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On Root Convergence Rates 
By 

Namir Shammas 

Introduction 
Numerical Analysis provides a wealth of root–seeking methods. These methods 

differ in basic mechanisms and strategies. While many generate a single root 

refinement per iteration, some of the new algorithms have adopted the approach of 

generating multiple root refinements per iteration. Alexander Ostrowski[1] (1893 to 

1986) was a talented Russian mathematician who taught for many years at the 

University of Basil, Switzerland. To the best of my knowledge, he implemented 

the first enhancement to Newton’s method that uses two refined guesses per 

iteration.  Since Ostrwoski’s algorithm came out, more mathematicians have 

adopted Ostrwoski’s approach to create similar variants to Newton’s method. 

Some of these new algorithms have more than two guess refinements per 

iterations.  
 

As we pick and choose between an increasing number of available root–seeking 

algorithms, we pay attention to how fast they tend to converge. Since a few 

decades ago, mathematicians who derive new root seeking methods, also go 

through the elaborate derivation of equations that identify the convergence rate. 

The typical and general form for the convergence of an algorithm examines how 

fast the error (difference between the current root guess and the actual root) 

diminish. The general equation for convergence is: 
 

𝑒𝑖+1 = 𝐾 𝑒𝑖
𝑛           (1) 

 

Where the power n is the convergence rate. The value for ei is the difference 

between the refined root, at iteration i, and the actual root value. The value of K is 

a coefficient that depends on the derivatives of the function whose root we seek 

and perhaps other constants and metrics. Wikipedia presents the following 

equation, for Newton’s method, that relates consecutive error values: 
 

|𝑒𝑖+1| =
|𝑓′′(𝜀𝑖)|

2| 𝑓′(𝑥𝑖)|
𝑒𝑖

2         (1b) 

 

Where εi is a value located between xi and the actual root r. Equation 1b gives you 

an example what coefficient K in equation 1 looks like for Newton’s method. The 
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same equation also suggest that K is a function of the current refined root value 

and contributes, along with 𝑒𝑖
2 to the value of the new error. The term 𝑒𝑖

2 suggest 

that Newton’s method has a quadratic convergence rate. 

A Change in Perspective 
I must admit that my prior view of the convergence rate as shown in equation 1 has 

been very naïve. I had assumed that after a few initial iterations, the errors in the 

refined root values adhere closely to the convergence rate order. This adherence 

represents a steady state that the iteration process reaches quickly. This steady state 

can happen if the values of the first and second derivatives don’t change by much 

WHEN the initial guess for the root is very close to the root. Choose an initial 

guess for the root that is far from the root, and all bets are off! Recently, I 

developed the new Ostrowski–Halley algorithm using Ostrowski’s approach to 

enhance Halley’s method. Several colleagues, on the hpmuseum.com web site, 

asked me what the convergence rate was for my new method. I did not know, since 

I did not follow the typical elaborate mathematical derivation for the convergence 

rate. Instead, I compared the number of iterations and function calls of my new 

algorithm with those of Newton, Halley, and Ostrowski. The results for a dozen 

test functions showed that the new algorithm did better than the other three with 

most of the test functions. Since the results of my new algorithm were reasonably 

(but not spectacularly) better than the results from Halley, I assumed that my new 

algorithm has a cubic convergence rate, just like Halley’s method. I had also 

assumed, until recently, that Ostrowski’s method also had a cubic convergence 

rate. Several colleagues pointed out that Ostrowski’s method had a fourth order 

convergence rate. 
 

The query from my Internet colleagues drove me to dive deeper into studying in 

more details the progress in the calculated errors associated with the root 

refinements. I decided that the best approach is in using functions where I know 

the exact roots values, or can easily calculate it. This way, I can accurately 

calculate the error for each iteration. The purpose of this study is: 
 

 Determine the effective convergence rate for an entire root–seeking set of 

calculations. 

 Determine the range of iterations when the effective convergence rate 

matches or comes close to the theoretical convergence rate. 

