The absolute value of Fx(1) is less than the function tolerance value.  
• The sorting step in task 3 fails to rearrange the array. 

If the convergence conditions fail, the next iteration occurs. Since task number 1 uses the first three 
elements of arrays St(), X(), and Fx(), the values of the elements at index 4 are not used. In fact, tasks1 
and 2 overwrite these values. As you can see in task 2, the algorithm retains the value of the initial guess 
X0, for the same reason as the Probing Slopes Algorithm. 
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Testing the Probing Slopes Algorithm 
This section presents the tests results that compare the Probing Slopes Algorithm with Newton’s method. 
The test uses an Excel spreadsheet that has the following visual interface: 

 

The VBA code used for this test is: 

Option Explicit 
Option Base 0 
 
Function F(X As Double) As Double 
  F = Exp(X) - 3 * X ^ 2 
End Function 
 
Sub RootByProbingSlopes() 
  Const MAXITER = 100 
  Const NUM_SLOPES = 3 
  Const SLOPE_FACTOR = 0.15 
   
  Dim XToler As Double, FxToler As Double 
  Dim R As Integer, NumCalls As Integer, Iters As Integer 
  Dim X As Double, S(NUM_SLOPES + 1) As Double, Fx(NUM_SLOPES + 1) As 
Double 
  Dim Xnew(NUM_SLOPES + 1) As Double, Xold As Double 
  Dim I As Integer, J As Integer 
  Dim Sum As Double, Prod As Double, FxVal As Double, Diff As Double 
  Dim h As Double, Buff As Double 
  Dim Fxtmp As Double, Stemp As Double, Xtem As Double 
  Dim bNoSwap As Boolean 
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  ' method of shift slopes 
  X = Cells(2, 1) 
  XToler = Cells(4, 1) 
  FxToler = Cells(6, 1) 
  R = 2 
  FxVal = F(X) 
  NumCalls = 1 
  Range("B2:Z10000").Value = "" 
    
  h = 0.01 * (1 + Abs(X)) 
  S(1) = (F(X + h) - FxVal) / h 
  NumCalls = NumCalls + 1 
  S(2) = S(1) * (1 + SLOPE_FACTOR) 
  S(3) = S(1) * (1 - SLOPE_FACTOR) 
  For I = 1 To 3 
    Xnew(I) = X - FxVal / S(I) 
    Fx(I) = F(Xnew(I)) 
    NumCalls = NumCalls + 1 
  Next I 
   
  ' Sort first three probes 
  For I = 1 To NUM_SLOPES - 1 
    For J = I + 1 To NUM_SLOPES 
      If Abs(Fx(I)) > Abs(Fx(J)) Then 
         
        Buff = Fx(I) 
        Fx(I) = Fx(J) 
        Fx(J) = Buff 
         
        Buff = S(I) 
        S(I) = S(J) 
        S(J) = Buff 
         
        Buff = Xnew(I) 
        Xnew(I) = Xnew(J) 
        Xnew(J) = Buff 
         
      End If 
    Next J 
  Next I 
   
   
  Iters = 0 
   
  Do 
    Iters = Iters + 1 
    If Iters > MAXITER Then Exit Do 
    Sum = 0 
    For I = 1 To NUM_SLOPES 
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      Prod = S(I) 
      For J = 1 To NUM_SLOPES 
        If I <> J Then 
          Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J)) 
        End If 
      Next J 
      Sum = Sum + Prod 
    Next I 
     
    S(4) = Sum 
    Xnew(4) = X - FxVal / S(4) 
    Cells(R, 2) = S(4) 
    Cells(R, 3) = Xnew(4) 
    Fx(4) = F(Xnew(4)) 
    NumCalls = NumCalls + 1 
    Cells(R, 4) = Fx(4) 
    R = R + 1 
   
    ' store last probe in index 0 
    S(0) = S(4) 
    Fx(0) = Fx(4) 
    Xnew(0) = Xnew(4) 
     
