
A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 1

A New Face of Romberg Integration
By

Namir Clement Shammas

Introduction
The Romberg method is among the popular numerical methods for integration. The

algorithm is a composite one. It uses a basic integration method to give rough

estimates for the integral. The method then performs extrapolations to significantly

improve on these estimates. The algorithm runs in cycles, forming a lower

triangular matrix, whose elements represent progressively refined values for the

sought integral. The elements in the first column of the lower triangular matrix

represent estimations of the integral using the trapezoidal rule—the basic

integration algorithm. The rest of the matrix elements contain improvements for

the integral values using Richardson’s extrapolation. This extrapolation taps into

elements in the neighboring matrix values. Each new matrix row brings with it

better estimates for the sought integral. The number of rows in the matrix is related

to the tolerance for the integral.

Article’s Goal
This article answers the question, “Can we replace using the trapezoidal rule with

other methods for estimating the integral? If so, what kinds of results do we get?”

One may intuitively guess that any basic integration algorithm that is better than

the trapezoidal rule. The article shows that such a guess may be true for certain

basic integration algorithms and less true for others. It seems that the Richardson’s

extrapolation works well with certain, but not all, basic integration algorithms.

Instead of using extensive mathematical derivations, I will present the new

modified Romberg methods using the listings of working Visual Basic code.

To estimate the integral of function f(x) from a to b, the basic Romberg method

uses the following general steps:

R(0,0) =
(𝑏−𝑎)

2
 (𝑓(𝑏) + 𝑓(𝑎))

R(n,0) =
1

2
 R(n-1,0) + hn ∑ 𝑓(𝑎 + (2𝑘 − 1)ℎ𝑛

2𝑛−1

𝑘=1

R(n,m) =
1

4𝑚−1
 (4m R(n,m-1) – R(n-1,m-1))

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 2

Where hn = (b-a)/2n

The step that calculates the element R(n,0) uses the trapezoidal rules to estimate

the integral value. This article looks at other alternative for basic integration

methods.

Implementation of the Basic Romberg Method
Let me present a Visual Basic (VBA Excel) function that implements the basic

Romberg method:

Function MyFx(ByVal sExpress As String, ByVal sVarName As String, ByVal X As Double) As Double

 MyFx = Evaluate(Replace(sExpress, sVarName, "(" & CStr(X) & ")"))

End Function

Function RombergBasic(ByVal sExpress As String, ByVal sVarName As String, _

 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double

 ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values

 ' for the row and column indices of matrix R(,). These offsets are helpful when translating

 ' the VBA function into other BASIC dialects or languages that do not support zero indices

 ' for the rows and columns of a matrix.

 Const ROW0 = 1

 Const COL0 = 1

 Dim I As Integer, J As Integer, MaxCols As Integer, M As Long

 Dim R() As Double, h As Double, X As Double, Sum As Double

 Dim Func As String

 MaxCols = CInt(Abs(Log(Toler) / Log(10)))

 ReDim R(1 + ROW0, MaxCols + COL0)

 h = B - A

 R(ROW0, COL0) = h / 2 * (MyFx(sExpress, sVarName, A) + _

 MyFx(sExpress, sVarName, B))

 For I = 1 To MaxCols

 h = h / 2

 Sum = 0

 For J = 1 To 2 ^ (I - 1)

 Sum = Sum + MyFx(sExpress, sVarName, A + (2 * J - 1) * h)

 Next J

 R(1 + ROW0, COL0) = R(ROW0, COL0) / 2 + h * Sum

 M = 1

 For J = 1 To I

 M = 4 * M

 R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - _

 R(0 + ROW0, J - 1 + COL0)) / (M - 1)

 Next J

 For J = 0 To I

 R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0)

 Next J

 Next I

 RombergBasic = R(0 + ROW0, MaxCols + COL0)

End Function

The function MyFX(ByVal sExpress As String, ByVal sVarName As String,

ByVal X As Double) is a helper function. It evaluates the expression in parameter

sExpress by replacing the variable names in that expression with the value of

parameter X. The parameter sVarName specifies the name of the variable in the

first parameter. Using this function, you can supply the expressions for the

integrated function dynamically.

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 3

The function RombergBasic calculates the integral and has the following

parameters:

 The parameter sExpress represents the expression for the function f(x).

 The parameter sVarName contains the name of the variable in the integrated

function.

 The parameters A and B define the integral limits.

 The parameter Toler represents the tolerance. The function translates the

value of this parameter into the number of columns, in the triangular

Romberg matrix, required to calculate the integral.

Since the Romberg method uses data in the current and last matrix rows, all of the

implemented functions maintain the data in only two rows of the matrix to reduce

memory requirements.

The Romberg-Simpson Method
The first facelift that I will perform on the basic Romberg method is this. I will

replace the trapezoidal methods with the Simpson one-third method. I will call this

variant of the integration algorithm the Romberg-Simpson.