 Learn to empirically determine or verify the effective and theoretical 

convergence rates for root–seeking algorithms. 
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Background Theory 
A colleague recently sent me a link to an article written by Thukral[2]. The author 

mentions a method to estimate the convergence rate using: 
 

𝑛 = ln|δi / δi–1| / ln|δi–1 / δi–2|        (2) 
 

Where 
 

δi = 𝑓(𝑥𝑖) / 𝑓’(𝑥𝑖)          (3) 
 

Based on Newton’s method (i.e., 𝑥𝑖+1 = 𝑥𝑖  − 𝑓(𝑥𝑖) / 𝑓’(𝑥𝑖)), we can rewrite 

equation 3 as, 
 

𝛿𝑖  =  𝑥𝑖  – 𝑥𝑖+1          (3b) 
 

Equation 3b makes δi depend on two consecutive refinements of the roots. I 

suggest the following modification that reduces the reliance on refined root values: 
  

δi = xi – r = ei          (4) 
 

Where r is the exact root OR the highly refined root value that meets strict 

tolerance values. Equation 4 calculates the actual error of the refined root values, 

when the exact root is known. Thus, equation 2 can be written as: 
 

𝑛 = max(ln|ei / ei–1| / ln|ei–1 / ei–2|) for i=1, 2, 3, …     (5) 
 

I am using the function max to point out that n is the maximum value of the 

logarithmic ratios calculated for the various iterations. 
 

Looking back at equation 2 and 3, if we assume that the slope of consecutive root 

refinements does not change much in three iterations, we can take the derivatives 

out of the equation and write another equation to estimate n: 
  

𝑛 = max(ln|fi / fi–1| / ln|fi–1 / fi–2|) for i=1, 2, 3, …     (6) 
 

Like with equation 5, I am using the function max to point out that n is the 

maximum value of the logarithmic ratios calculated for the various iterations. 
 

In the case of using a whole array of error values, we can calculate the slope, using 

linear regression, of the linearized form of equation 1: 
 

ln(𝑒𝑖+1) = ln (𝐾) + + 𝑛 ln (𝑒𝑖)        (7) 
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The slope in equation 7 is n, the effective convergence rate. The intercept is ln(K). 

Armed with equations 5, 6, and 7, we can study the convergence rate of a few 

algorithms. Equation 7 gives us an overall convergence rate for the iterations set. 

Equations 5 and 6 gives the maximum value of the individual estimates for the 

convergence rate. Expect the estimated convergence rate values to be closer to the 

theoretical value in the final stages of the iteration process. 
 

I will also study how equations 5, 6, and 7, work with the selected algorithms using 

the following schemes: 
 

1. Use finite difference approximations to estimate the function’s derivatives as 

needed by each algorithm. This approach is applied with problems whose 

roots are known or can be easily calculated. 

2. Accurately calculate the function derivatives, as needed. This approach is 

applied with problems whose roots are known or can be easily calculated. 

3. Use finite difference approximations to estimate the function’s derivatives as 

needed by each algorithm. This approach is applied with problems whose 

roots are NOT accurately known. This approach calculates the refined root 

that meets the established tolerance value and then back calculates the errors 

between the previous root refinements and the last one. I will apply this 

approach once, with Newton’s method, to give you an idea of the effect of 

using the last refined root as an estimate for the real root. 
 

Schemes 1 and 3 examine the effect of approximating the derivatives and compare 

the results with scheme 2 where the derivatives are accurately calculated. In 

addition, schemes 1 and 2 compare using test functions with exact known roots, 

compared with scheme 3 where the exact roots are not known. Both sets of 

comparisons examine the effect of using approximations versus working with the 

exact values. 

About the Calculations 
I used the following equations to estimate the convergence rate for various 

algorithms: 
 

1. f(x) = exp(x–3) + 3*(x–3)^2 – 1, which has a root at x=3. 

2. f(x) = (x–3) * (x–20) * (x–50), which has roots at x=3, 20, and 50. 

3. f(x) = x^3 + ln(x+1), which has a root at x = 0. 

4. f(x) = exp(x) –100, which has a root at x=ln(100). 
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Figures 1 to 3 show the plots for the first three functions. 

 
Figure 1. The function f(x) = exp(x–3)+3*(x–3)^2–1. 