    ' remove worst fx() value 
    bNoSwap = True 
    For I = 1 To NUM_SLOPES - 1 
      If Abs(Fx(0)) < Abs(Fx(I)) Then 
        bNoSwap = False 
        For J = NUM_SLOPES To I Step -1 
          Fx(J) = Fx(J - 1) 
          S(J) = S(J - 1) 
          Xnew(J) = Xnew(J - 1) 
        Next J 
        ' restore latest probem 
        S(I) = S(0) 
        Fx(I) = Fx(0) 
        Xnew(I) = Xnew(0) 
      End If 
      Exit For 
    Next I 
   
  Loop Until bNoSwap Or Abs(Xnew(1) - Xnew(2)) <= XToler Or Abs(Fx(1)) 
<= FxToler 
   
  Cells(R + 2, 2) = "Num Fx Calls" 
  Cells(R + 3, 2) = NumCalls 
  ' flag end of iteration because the last guess failed to improve 
  Cells(R + 4, 2) = IIf(bNoSwap, "Iter Halted", "") 
  
  ' now test Newton's method 
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  X = Cells(2, 1) 
  FxVal = F(X) 
  R = 2 
  NumCalls = 1 
 
  Iters = 0 
   
  Do 
    Iters = Iters + 1 
    If Iters > MAXITER Then Exit Do 
    h = 0.01 * (1 + Abs(X)) 
    Diff = h * FxVal / (F(X + h) - FxVal) 
    NumCalls = NumCalls + 1 
    X = X - Diff 
    FxVal = F(X) 
    NumCalls = NumCalls + 1 
    Cells(R, 6) = X 
    Cells(R, 7) = FxVal 
    R = R + 1 
  Loop Until Abs(Diff) <= XToler Or Abs(FxVal) < FxToler 
   
  Cells(R + 2, 6) = "Num Fx Calls" 
  Cells(R + 3, 6) = NumCalls 
   
End Sub 
 
The above code shows the function F which contains a sample test f(x) function. The code for function F 
changes as the test function f(x) changes. 

The Function f(X)=Exp(X)-3*X^2 
The first test function is f(X) = Exp(X)-3^X2. The following figure shows a graph for this function. 
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Table 1. Test results for f(X)=Exp(X)-3*X^2 for Xtoler =1E-8 and FxToler = 1E-8. 

Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx 
Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

7 8 13 3.73307902 
7.658E-12 

12 25 3.73307902 
3.0184E-09 

6 7 12 3.73307902 
1.758E-13 

11 23 3.73307902 
1.7948E-9 

5 6 11 3.73307902 
-7.105E-15 

10 21 3.73307902 
6.4740E-10 

4 4 9 3.73307902 
2.0605E-13 

8 17 3.73307902 
7.0187E-10 

3 10 15 3.73307902 
6.7501E-14 

12 25 3.73307902 
1.2888E-09 

1 3 8 0.91000757 
9.9503E-11 

5 11 0.91000757258 
-2.8452E-10 

0 6 11 -0.4589622 
-3.538E-10 

7 15 -0.4589622 
-1.9023E-10 

-1 4 9 -0.4589622 
-3.2224E-14 

6 13 -0.4589622 
-2.187558E-10 

-2 5 10 -0.4589622 
-1.4488E-14 

7 15 -0.4589622 
-2.041214E-10 

-3 5 10 -0.4589622 
-6.7522E-10 

5 15 -0.4589622 
7.5226654E-09 

 



Namir Shammas  New Root-Seeking Algorithms  
 

 Page 12 of 19 
 

Table 1 shows the results for function f(X) = eX – 3X2 for X tolerance of 1E-8 and function tolerance of 
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSlopes.  The 
tested function has three roots near 3.733, 0.9100, and -0.4589. The table shows that for each initial guess, 
the Probing Slopes Algorithm required less iterations and functions calls than Newton’s method. 

The Function f(X) = exp(-X) – exp(-3) 
The second function is f(X) = = exp(-X) – exp(-3) whose graph appears in the next figure: 

 

Table 2. Test results for f(X)=Exp(-X)- Exp(-3) for Xtoler =1E-8 and FxToler = 1E-8 

 

. 

Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx 
Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

-2 8 13 2.9999999998 
7.62157E-12 

10 21 3.000000016057 
-7.994606E-10 

-1 7 12 2.99999999987 
6.11515E-12 

9 19 3.00000001687 
-8.402010E-10 

0 6 11 2.99999999984 8 17 3.00000001601 
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Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx 
Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

7.8517956E-12 -7.973450E-10 
1 4 9 2.99999999967 

1.6284092E-11 
7 15 3.00000001166 

-5.805927E-10 
2 5 10 2.99999999918 

4.0644182E-11 
5 11 2.99999987482 

6.2321192E-09 
4 5 10 2.99999992977 

3.4963635E-09 
6 13 3.00000008045 

-4.005808E-09 
5 11 16 2.99999999999 

3.5638159E-14 
 10 21 3.000000065888 

-3.280370E-09 
6 24 29 2.9999999950 

2.4448264E-10 
22 45 3.00000004812 

-2.395785E-09 
 

Table 2 shows the results for function f(X) = e-X – e-3 for X tolerance of 1E-8 and function tolerance of 
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSlopes.  The 
tested function has a root of 3. The table shows that for each initial guess below the root value, the 
Probing Slopes Algorithm required less iterations and functions calls than Newton’s method. The value of 
X = 6 is an exception since Newton’s method required 2 iterations less, but made 16 additional function 
calls. 

The Test Polynomial 
The third test function is: 

f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1) 

Which has the following figure shows a graph of the test polynomial. 
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Table 3. Test results for f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1) for Xtoler =1E-8 and FxToler = 1E-8. 

Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

7 7 12 5 
0 

12 35 5.00000000005101 
9.7944052873E-10 

6 5 10 5.000000000042 
8.20591594E-10 

10 21 5.00000000031603 
6.0677564328E-09 

4 4 9 2.999999999928 
2.73922751E-10 

7 15 3.00000000140738 
-5.404344282E-09 

2 4 9 -0.99999999999 
-3.82030407E-12 

5 11 -0.9999999999541 
-8.7987856999E-
11 

0 28 33 5.000000000068 
1.31813067E-09 

28 57 5.00000000005315 
1.0205553736E-09 

 

Table 3 shows the results for the test polynomial for X tolerance of 1E-8 and function tolerance of 1E-8. 
The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSlopes.  The 
tested function has roots at 5, 3, 1, -1, -3, and -5.  The table shows that for each initial guess below the 
root value, the Probing Slopes Algorithm required less iterations and functions calls than Newton’s 
method. The value of X = 0 is an exception since both algorithms required the same number of iterations 
to reach the root of 5. 
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Testing the Probing Steps Algorithm 
This section presents the tests results that compare the Probing Steps Algorithm with Newton’s method. 
The test uses an Excel spreadsheet that has the following visual interface: 

 

The VBA code used for this test is: 

Option Explicit 
Option Base 0 
 
Function F(X As Double) As Double 
  F = Exp(X) - 3 * X ^ 2 
End Function 
 
Sub RootByProbingSteps() 
  Const NUM_STEPS = 3 
  Const SLOPE_SHIFT = 5 
  Const STEP_FACTOR = 0.15 
   
  Dim XToler As Double, FxToler As Double 
  Dim R As Integer, NumCalls As Integer 
  Dim X As Double, St(NUM_STEPS + 1) As Double, Fx(NUM_STEPS + 1) As 
Double 
  Dim Xnew(NUM_STEPS + 1) As Double, Xold As Double 
  Dim I As Integer, J As Integer 
  Dim Sum As Double, Prod As Double, FxVal As Double, Diff As Double 
  Dim h As Double, Buff As Double 
  Dim bNoSwap As Boolean 
   
  X = Cells(2, 1) 
  XToler = Cells(4, 1) 
  FxToler = Cells(6, 1) 
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  Range("B2:Z10000").Value = "" 
   