The method uses the following basic calculations:

R(0,0) =
(𝑏−𝑎)

3
 (𝑓(𝑏) + 4f((a + b)/2) + 𝑓(𝑎))

Sum(a,b,n,h) = ∑(𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 2𝑓(𝑎 + 2ℎ) + ⋯ + 4𝑓(𝑏 − ℎ) + 𝑓(𝑏))

R(n,0) = (R(n-1,0) + h Sum(a,b,n,h)/4

R(n,m) =
1

4𝑚−1
 (4m R(n,m-1) – R(n-1,m-1))

Where h = (b-a)/2n

Here is the Visual Basic implementation for the Romberg-Simpson method:

Function RombergSimpson(ByVal sExpress As String, ByVal sVarName As String, _

 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double

 ' Romberg's method variant that uses Simpson's rule instead of trapezoidal integration

 '

 ' Examples for calling this function are:

 '

 ' 1) RombergSimpson("1/X", "X", 1, 2, 1E-8) returns the value for ln(2)

 '

 ' 2) RombergSimpson("exp(X)", "X", 0, 1, 1E-8) returns the value for exp(1)-1

 '

 ' 3) RombergSimpson("EXP($X)", "$X", 0, 1, 1E-8) returns the value for exp(1)-1

 '

 ' Note that the second example uses the variable name of $X instead of X, because the

 ' letter X also appears in the name of the exponential function EXP. Thus, using the name

 ' $X yields the correct result.

 '

 ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values

 ' for the row and column indices of matrix R(,). These offsets are helpful when translating

 ' the VBA function into other BASIC dialects or languages that do not support zero indices

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 4

 ' for the rows and columns of a matrix.

 Const ROW0 = 1

 Const COL0 = 1

 Dim I As Integer, J As Integer, MaxCols As Integer, M As Long, K As Integer

 Dim R() As Double, h As Double, X As Double, Sum As Double, h2 As Double

 MaxCols = CInt(Abs(Log(Toler) / Log(10)))

 ReDim R(1 + ROW0, MaxCols + COL0)

 h = (B - A) / 2

 R(ROW0, COL0) = h / 3 * (MyFx(sExpress, sVarName, A) + 4 * MyFx(sExpress, sVarName, A + h) + _

 MyFx(sExpress, sVarName, B))

 For I = 1 To MaxCols

 h = h / 2

 ' Note: The next statement has a programming trick. It subtracts fx(B) from the sum so that

 ' when the loop adds 2*f(B) to the sum, the latter will have the correct value of:

 '

 ' Sum = fx(A) + 4 * fx(A+h) + 2 * fx(A+2h) + ... + 4 * fx(B-h) + fx(B)

 '

 Sum = MyFx(sExpress, sVarName, A) - MyFx(sExpress, sVarName, B)

 X = A + h

 Do While X < B

 Sum = Sum + 4 * MyFx(sExpress, sVarName, X) + 2 * MyFx(sExpress, sVarName, X + h)

 X = X + 2 * h

 Loop

 R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 4

 M = 1

 For J = 1 To I

 M = 4 * M

 R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - _

 R(0 + ROW0, J - 1 + COL0)) / (M - 1)

 Next J

 For J = 0 To I

 R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0)

 Next J

 Next I

 RombergSimpson = R(0 + ROW0, MaxCols + COL0)

End Function

 In this article, I use red fonts to highlight relevant code in the various

functions.

The function RombergSimpson has the same parameters as function

RombergBasic. I use the constants ROW0 and COL0 as offsets for the row and

column indices of the Romberg matrix. Since Visual Basic handles matrices that

are either zero-based or one-based, setting these constants to 0 or 1 is fine. I put

these index offset constants so that if you want to translate the code to other

languages that support one-based array/matrix indexing (like Matlab) then you can

easily translate the code. Simply replace ROW0 and COL0 with 1 in your

translated code.

Notice the following statement located before the main For loop:

 R(ROW0, COL0) = h / 3 * (MyFx(sExpress, sVarName, A) + 4 * MyFx(sExpress, sVarName, A + h) + _

 MyFx(sExpress, sVarName, B))

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 5

The above statement initializes the first element in the Romberg matrix by

applying the basic Simpson’s rule. The function uses the following statements to

calculate better approximations for the integral using Simpson’s rule:

 Sum = MyFx(sExpress, sVarName, A) - MyFx(sExpress, sVarName, B)

 X = A + h

 Do While X < B

 Sum = Sum + 4 * MyFx(sExpress, sVarName, X) + 2 * MyFx(sExpress, sVarName, X + h)

 X = X + 2 * h

 Loop

The above code implements a composite version of Simpson’s rule that calculates

the integral using more than three points. Finally, notice the following statement:

R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 4

The above statement calculates the value for element R(1+ROW0, COL0) using

the values of R(ROW0, COL0) and the calculated Simpson integral sum. The

expression averages the two integrals (in R(ROW0,COL0) and h/3*Sum) using

unequal weights. The expression assigns a weight of 1 to R(ROW0,COL0) and a

weight of 3 to the Simpson’s rule result (and that is why the statement shows h *

Sum instead of h/3*Sum). The result is divided by 4 which is the sum of the

weights. I have found that these weights give better results than using equal

weights.