 

 
Figure 2. The function f(x) = (x–3)*(x–20)*(x–50). 

 

 
Figure 3. The function f(x) = x^3+ln(x+1). 
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I chose the last function since it is a smooth function, has no minima or maxima, 

has simple first and second derivatives (both equal to exp(x)), and has a root that 

can easily and accurately calculated. I did not feel that the study needed dozens of 

test functions, since I was out to test that the theoretical convergence rate does not 

hold for a significant portion of the iterations. A few examples that make the point 

are adequate. 
 

I carried out the calculations for the roots of different algorithms using a tolerance 

value of 10–9. I used Excel workbooks and coded the programs in VBA. The 

spreadsheets allow me to enter the initial guess, the actual root, the tolerance value, 

and mathematical expressions for f(x) and its derivatives (in the cases where I need 

to accurately calculate the derivatives). These expressions permit me to work with 

different functions without having to hard code then in the VBA source code. I 

applied linear regression to the array of ln(error) values. In several cases, I had to 

exclude the last value where successive errors are (almost) equal  (and where the 

best refined root value occurs) to avoid computational error. As for using equations 

5 and 6, the values generated by these equations were, for the leading iterations, 

generally close to 1. The maximum logarithmic ratios generated by the equations 

usually occurred near the end of the iterations. These are the values that theory 

predicts, but is very disappointing to see that the theoretical convergence rate 

occurs as a blip in the entire process! I was very surprised to see a drop in the 

convergence rate at the last one or two iterations! 
 

The convergence rate values for the results shown in all of the next tables are all 

rounded to two decimal places. 

Newton’s Method 
Table 1 shows the results for Newton’s algorithm that approximates the 

derivatives. Newton’s method has a quadratic convergence rate. Table 1 shows that 

the overall convergence rate by applying linear regression to equation 7 yields a 

linear order. The last two columns of the table shows the results of using equation 

5 and 6. The values do reach second order convergence, matching the theoretical 

convergence rate. There is one value that hints at cubic convergence rate, which I 

consider as an outlier. Applying different initial guess to different functions does 

affect the estimated convergence rates. 
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f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.22 1.39 1.18 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 1.12 1.33 1.16 

(x–3) * (x–20) * 

(x–50) 

3 –100 1.30 1.63 1.77 

(x–3) * (x–20) * 

(x–50) 

50 100 1.13 1.64 1.50 

x^3 + ln(1+x) 0 5 1.31 2.36 2.02 

x^3 + ln(1+x) 0 10 1.29 2.94 2.22 

exp(x) – 100 ln(100) 20 1.17 1.74 1.52 

exp(x) – 100 ln(100) 50 1.18 1.68 1.55 

Table 1. Results for Newton’s algorithm that approximates the derivatives. 
 

Table 2 shows the results for Newton’s algorithm that calculates exact derivatives. 

The slope of equation 7 is closer to 2 in table 2, than in table 1. The estimates for 

the convergence rate using equations 5 and 6 are right on target. Personally, I was 

very surprised at the general degradation of the convergence rate when using 

approximations to the first derivative with Newton’s method. I have always 

considered that approach as practical and was unaware of the potential loss of 

convergence rate! 

 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.34 2.00 2.00 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 1.63 2.00 1.99 

(x–3) * (x–20) * 

(x–50) 

3 –100 1.47 2.00 2.00 

(x–3) * (x–20) * 

(x–50) 

50 100 1.30 2.00 2.00 

x^3 + ln(1+x) 0 5 1.39 2.00 2.00 
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f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

x^3 + ln(1+x) 0 10 1.75 1.99 1.99 

exp(x) – 100 ln(100) 20 1.15 2.00 1.99 

exp(x) – 100 ln(100) 50 1.23 1.99 1.99 

Table 2. Results for Newton’s algorithm that calculates exact derivatives. 
 

Table 3 shows the results for Newton’s algorithm that calculates roots for a 

different set of functions that have no exact values. The functions are: 
 

1. f(x) = exp(x)–3*x^2 

2. f(x) = (x–1/0.3)*(x–1/0.0511)*(x–1/0.02345) 

3. f(x) = x^3+ln(1/0.9+x) 

4. f(x) = exp(x)–1/0.00111 
 

The above functions are similar to the set of functions with exact roots. The 

similarity is intentional in order to enable better comparison with the other results. 
 