  R = 2 
  FxVal = F(X) 
  NumCalls = 1 
   
  h = 0.01 * (1 + Abs(X)) 
  St(1) = h * FxVal / (F(X + h) - FxVal) 
  NumCalls = NumCalls + 1 
  St(2) = St(1) * (1 + STEP_FACTOR) 
  St(3) = St(1) * (1 - STEP_FACTOR) 
  For I = 1 To 3 
    Xnew(I) = X - St(I) 
    Fx(I) = F(Xnew(I)) 
    NumCalls = NumCalls + 1 
  Next I 
   
 
  ' remove worst fx() value 
  For I = 1 To NUM_STEPS - 1 
    For J = I + 1 To NUM_STEPS 
      If Abs(Fx(I)) > Abs(Fx(J)) Then 
         
        Buff = Fx(I) 
        Fx(I) = Fx(J) 
        Fx(J) = Buff 
         
        Buff = St(I) 
        St(I) = St(J) 
        St(J) = Buff 
         
        Buff = Xnew(I) 
        Xnew(I) = Xnew(J) 
        Xnew(J) = Buff 
         
      End If 
    Next J 
  Next I 
   
  Do 
    Sum = 0 
    For I = 1 To NUM_STEPS 
      Prod = St(I) 
      For J = 1 To NUM_STEPS 
        If I <> J Then 
          Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J)) 
        End If 
      Next J 
      Sum = Sum + Prod 
    Next I 
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    St(4) = Sum 
    Xnew(4) = X - St(4) 
    Cells(R, 2) = St(4) 
    Cells(R, 3) = Xnew(4) 
    Fx(4) = F(Xnew(4)) 
    NumCalls = NumCalls + 1 
    Cells(R, 4) = Fx(4) 
     
     ' store last probe in index 0 
    St(0) = St(4) 
    Fx(0) = Fx(4) 
    Xnew(0) = Xnew(4) 
     
    ' remove worst fx() value 
    bNoSwap = True 
    For I = 1 To NUM_STEPS - 1 
      If Abs(Fx(0)) < Abs(Fx(I)) Then 
        bNoSwap = False 
        For J = NUM_STEPS To I Step -1 
          Fx(J) = Fx(J - 1) 
          St(J) = St(J - 1) 
          Xnew(J) = Xnew(J - 1) 
        Next J 
        ' restore latest probem 
        St(I) = St(0) 
        Fx(I) = Fx(0) 
        Xnew(I) = Xnew(0) 
      End If 
      Exit For 
    Next I 
    
    R = R + 1 
     
  Loop Until bNoSwap Or Abs(Xnew(1) - Xnew(2)) <= XToler Or Abs(Fx(1)) 
<= FxToler 
   
  Cells(R + 2, 2) = "Num Fx Calls" 
  Cells(R + 3, 2) = NumCalls 
  ' flag end of iteration because the last guess failed to improve 
  Cells(R + 4, 2) = IIf(bNoSwap, "Iter Halted", "") 
   
  ' now test Newton's method 
  X = Cells(2, 1) 
  FxVal = F(X) 
  R = 2 
  NumCalls = 1 
 
  Do 
    h = 0.01 * (1 + Abs(X)) 
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    Diff = h * FxVal / (F(X + h) - FxVal) 
    NumCalls = NumCalls + 1 
    X = X - Diff 
    FxVal = F(X) 
    NumCalls = NumCalls + 1 
    Cells(R, 6) = X 
    Cells(R, 7) = FxVal 
    R = R + 1 
  Loop Until Abs(Diff) <= XToler Or Abs(FxVal) < FxToler 
   
  Cells(R + 2, 6) = "Num Fx Calls" 
  Cells(R + 3, 6) = NumCalls 
   
End Sub 
 
Sub RootByMovingSteps() 
  Const NUM_STEPS = 3 
  Const SLOPE_SHIFT = 5 
  Const STEP_FACTOR = 0.15 
   
  Dim XToler As Double, FxToler As Double, CHS As Double 
  Dim R As Integer, NumCalls As Integer 
  Dim X As Double, St(NUM_STEPS + 1) As Double, Fx(NUM_STEPS + 1) As 
Double 
  Dim Xnew(NUM_STEPS + 1) As Double, Xold As Double 
  Dim I As Integer, J As Integer 
  Dim Sum As Double, Prod As Double, FxVal As Double, Diff As Double 
  Dim h As Double, Buff As Double 
   