The Extended Romberg-Simpson Method
The second facelift that I will perform on the basic Romberg method is one that

uses the basic Simpson’s rule as well as the Alternative Extended Simpson’s rule.

Here is the Visual Basic implementation for the Extended Romberg-Simpson

method:

Function RombergSimpsonEx(ByVal sExpress As String, ByVal sVarName As String, _

 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double

 ' Romberg's method variant that uses Simpson's rule and the Alternative extended Simpson's rule

 ' instead of trapezoidal integration

 '

 ' Examples for calling this function are:

 '

 ' 1) RombergSimpsonEx("1/X", "X", 1, 2, 1E-8) returns the value for ln(2)

 '

 ' 2) RombergSimpsonEx("exp(X)", "X", 0, 1, 1E-8) returns the value for exp(1)-1

 '

 ' 3) RombergSimpsonEx("EXP($X)", "$X", 0, 1, 1E-8) returns the value for exp(1)-1

 '

 ' Note that the second example uses the variable name of $X instead of X, because the

 ' letter X also appears in the name of the exponential function EXP. Thus, using the name

 ' $X yields the correct result.

 '

 ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values

 ' for the row and column indices of matrix R(,). These offsets are helpful when translating

 ' the VBA function into other BASIC dialects or languages that do not support zero indices

 ' for the rows and columns of a matrix.

 Const ROW0 = 1

 Const COL0 = 1

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 6

 Dim I As Integer, J As Integer, MaxCols As Integer, M As Long, K As Integer

 Dim R() As Double, h As Double, X As Double, Sum As Double, h2 As Double

 Dim N As Integer

 MaxCols = CInt(Abs(Log(Toler) / Log(10)))

 ReDim R(1 + ROW0, MaxCols + COL0)

 N = 2

 h = (B - A) / 2

 R(ROW0, COL0) = h / 3 * (MyFx(sExpress, sVarName, A) + 4 * MyFx(sExpress, sVarName, A + h) + _

 MyFx(sExpress, sVarName, B))

 For I = 1 To MaxCols

 N = 2 + N

 h = h / 2

 ' Note: The next statement has a programming trick. It subtracts fx(B) from the sum so that

 ' when the loop adds 2*f(B) to the sum, the latter will have the correct value of:

 '

 ' Sum = fx(A) + 4 * fx(A+h) + 2 * fx(A+2h) + ... + 4 * fx(B-h) + fx(B)

 '

 If CInt((B - A) / h - 0.5) < 8 Then

 Sum = MyFx(sExpress, sVarName, A) - MyFx(sExpress, sVarName, B)

 X = A + h

 Do While X < B

 Sum = Sum + 4 * MyFx(sExpress, sVarName, X) + 2 * MyFx(sExpress, sVarName, X + h)

 X = X + 2 * h

 Loop

 R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 4

 Else

 ' use the alternative extended Simpson's rule

 Sum = 17 * (MyFx(sExpress, sVarName, A) + MyFx(sExpress, sVarName, B))

 Sum = Sum + 59 * (MyFx(sExpress, sVarName, A + h) + MyFx(sExpress, sVarName, B - h))

 Sum = Sum + 43 * (MyFx(sExpress, sVarName, A + 2 * h) + MyFx(sExpress, sVarName, B-2 * h))

 Sum = Sum + 49 * (MyFx(sExpress, sVarName, A + 3 * h) + MyFx(sExpress, sVarName, B-3 * h))

 X = 4 * h + A

 Do While X < (B - 3 * h)

 Sum = Sum + 48 * MyFx(sExpress, sVarName, X)

 X = X + h

 Loop

 R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 49

 End If

 M = 1

 For J = 1 To I

 M = 4 * M

 R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - _

 R(0 + ROW0, J - 1 + COL0)) / (M - 1)

 Next J

 For J = 0 To I

 R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0)

 Next J

 Next I

 RombergSimpsonEx = R(0 + ROW0, MaxCols + COL0)

End Function

The function RombergSimpsonEx has the same parameters as the first two

Romberg functions that I presented. This function is an extension of

RombergSimpson. When the number of rows reaches 8, the function switches from

using the basic Simpson’s one-third rule to the Alternative Extended Simpson’s

rule. Once the function calculates the area sum for this algorithm, it calculates the

new value in the Romberg matrix using:

R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 49

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 7

Notice that the value for the Romberg matrix element is calculated using R(ROW0,

COL0) and the calculated Simpson integral sum. The above equation assigns a

weight of 1 to R(ROW0, COL0) and a weight of 48 to the calculated sum. As with

function RombergSimpson, I have found that these weights give better results than

using equal weights.