The values in the table are similar to those of table 1 for the result of equations 5 

and 7. In the case of equation 6, the results hint at a (rounded) convergence rate are 

mostly close to 1.5. There are values that hint at orders 2 to 5 (if we round up).. 

These results lead me to conclude that attempting to calculate the convergence rate 

using functions whose roots are not know exactly, can lead to unreliable results! 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x)–3*x^2 3.7330 10 1.08 1.62 1.44 

exp(x)–3*x^2 3.7330 7 1.14 1.55 1.40 

(x–1/0.3)*(x–

1/0.0511)*(x–

1/0.02345) 

3.3333 –100 1.30 2.25 2.21 

(x–1/0.3)*(x–

1/0.0511)*(x–

1/0.02345) 

42.6439 100 1.13 1.60 1.48 

x^3+ln(1/0.9+x) –

0.10978 

5 1.23 2.73 1.82 
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f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

x^3+ln(1/0.9+x) –

0.10978 

10 1.25 4.53 3.36 

exp(x)–1/0.00111 6.80339 20 1.18 1.70 1.47 

exp(x)–1/0.00111 6.80339 50 1.20 1.70 1.46 

Table 3. Results for Newton’s algorithm that calculates roots that have no exact 

values. 

Halley’s Method 
Table 4 shows the results for Halley’s algorithm that approximates the derivatives. 

This algorithm has a cubic convergence rate. The values for the slope of equation 7 

are in the range of linear and quadratic. The results of equations 5 and 6 do favor a 

cubic convergence rate. 
 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.8 2.53 2.26 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 1.31 2.33 2.20 

(x–3) * (x–20) * 

(x–50) 

3 –100 1.69 2.86 2.73 

(x–3) * (x–20) * 

(x–50) 

50 100 1.23 2.41 1.90 

x^3 + ln(1+x) 0 5 1.25 3.18 3.26 

x^3 + ln(1+x) 0 10 1.32 3.18 3.27 

exp(x) – 100 ln(100) 20 1.37 2.81 1.98 

exp(x) – 100 ln(100) 50 1.98 2.83 2.08 

Table 4. Results for Halley’s algorithm that approximates the derivatives. 
 

Table 5 shows the results for Halley’s algorithm that calculates exact derivatives. 

As with table 2, equations 5 and 6 give results that are indicative of a cubic 

convergence rate. In the case of the slope of equation 7, only one value goes 
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slightly above 2.5. The result of the column shows overall convergence rates that 

are linear or quadratic. 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 2.53 2.93 2.36 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 2.36 2.82 2.66 

(x–3) * (x–20) * 

(x–50) 

3 –100 2.09 2.90 2.76 

(x–3) * (x–20) * 

(x–50) 

50 100 0.94 2.95 2.88 

x^3 + ln(1+x) 0 5 1.18 3.10 3.17 

x^3 + ln(1+x) 0 10 1.20 2.99 2.98 

exp(x) – 100 ln(100) 20 1.53 3.00 2.93 

exp(x) – 100 ln(100) 50 1.54 3.00 2.93 

Table 5. Results for Halley’s algorithm that calculates exact derivatives. 

Potra–Ptak Method 
I randomly picked this additional method since it appears in the article by 

Thukral[2]. The algorithm is said to have a cubic convergence rate and is a variant 

of Ostrowski’s method. This algorithm uses the following equations to refine the 

guesses for the root: 
 

𝑦𝑛= 𝑥𝑛 −  
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
           (8) 

 

𝑥𝑛+1= 𝑥𝑛 −  
(𝑓(𝑥𝑛)+𝑓(𝑦𝑛))

𝑓′(𝑥𝑛)
         (9) 

 

Table 6 shows the results for the Potra–Ptak algorithm that calculates exact 

derivatives. Most of the results of equations 5 and 6 do reflect a cubic convergence 

rate. A few outliers suggest higher convergence rates. We can safely ignore these 

values. The slope of equation 7 varies between linear and quadratic overall 

convergence rate. 
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f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.97 2.84 2.74 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 2.22 2.79 2.66 