  X = Cells(2, 1) 
  XToler = Cells(4, 1) 
  FxToler = Cells(6, 1) 
  Range("B2:Z10000").Value = "" 
   
  R = 2 
  FxVal = F(X) 
  NumCalls = 1 
   
  h = 0.01 * (1 + Abs(X)) 
  St(1) = h * FxVal / (F(X + h) - FxVal) 
  NumCalls = NumCalls + 1 
  St(2) = St(1) * (1 + STEP_FACTOR) 
  St(3) = St(1) * (1 - STEP_FACTOR) 
  For I = 1 To 3 
    Xnew(I) = X - St(I) 
    Fx(I) = F(Xnew(I)) 
    NumCalls = NumCalls + 1 
  Next I 
   
  Do 
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    Sum = 0 
    For I = 1 To NUM_STEPS 
      Prod = Xnew(I) 
      For J = 1 To NUM_STEPS 
        If I <> J Then 
          Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J)) 
        End If 
      Next J 
      Sum = Sum + Prod 
    Next I 
     
    Xnew(4) = Sum 
    Cells(R, 3) = Xnew(4) 
    Fx(4) = F(Xnew(4)) 
    NumCalls = NumCalls + 1 
    Cells(R, 4) = Fx(4) 
   
    ' remove worst fx() value 
    For I = 1 To NUM_STEPS 
      For J = I + 1 To NUM_STEPS + 1 
        If Abs(Fx(I)) > Abs(Fx(J)) Then 
          Buff = Fx(I) 
          Fx(I) = Fx(J) 
          Fx(J) = Buff 
           
          Buff = Xnew(I) 
          Xnew(I) = Xnew(J) 
          Xnew(J) = Buff 
           
        End If 
      Next J 
    Next I 
     
   
    R = R + 1 
    If R > 100 Then Exit Do 
     
  Loop Until Abs(Xnew(1) - Xnew(2)) <= XToler Or Abs(Fx(1)) <= FxToler 
   
  Cells(R + 2, 3) = NumCalls 
   
  ' now test Newton's method 
  X = Cells(2, 1) 
  FxVal = F(X) 
  R = 2 
  NumCalls = 1 
 
  Do 
    h = 0.01 * (1 + Abs(X)) 
    Diff = h * FxVal / (F(X + h) - FxVal) 
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    NumCalls = NumCalls + 1 
    X = X - Diff 
    FxVal = F(X) 
    NumCalls = NumCalls + 1 
    Cells(R, 6) = X 
    Cells(R, 7) = FxVal 
    R = R + 1 
  Loop Until Abs(Diff) <= XToler Or Abs(FxVal) < FxToler 
   
  Cells(R + 2, 6) = NumCalls 
   
End Sub 
 

The above code shows the function F which contains a sample test f(x) function. The code for function F 
changes as the test function f(x) changes. 

The Function f(x)=Exp(x)-3*X^2 
The first test function is f(X) = Exp(X)-3^X2. The following figure shows a graph for this function. 

Table 4. Test results for f(X)=Exp(X)-3*X^2 for Xtoler =1E-8 and FxToler = 1E-8. 

Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx 
Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

7 8 13 3.73307902 
7.090203E-10 

12 25 3.73307902 
3.01841573E-09 

6 7 12 3.73307902 
2.623679E-12 

11 23 3.73307902 
1.79482562E-09 

5 5 10 3.73307902 
3.932557E-09 

10 21 3.73307902 
6.47405684E-10 

4 3 8 3.73307902 
5.015543E-11 

8 17 3.73307902 
7.01874114E-10 

3 8 13 3.73307902 
2.646771E-13 

12 25 3.73307902 
1.2888E-09 

1 2 7 0.91000757 
-5.476774E-11 

5 11 0.91000757258 
-2.8452E-10 

0 5 10 -0.4589622 
-1.033062E-13 

7 15 -0.4589622 
-1.9023E-10 

-1 3 8 -0.4589622 
-2.575483E-09 

6 13 -0.4589622 
-2.187558E-10 

-2 5 10 -0.4589622 
-7.580047E-14 

7 15 -0.4589622 
-2.041214E-10 

-3 5 10 -0.4589622 
-6.848205E-09 

5 15 -0.4589622 
7.5226654E-09 
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Table 4 shows the results for function f(X) = eX – 3X2 for X tolerance of 1E-8 and function tolerance of 
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSteps.  The 
tested function has three roots near 3.733, 0.9100, and -0.4589. The table shows that for each initial guess, 
the Probing Steps Algorithm required less iterations and functions calls than Newton’s method. 