The Romberg-Gauss Method
Another variant of the Romberg method that I studied is one where I replaced the

trapezoidal rule with Legendre-Gaussian quadrature. I will call this method

Romberg-Gauss. Combining two versatile methods should yield interesting results.

You may say that the algorithm is an overkill, since the Gaussian quadrature by

itself can do a good job in calculating an integral. My motive for the Romberg-

Gauss method is mainly driven by curiosity.

The first step in using Gaussian quadrature involves writing a function that

performs the integration for a varying number of points. Currently, the function

supports up to 11 points, which should be adequate for our purposes. Here is the

listing of the function GaussQuad:

Function GaussQuad(ByVal sExpress As String, ByVal sVarName As String, _

 ByVal N As Integer, ByVal A As Double, ByVal B As Double) As Double

 Const MAX = 11

 Dim Wt(MAX) As Double, X(MAX) As Double

 Dim Sum As Double, h1 As Double, h2 As Double

 Dim I As Integer

 If N > MAX Then N = MAX

 h1 = (B - A) / 2

 h2 = (B + A) / 2

 Select Case N

 Case 2

 Wt(1) = 1

 Wt(2) = 1

 X(1) = -0.577350269189626

 X(2) = -X(1)

 Case 3

 Wt(1) = 0.888888888888889

 X(1) = 0

 Wt(2) = 0.555555555555556

 X(2) = -0.774596669241483

 Wt(3) = Wt(2)

 X(3) = -X(2)

 Case 4

 Wt(1) = 0.652145154862546

 X(1) = 0.339981043584856

 Wt(2) = 0.347854845137454

 X(2) = 0.861136311594053

 For I = 3 To 4

 Wt(I) = Wt(I - 2)

 X(I) = -X(I - 2)

 Next I

 Case 5

 Wt(1) = 0.568888888888889

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 8

 X(1) = 0

 Wt(2) = 0.478628670499367

 X(2) = 0.538469310105683

 Wt(3) = 0.236926885056189

 X(3) = 0.906179845938664

 For I = 4 To 5

 Wt(I) = Wt(I - 2)

 X(I) = -X(I - 2)

 Next I

 Case 6

 Wt(1) = 0.360761573048139

 X(1) = 0.661209386466264

 Wt(2) = 0.467913934572691

 X(2) = 0.238619186083197

 Wt(3) = 0.17132449237917

 X(3) = 0.932469514203152

 For I = 4 To 6

 Wt(I) = Wt(I - 3)

 X(I) = -X(I - 3)

 Next I

 Case 7

 Wt(1) = 0.417959183673469

 X(1) = 0

 Wt(2) = 0.381830050505119

 X(2) = 0.405845151377397

 Wt(3) = 0.279705391489277

 X(3) = 0.741531185599394

 Wt(4) = 0.12948496616887

 X(4) = 0.949107912342758

 For I = 5 To 7

 Wt(I) = Wt(I - 3)

 X(I) = -X(I - 3)

 Next I

 Case 8

 Wt(1) = 0.362683783378362

 X(1) = 0.18343464249565

 Wt(2) = 0.313706645877887

 X(2) = 0.525532409916329

 Wt(3) = 0.222381034453375

 X(3) = 0.796666477413627

 Wt(4) = 0.101228536290376

 X(4) = 0.960289856497536

 For I = 5 To 8

 Wt(I) = Wt(I - 4)

 X(I) = -X(I - 4)

 Next I

 Case 9

 Wt(1) = 0.33023935500126

 X(1) = 0

 Wt(2) = 0.180648160694857

 X(2) = 0.836031107326636

 Wt(3) = 8.12743883615744E-02

 X(3) = 0.968160239507626

 Wt(4) = 0.312347077040003

 X(4) = 0.324253423403809

 Wt(5) = 0.260610696402935

 X(5) = 0.61337143270059

 For I = 6 To 9

 Wt(I) = Wt(I - 4)

 X(I) = -X(I - 4)

 Next I

 Case 10

 Wt(1) = 0.295524224714753

 X(1) = 0.148874338981631

 Wt(2) = 0.269266719309996

 X(2) = 0.433395394129247

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 9

 Wt(3) = 0.219086362515982

 X(3) = 0.679409568299024

 Wt(4) = 0.149451349150581

 X(4) = 0.865063366688985

 Wt(5) = 6.66713443086881E-02

 X(5) = 0.973906528517172

 For I = 6 To 10

 Wt(I) = Wt(I - 5)