(x–3) * (x–20) * 

(x–50) 

3 –100 1.77 2.94 2.89 

(x–3) * (x–20) * 

(x–50) 

50 100 0.98 2.94 2.96 

x^3 + ln(1+x) 0 5 1.375 4.75 4.69 

x^3 + ln(1+x) 0 10 1.42 6.29 4.76 

exp(x) – 100 ln(100) 20 1.59 2.98 2.96 

exp(x) – 100 ln(100) 50 1.41 2.99 2.97 

Table 6. Results for the Potra–Ptak algorithm that calculates exact derivatives. 

Ostrowski’s Method 
Table 7 shows the results for Ostrowski’s algorithm that approximates the 

derivatives. The results of equation 7 shows that the overall convergence rate 

varies between an order of 1 and 4/3. The results from using equations 5 and 6 

reflect convergence rates that are in the 3 to 4 range. Thus the results match the 

fourth order convergence rates that was reported to me by a colleague. 

 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.07 2.69 1.00 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 1.04 2.55 1.73 

(x–3) * (x–20) * 

(x–50) 

3 –100 1.30 2.93 2.57 

(x–3) * (x–20) * 

(x–50) 

50 100 1.11 1.90 1.67 

x^3 + ln(1+x) 0 5 1.37 3.74 3.53 

x^3 + ln(1+x) 0 10 1.38 3.49 3.46 
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f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x) – 100 ln(100) 20 1.31 2.72 1.75 

exp(x) – 100 ln(100) 50 1.31 1.95 1.59 

Table 7. Results for Ostrowski’s algorithm that approximates the derivatives. 
 

Table 8 shows the results for Ostrowski’s algorithm that uses exact derivatives. 

Keep in mind that the core Ostrowski algorithm estimates derivatives that used the 

intermediate root refinement. Nevertheless, the values of the slope in equation 7 

are both higher (near 2) and lower (near 0.9) compared to similar results in table 7. 

The results of equations 5 and 6 support a fourth order convergence rate for the 

Ostrowski method. 
 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

Max ln(err)  

Ratios 

Max ln(f) 

Ratios 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 2.48 3.27 2.76 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 2.11 3.36 2.89 

(x–3) * (x–20) * 

(x–50) 

3 –100 2.13 3.59 3.17 

(x–3) * (x–20) * 

(x–50) 

50 100 0.83 3.57 3.10 

x^3 + ln(1+x) 0 5 0.94 3.62 3.39 

x^3 + ln(1+x) 0 10 1.01 3.93 3.88 

exp(x) – 100 ln(100) 20 1.12 3.85 3.16 

exp(x) – 100 ln(100) 50 1.34 3.97 3.79 

Table 8. Results for Ostrowski’s algorithm that uses exact derivatives. 

Ostrowksi–Halley Method 
Table 9 shows the results for my new Ostrowski–Halley algorithm. When I was 

asked about the convergence rate I gave a guess of 3. The table shows that the 

results from using equations 5 and 6 hint at orders of 4 or 5. I will go with 5, since 

it was also a colleague’s estimated value. The results of the slopes using equation 7 

shows mostly linear rates with one value above cubic convergence rate. I think the 

verdict for the convergence rate for this new algorithm is an order of 5. 
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f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.29 3.52 3.12 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 1.32 3.52 2.63 

(x–3) * (x–20) * 

(x–50) 

3 –100 3.39 4.28 4.08 

(x–3) * (x–20) * 

(x–50) 

50 100 1.21 3.87 3.01 

x^3 + ln(1+x) 0 5 1.36 4.85 4.98 

x^3 + ln(1+x) 0 10 1.31 4.86 4.98 

exp(x) – 100 ln(100) 20 1.73 2.26 1.21 

exp(x) – 100 ln(100) 50 1.40 4.00 3.39 

Table 9. Results for Ostrowski–Halley algorithm that approximates the derivatives. 
 