The Function f(X) = exp(-X) – exp(-3) 
The second function is f(X) = = exp(-X) – exp(-3) whose graph appears in the next figure: 

Table 5. Test results for f(X)=Exp(-X)- Exp(-3) for Xtoler =1E-8 and FxToler = 1E-8. 

Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx 
Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

-2 9 14 2.9999999999 
1.3929135E-13 

10 21 3.000000016057 
-7.994606E-10 

-1 7 12 2.99999990245 
4.8563936E-09 

9 19 3.00000001687 
-8.402010E-10 

0 6 11 2.99999999045 
4.7515362E-10 

8 17 3.00000001601 
-7.973450E-10 

1 5 10 2.99999999969
1.5068467E-11 

7 15 3.00000001166 
-5.805927E-10 

2 4 9 2.9999999999 
1.3974932E-14 

5 11 2.99999987482 
6.2321192E-09 

4 4 9 2.99999992977 
6.3310566E-10 

6 13 3.00000008045 
-4.005808E-09 

5 9 14 2.99999999999 
9.9669231E-12 

 10 21 3.000000065888 
-3.280370E-09 

6 22 27 2.99999892082 
3.3237995E-13 

22 45 3.00000004812 
-2.395785E-09 

 

Table 5 shows the results for function f(X) = e-X – e-3 for X tolerance of 1E-8 and function tolerance of 
1E-8. The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSteps.  The 
tested function has a root of 3. The table shows that for each initial guess below the root value, the 
Probing Slteps Algorithm required less iterations and functions calls than Newton’s method. The value of 
X = 6 is an exception since Newton’s method required the same number of iterations, but made 18 
additional function calls. 

The Test Polynomial 
The third test function is: 

f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1) 
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Table 6. Test results for f(X) = 0.005 * (X+5) * (X+3) * (X+1) * (X-5) * (X-3) * (X-1) for Xtoler =1E-8 and FxToler = 1E-8. 

Initial 
Guess 

PSA 
Iterations 

PSA  
Fx Calls 

PSA  
Result/Fx Value 

Newton 
Iterations 

Newton 
Fx Calls 

Newton 
Result/Fx Value 

7 7 12 5 
8.526512829E-14 

12 35 5.00000000005101 
9.7944052873E-10 

6 5 10 5.000000953793 
2.595470505E-10 

10 21 5.00000000031603 
6.0677564328E-09 

4 5 10 2.999999999928 
3.410605131E-15 

7 15 3.00000000140738 
-5.404344282E-09 

2 4 9 -1.00000000000067 
1.290914042E-12 

5 11 -0.9999999999541 
-8.7987856999E-
11 

0 25 30 5.00000000002342 
4.49603021491E-10 

28 57 5.00000000005315 
1.0205553736E-09 

 

Table 6 shows the results for the test polynomial for X tolerance of 1E-8 and function tolerance of 1E-8. 
The table shows a set of initial guesses supplied to the VBA subroutine RootByProbingSteps.  The tested 
function has roots at 5, 3, 1, -1, -3, and -5.  The table shows that for each initial guess below the root 
value, the Probing Slope Algorithm required less iterations and functions calls than Newton’s method. 

Conclusions 
The Probing Slopes Algorithm and the Probing Steps Algorithms demonstrated in the three examples that 
they outperform Newton’s method. The tests also show that the Probing Steps Algorithm slightly 
outperforms the Probing Slopes Algorithm. The recommendation is to use the Probing Steps Algorithm, 
with the Probing Slopes Algorithm as plan B. 