 X(I) = -X(I - 5)

 Next I

 Case 11

 Wt(1) = 0.272925086777901

 X(1) = 0

 Wt(2) = 0.262804544510247

 X(2) = 0.269543155952345

 Wt(3) = 0.233193764591991

 X(3) = 0.519096129206812

 Wt(4) = 0.186290210927734

 X(4) = 0.730152005574049

 Wt(5) = 0.125580369464905

 X(5) = 0.887062599768095

 Wt(6) = 5.56685671161737E-02

 X(6) = 0.978228658146057

 For I = 7 To 11

 Wt(I) = Wt(I - 5)

 X(I) = -X(I - 5)

 Next I

 End Select

 Sum = 0

 For I = 1 To N

 Sum = Sum + Wt(I) * MyFx(sExpress, sVarName, h1 * X(I) + h2)

 Next I

 GaussQuad = h1 * Sum

End Function

The function GaussQuad has parameters similar to the previous Romberg

functions. The Toler parameter does not exist in function GaussQuad.

Conceptually, this missing parameter is replaced with the integer-typed parameter,

N, that specifies the number of integration points. The function uses a Select

statement to zoom in on the sought weights and abscissa points used in Gaussian

quadrature.

The function that implements the Romberg-Gauss method is:

Function RombergGauss(ByVal sExpress As String, ByVal sVarName As String, _

 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double

 ' Romberg's method variant that uses Simpson's rule and the Alternative extended Simpson's rule

 ' instead of trapezoidal integration

 '

 ' Examples for calling this function are:

 '

 ' 1) RombergGauss("1/X", "X", 1, 2, 1E-8) returns the value for ln(2)

 '

 ' 2) RombergGauss("exp(X)", "X", 0, 1, 1E-8) returns the value for exp(1)-1

 '

 ' 3) RombergGauss("EXP($X)", "$X", 0, 1, 1E-8) returns the value for exp(1)-1

 '

 ' Note that the second example uses the variable name of $X instead of X, because the

 ' letter X also appears in the name of the exponential function EXP. Thus, using the name

 ' $X yields the correct result.

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 10

 '

 ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values

 ' for the row and column indices of matrix R(,). These offsets are helpful when translating

 ' the VBA function into other BASIC dialects or languages that do not support zero indices

 ' for the rows and columns of a matrix.

 Const ROW0 = 1

 Const COL0 = 1

 Dim I As Integer, J As Integer, MaxCols As Integer, M As Long, K As Integer

 Dim R() As Double, h As Double, X As Double, Sum As Double, h2 As Double

 Dim N As Integer

 MaxCols = CInt(Abs(Log(Toler) / Log(10)))

 ReDim R(1 + ROW0, MaxCols + COL0)

 N = 2

 h = (B - A) / 2

 R(ROW0, COL0) = GaussQuad(sExpress, sVarName, N, A, B)

 For I = 1 To MaxCols

 N = N + 1

 R(1 + ROW0, COL0) = GaussQuad(sExpress, sVarName, N, A, B)

 M = 1

 For J = 1 To I

 M = 4 * M

 R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - R(0 + ROW0, J - 1 + COL0)) / (M -

1)

 Next J

 For J = 0 To I

 R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0)

 Next J

 Next I

 RombergGauss = R(0 + ROW0, MaxCols + COL0)

End Function

The function RombergGauss calls the function GaussQuad to obtain very good

estimates of the integral. Notice that the statement which calculates R(1 + ROW0,

COL0) simply calls the function GaussQuad. It does not use other elements in the

Romberg matrices to calculate R(1 + ROW0, COL0). I have found this approach to

yield better results.

Test Scores!
It’s time to separate the men from the boys, the winners from the losers! So how do

the different methods stack up against each other? Table 1 shows the test results

for various integrations. The table also includes columns that show the exact

solution and the results of using 11-point and 6-point Legendre-Gauss quadrature

(by calling function GaussQuad). The results are color coded—yellow for first

place, green for second, and blue for third.

Problem Exact Value RombergBasic RombergSimpson RombergSimpsonEx RombergGauss Legendre-

Gauss-11

Legendre-

Gauss-6

Color Scheme

1/x from 1 to 2 0.693147181 0.693147181 0.693147181 0.693147181 0.693147181 0.693147181 0.69314718 1st rank

1/x from 1 to 10 2.302585093 2.302585093 2.302585093 2.302585094 2.30258458 2.302583355 2.301408084 2nd Rank