Table 10 shows the results for my new Ostrowski–Halley algorithm. The table 

shows that the results from using equations 5 and 6 hint at orders of 4 or 5. The 

latter value is also a colleague’s estimated value. The results of the slopes using 

equation 7 shows mostly quadratic and cubic convergence rates. Again, the verdict 

for the convergence rate for this new algorithm is an order of 5. 
 

f(x) Root Initial 

Guess 

Slope of 

Logarithmic 

Error Ratios 

(eqn. 7) 

Max ln(err) 

Ratios 

(eqn. 5) 

Max ln(f) 

Ratios 

(eqn. 6) 

exp(x–3) + 3*(x–

3)^2 – 1 

3 10 1.36 3.74 3.53 

exp(x–3) + 3*(x–

3)^2 – 1 

3 7 0.93 3.65 3.49 

(x–3) * (x–20) * 

(x–50) 

3 –100 3.43 4.28 4.10 

(x–3) * (x–20) * 

(x–50) 

50 100 3.32 3.53 2.78 

x^3 + ln(1+x) 0 5 2.21 4.73 4.83 

x^3 + ln(1+x) 0 10 2.24 4.72 4.82 

exp(x) – 100 ln(100) 20 1.94 2.73 1.46 
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exp(x) – 100 ln(100) 50 2.66 4.00 3.56 

Table 10. Results for Ostrowski–Halley algorithm that calculates the derivatives. 

Conclusion 
The advantage in determining convergence rate of a root–seeking method is that 

we have the luxury of choosing the test functions. The use of equations 5 and 6 to 

estimate convergence rates proved to be practical. Equation 5 is more robust than 

equation 6 since it simply uses the differences between the current root refinement 

and the exact root. Equation 6, while still useful, relies on the assumption that the 

function derivative does not change much in value. You can regard equation 6 as a 

way to doublecheck on the results of equation 5. These equations work better with 

root–seeking implementations that follow these rules: 
 

1. Calculate the roots of functions with exact roots.  

2. Calculate the exact derivatives required in the algorithm used. 
 

I did notice that function f(x) = x^3 + ln(1+x) tends to give high estimates for the 

convergence rate. These values sometimes exceed the theoretical convergence rate. 

When I tried in investigate if a variant of that function, say, f(x)=(x–3)^3+ln(x–2), 

did better, I got convergence rates very close to 1 using equations 5 and 6, and 

about 0.92 using equation 7. Thus, this variant function went to the other extreme! 

Therefore, I would say the jury is not out yet on function f(x) = x^3 + ln(1+x). 
 

Using equation 7 shows the actual and effective convergence rate for the iterations, 

given a function f(x) and the parameters associated with the solution. As such, 

equation 7 gives you the big picture. This big picture depends on, among many 

factors, the initial root guess. You can repeat the calculations with initial root 

guesses that are closer to the root and reexamine the effective convergence rate. 
 

The theoretical convergence rates supplied for various algorithms are valid for a 

few iterations as the refined roots approach the actual root. This limitation is very 

disappointing and downplays the importance of the theoretical convergence rates. 

If the initial guesses for the root are far from the root, the effective and overall 

convergence rate is generally of order one, and at the very best, one order lower 

than the theoretical convergence rate. It seems that the value of coefficient K, in 

equation 1, plays a more relevant role in calculating the reduction in the errors 

associated with the refined root values. In solving for the root of a nonlinear 

function, the effective convergence rate is influenced by the following factors: 
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 The value of the initial guess for the root. 

 The actual number of roots and their values. 

 The values of the function and its derivatives (i.e. the function’s curvature) 

at various iterations. 

 The changes and variations in the function slope and curvature around the 

targeted root and possibly other neighboring roots. 
 

The above factors make it difficult to create simplified rules of thumb for 

estimating or verifying the convergence rate of a function. 
 

This study also attempts to answers the question regarding the convergence rate for 

my new algorithm. It has a fifth order if you include the results of f(x) = x^3 + 

ln(1+x). Otherwise, the convergence rate is fourth order. 
 