1/x from 1 to

100

4.605170186 4.605320986 4.605173699 4.605070339 4.539591105 4.550142068 4.230412779 3rd Rank

ln(x)/x from 1 to

10

2.650949055 2.650949055 2.650949055 2.650949055 2.650949055 2.650949055 2.650949055

ln(x)/x from 1 to

100

10.603796221 10.60378807 10.60398559 10.68648172 10.67441869 10.83360554 10.60378807

sin(x) from 0 to

1

0.459697694 0.459697694 0.459697694 0.459697694 0.459697694 0.459697694 0.459697694

sin(x)/x from

1e-10 to pi/4

0.758975881 0.758975881 0.758975881 0.761068293 0.758975881 0.758975881 0.758975881

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 11

Problem Exact Value RombergBasic RombergSimpson RombergSimpsonEx RombergGauss Legendre-

Gauss-11

Legendre-

Gauss-6

Color Scheme

sin(x)cos(x)

from 0 to 1

0.354036709 0.354036709 0.354036709 0.354036709 0.354036709 0.354036709 0.354036709

ln(x)/x^2 from 1

to 2

0.15342641 0.15342641 0.15342641 0.15342641 0.15342641 0.15342641 0.153426421

ln(x)/x^2 from 1

to 10

0.669741491 0.669741491 0.669741491 0.669741485 0.66975646 0.669761624 0.674774153

ln(x)/x^2 from 1

to 100

0.943948298 0.943066528 0.943917809 0.94437022 1.008005008 1.002756148 0.919835967

Table 1. The test results.

Examining Table 1 we observe the following:

1. The function RombergSimpson has performed the best in most cases.

2. The function RombergBasic comes second rank overall.

3. The function RomberSimpsonEx comes third rank overall.

4. The Gaussian quadrature also performed well. This should not come as a

total surprise as the Legendre-Gauss quadrature is one of the main rivals of

the Romberg integration method.

We conclude that:

1. Incorporating the Simpson’s one-third rule with the Romberg method

enhances the algorithm in general. The improvement comes as a moderate

additional effort in computing.

2. The basic Romberg method is still a viable method since it has outdone most

of the variant algorithms.

3. The Extended Romberg-Simpson also shows some promise, albeit at some

additional computing effort.

4. Incorporating the Gaussian quadrature with the Romberg algorithm does not

give the result method sustainable advantage. My hunch as to why this lack

of advantage occurs is that the quadrature results do not work well with the

Richardson extrapolation.

Prologue
In 2013 I was in communication with Graeme Dennes, of Melbourne, Australia.

He offered several suggestions to improve the Romberg-Simpson method. Graeme

focused on including VBA statements that detect the conditions for earlier

termination of the Romberg iterations. In addition, he implemented a general-

purpose API-based Timer in VBA and used it to time the integration calculations.

In March 2014, Graeme submitted an new improved version of his code which

included the following changes:

 The exit criteria has been enhanced to achieve further improvements in

speed and accuracy.

 The outputs now show the number of function evaluations as a more useful

performance metric for comparison purposes.

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 12

 The Excel file has 200 test functions for even more diversity for comparison

purposes

Table 1 shows a partial view of Graeme’s latest Excel file that performs integration

on many functions using his code.

Table 2. Graeme Graeme’s latest Excel test file showing the results of integration of several

test functions.

Graeme includes an orange-colored button that allows you to toggle between

performing the calculations and showing them, and hiding the results. You can of

course change some of the input values in the leftmost columns. The tested

functions start appearing in row 16. Graeme’s code contains the following

modules:

 The m_High_Res_Timer module.

 The Quad_QUAD_ROMBERG module.

Here is the listing for the m_High_Res_Timer module:

Option Explicit

Private Declare PtrSafe Function QueryPerformanceCounter Lib "kernel32" (ByRef x As Currency) As

Long

Private Declare PtrSafe Function QueryPerformanceFrequency Lib "kernel32" (ByRef x As Currency)

As Long

Public Function MicroTimer() As Double

SHOW /HIDE

1

SELECT FUNCTION SHOW / HIDE Total Total Time Total True Total Number of

No. Cell Function Plotted Name Variable a b Func Evals: in Seconds: Error: Correct Digits:

4 0 0 542,624 48.185 0.0128 2475 of 3000 (82.5%)

↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓

TRUE

No. Cell Function Name Variable a b INTEGRAL Integral Est. Error Func Evals Time (secs) True Error Correct Digits Message

1 1/SQRT(x) FINITE_1 x 0 1 2 2.00000000000000 1.02E-13 255 0.015332 1.11E-16 15

2 SQRT(4-x^2) FINITE_2 x 0 2 3.14159265358979 3.14159265358979 7.69E-14 255 0.015685 1.41E-16 15

3 LN(x) FINITE_3 x 0 1 -1 -1.00000002065983 6.20E-08 8191 0.487040 2.07E-08 7

4 x*LN(x) FINITE_4 x 0 1 -0.25 -0.250000000000032 6.22E-13 4095 0.319614 1.26E-13 12

5 LN(x)/SQRT(x) FINITE_5 x 0 1 -4 -3.99964289999447 8.93E-05 8191 0.814806 8.93E-05 4

6 4/(1+x^2) FINITE_6 x 0 1 3.14159265358979 3.14159265358979 7.07E-16 511 0.050082 5.65E-16 15

7 SIN(x)^4*COS(x)^2 FINITE_7 x 0 1.57079632679490 0.0981747704246810 0.0981747704246809 9.66E-14 511 0.033268 1.27E-15 14

8 COS(x) FINITE_8 x 0 3.14159265358979 0 -3.67602986263905E-16 7.75E+00 8191 0.734519 3.68E-16 15

9 COS(LN(x)) FINITE_9 x 0 1 0.5 0.500000120614689 7.86E-08 8191 0.715191 2.41E-07 6

10 SQRT(4*x-x^2) FINITE_10 x 0 2 3.14159265358979 3.14159265358979 7.69E-14 255 0.030071 2.83E-16 15

11 5*x^2 FINITE_11 x 0 10 1666.66666666667 1666.66666666667 0.00E+00 63 0.008770 0.00E+00 15

12 x^0.125 FINITE_12 x 0 1 0.888888888888889 0.888888888635416 1.07E-09 8191 0.705251 2.85E-10 9

13 1/x FINITE_13 x 1 10 2.30258509299405 2.30258509299404 3.45E-14 1023 0.077601 9.64E-16 15

14 LN(x)/(1-x) FINITE_14 x 0.5 1 -0.582240526465013 -0.582240526465013 4.98E-14 255 0.017951 0.00E+00 15

15 EXP(-1/COS(x)) FINITE_15 x 0 1.04719755119660 0.307694394903451 0.307694394903450 2.71E-15 511 0.039261 2.89E-15 14

16 (x*(x+88)*(x-88)*(x+47)*(x-47)*(x+117)*(x-117))^2 FINITE_16 x 0 128 6.55134477611335E+27 6.55134477611343E+27 8.11E-14 1023 0.055648 1.26E-14 13

17 EXP(-(x^2)) FINITE_17 x 0 100 0.886226925452758 0.886226925452758 2.34E-15 4095 0.334456 5.01E-16 15

18 2*x^2/(x+1)/(x-1)-x/LN(x) FINITE_18 x 0 1 0.0364899739785776 0.0364899739785732 4.78E-13 2047 0.268353 1.18E-13 12

19 x*LN(1+x) FINITE_19 x 0 1 0.25 0.250000000000002 1.48E-13 255 0.028800 7.77E-15 14

20 x^2*ATAN(x) FINITE_20 x 0 1 0.210657251225807 0.210657251225807 2.02E-15 511 0.040849 5.27E-16 15

21 EXP(x)*COS(x) FINITE_21 x 0 1.57079632679490 1.90523869048268 1.90523869048268 5.83E-16 511 0.045262 1.05E-15 14

22 ATAN(SQRT(x^2+2))/(1+x^2)/SQRT(x^2+2) FINITE_22 x 0 1 0.514041895890071 0.514041895890071 6.48E-16 511 0.035798 6.48E-16 15

23 LN(x)*SQRT(x) FINITE_23 x 0 1 -0.444444444444444 -0.444444444440236 6.63E-11 8191 0.533775 9.47E-12 11

24 SQRT(1-x^2) FINITE_24 x 0 1 0.785398163397448 0.785398163397447 7.66E-14 255 0.016194 1.27E-15 14

25 SQRT(x)/SQRT(1-x^2) FINITE_25 x 0 1 1.19814023473559 1.19814023473560 2.38E-13 255 0.048248 4.26E-15 14

26 LN(x)^2 FINITE_26 x 0 1 2 2.00000074421026 1.00E-06 8191 0.666670 3.72E-07 6

ROMBERG PROGRAM OUTPUTS

UDF Name: QUAD_ROMBERG_GD
 "HIDE RESULTS"

FUNCTION PLOTTER

CLICK THE "CLICK TO SHOW CHART" BUTTON, THEN SELECT FUNCTION WITH UP/DOWN BUTTONS

OVERALL PROGRAM PERFORMANCE

ROMBERG PROGRAM INPUTS

CLICK THE ORANGE BUTTON
CLICK BUTTON TO SWITCH

 BETWEEN "SHOW RESULTS" AND

ROMBERG QUADRATURE
AND FUNCTION PLOTTING CHART

Finite Interval (a,b) CLICK TO HIDE
RESULTS

CLICK TO SHOW
CHART

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 13

 Dim Frequency As Currency, Counter As Currency

 MicroTimer = 0

 If Not Frequency Then QueryPerformanceFrequency Frequency

 If Frequency Then QueryPerformanceCounter Counter Else Exit Function

 MicroTimer = Counter / Frequency

End Function

Here is the listing for the Quad_QUAD_ROMBERG module:

Option Explicit

' Romberg integrator by Graeme Dennes (Melbourne, Australia). Released 2014-03-31

'

' Based on the Composite Midpoint Rule (the end points are not used), enabling

' the end points, (a,b), to be located at discontinuities without causing problems.