I have dealt with root–seeking algorithms for over four decades. This study that I 

conducted is a real eye–opener for me. The dynamics of convergence and its rate 

exhibit enough variations to prevent using the theoretical convergence rates as a 

robust predictor of the lifetime of the iterations that lead to a root. I consider the 

overall convergence rate as far more relevant and meaningful that the theoretical 

convergence rates that play a very limited role in the lifetime of the entire iterative 

process. I have always followed my gut feeling in working case by case and 

observing the number of iterations and function call as a good indication of the 

performance of an algorithm. Now I have new tools to empirically determine the 

effective and theoretical convergence rate of root–seeking algorithms. In the 

future, I plan revise the selected functions in favor of a collection of more well 

behaved functions. These functions should closely agree with the theoretical 

convergence rates for as many and diverse root-seeking algorithms as possible. 

Using the Excel Files 
The RootCR.ZIP file which contains this document also includes a number of 

macro–enabled Excel files. In each file, you find the VBA programs in the 

ThisWorksheet macro project located in the Project Explorer pane of the VBE 

(Visual Basic Editor) window, as shown in Figure 4. The Project Explorer has 

several spreadsheet-associated modules in addition to a general ThisWorksheet 

macro project. This macro project contains subroutines that work with the 

currently selected worksheet, and therefore can work with any worksheet. The 

VBE editor shows other projects associated with existing worksheets. I have kept 

these projects empty of macros. Placing subroutines in these macro projects will 



16 of 18 

 

Copyright © 2017 by Namir Clement Shammas Version 1.0 

allow you to run the code that interacts only with its associated worksheet. The 

Excel files, I am providing, have all the details which calculate the convergence 

rates for different algorithms and different ways to calculate the derivatives.  
 

 
Figure 4. The VBE window showing the project explorer in the left window and the 

VBA code for ThisWorksheet macro project. 
 

Figure 5 shows a typical worksheet used in the calculations. All of the spreadsheets 

use the following cells for input: 
 

1. Cell A2 contains the initial guess for the root. 

2. Cell A4 contains the exact root. Examples for this input are 3, –100, and 

=LN(100). The latter example shows how to calculate an exact root. 

3. Cell A6 contains the tolerance for the root. 

4. Cell A8 contains the expression for the function f(x). An example of input is 

the text exp(x)–3*x^2. The expression is case insensitive. 

5. Cells A9 contains the expression for the first derivative of f(x), when 

needed. An example of input is the text exp(x)–6*x. The expression is case 

insensitive. 

6. Cells A10 contains the expression for the second derivative of f(x), when 

needed. An example of input is the text exp(x)–6. The expression is case 

insensitive. 
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Figure 5. A typical worksheet used in the calculations. 
 

To perform the calculations on the currently selected worksheet you need to first 

open the VBE window editor (by pressing the Alt-F11 keys) and then execute the 

macro SUB go() located in the ThisWorksheet macro project. To perform the 

calculations for all the worksheets, in one swoop, you need to execute macro SUB 

doAll() in the ThisWorksheet macro project.  
 

If you want to test other algorithms and/or use your own test functions, follow 

these general steps: 
 

1. Make a copy of one the Excel files that I provide you, and give it an 

appropriate new name. 

2. Invoke the VBE editor (by pressing the Alt-F11 keys) and locate the VBA 

code in the ThisWorksheet macro project. 

3. To test different test functions, you can edit the values in cells A2, A4, A6, 

A8, and possibly A9 and A10. Depending on the number of test functions 

you plan to use, you can either delete worksheets (if you plan to use less 

than eight test functions) or easily add new ones by making copies of 

existing worksheets. 

4. To test different root–seeking algorithms, edit the code in the subroutine 

go(). You may need to insert ON ERROR GOTO error handlers to allow 

both macros SUB go() and SUB doAll() to operate smoothly.  
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5. Once you are done, use the macro SUB go() to recalculate the root for the 

currently selected worksheet. Alternatively, you can execute the macro SUB 

doAll() to recalculate the roots in all of your worksheets. To run either 

macro, place the mouse cursor anywhere inside the code of the targeted 

macro and then click the run button (looks like a left-arrow pointing play 

button) located at the top icon bar. Figure 4 actually shows two run buttons 

in the top icon bar. For further assistance with running Excel VBA code, 

consult the Internet or any Excel VBA programming book. 
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