'

' Func is the string variable with the function to be integrated

' intvar is the string holding the integrating variable

' a and b are the lower and upper limits, respectively, of the integration interval.

Function QUAD_ROMBERG_GD(Func As String, intvar As String, a As Double, b As Double) As Variant

 Dim M(0 To 12, 0 To 12) As Double, Result(1 To 4) As Variant, Row_Index As Long

 Dim Col_Index As Long, j As Long, k As Long, MaxLoops As Long

 Dim errval As Double, h As Double, LowestErr As Double, parm1 As Double

 Dim parm2 As Double, sum As Double, tol As Double, u As Double, x As Double

 Dim ExitFlag As Boolean, one As Double, three As Double

 ' Error handling

 On Error Resume Next

 ' Get the start time

 Result(4) = MicroTimer

 ' Set program tolerance

 tol = 10 ^ -12

 ' Set some values

 MaxLoops = 12

 LowestErr = 1

 ExitFlag = False

 one = 1

 three = 3

 'Start the process

 parm1 = (b - a) / 4

 parm2 = (b + a) / 2

 k = -1

 h = 4

 Do

 Do

 k = k + 1

 h = h / 2

 u = -1 + h / 2

 sum = 0

 Do

 x = parm2 + (parm1 * u * (three - (u * u)))

 sum = sum + (one - (u * u)) * Evaluate(Replace(Func, intvar, x))

 u = u + h

 Loop While u < one

 M(k, 0) = 3 * parm1 * h * sum

 Loop While k = 0

 For j = 1 To k

 M(k, j) = M(k, j - 1) + (M(k, j - 1) - M(k - 1, j - 1)) / (4 ^ j - 1)

 Next j

A New Face of Romberg Integration

Copyright © 2012, 2014 Namir Clement Shammas Page 14

 ' EXIT TEST 1: For k = 2-4, check for diagonal match.

 ' Exit with diagonal element

 If k >= 2 And k <= 4 Then

 LowestErr = Abs((M(k, k) - M(k - 1, k - 1)) / M(k, k))

 If LowestErr <= tol Then

 Row_Index = k

 Col_Index = k ' return diagonal element and error

 Exit Do ' and exit

 End If

 End If

 ' EXIT TEST 2: For k >= 5, check for weighted error match.

 ' Exit with the column/diagonal element with best match

 If k >= 5 Then

 For j = 1 To k

 errval = Abs(((M(k - 1, j - 1) + 2 * M(k, j - 1)) / 3 - M(k, j)) / M(k, j))

 If errval <= tol Then

 ExitFlag = True ' so set the flag

 If errval < LowestErr Then

 LowestErr = errval ' save smallest error value from all matches in the row

 Row_Index = k

 Col_Index = j ' save the column index of lowest error in the row

 End If

 End If ' check for further matches, just in case they exist,

 Next ' then exit the loop with the best match in the row

 If ExitFlag Then Exit Do ' if flag = true then exit with element and its error

 End If

 ' EXIT TEST 3: For k >= 8, check for column match.

 ' Exit with column element with best match

 If k >= 8 Then

 For j = 0 To k - 1

 errval = Abs((M(k, j) - M(k - 1, j)) / M(k, j)) ' check column convergence

 If errval <= tol Then

 ExitFlag = True ' so set the flag

 If errval < LowestErr Then

 LowestErr = errval ' save smallest error value from all matches in the row

 Row_Index = k

 Col_Index = j ' save the column index of lowest error in the row

 End If

 End If ' check for further matches, just in case they exist,

 Next ' then exit the loop with the best match in the row

 If ExitFlag Then Exit Do ' if flag = true then exit with element and its error

 End If

 ' EXIT TEST 4: For k = maxloops, exit with final diagonal element

 If k = MaxLoops Then

 LowestErr = Abs((M(k, k) - M(k - 1, k - 1)) / M(k, k))

 Row_Index = k

 Col_Index = k ' select the diagonal element

 End If

 Loop While k < MaxLoops ' else try next loop

 Result(1) = M(Row_Index, Col_Index) ' so load the integral result

 Result(2) = LowestErr ' and its error value

 Result(3) = 2 ^ (k + 1) - 1 ' fx evals

 Result(4) = MicroTimer - Result(4)

 QUAD_ROMBERG_GD = Result

End Function

Conclusion
Replacing the trapezoidal rule with the simplest version of Simpson’s rule gives

the Romberg method an added advantage in many cases. Romberg’s method now

has a new face to go by—the Romberg-Simpson method!

