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Introduction 
The Romberg method is among the popular numerical methods for integration. The 

algorithm is a composite one. It uses a basic integration method to give rough 

estimates for the integral. The method then performs extrapolations to significantly 

improve on these estimates. The algorithm runs in cycles, forming a lower 

triangular matrix, whose elements represent progressively refined values for the 

sought integral. The elements in the first column of the lower triangular matrix 

represent estimations of the integral using the trapezoidal rule—the basic 

integration algorithm. The rest of the matrix elements contain improvements for 

the integral values using Richardson’s extrapolation. This extrapolation taps into 

elements in the neighboring matrix values. Each new matrix row brings with it 

better estimates for the sought integral. The number of rows in the matrix is related 

to the tolerance for the integral. 

Article’s Goal 
This article answers the question, “Can we replace using the trapezoidal rule with 

other methods for estimating the integral? If so, what kinds of results do we get?” 

One may intuitively guess that any basic integration algorithm that is better than 

the trapezoidal rule. The article shows that such a guess may be true for certain 

basic integration algorithms and less true for others. It seems that the Richardson’s 

extrapolation works well with certain, but not all, basic integration algorithms. 

 

Instead of using extensive mathematical derivations, I will present the new 

modified Romberg methods using the listings of working Visual Basic code. 

To estimate the integral of function f(x) from a to b, the basic Romberg method 

uses the following general steps: 

 

R(0,0) = 
(𝑏−𝑎)

2
 (𝑓(𝑏) + 𝑓(𝑎)) 

R(n,0) = 
1

2
 R(n-1,0) + hn ∑ 𝑓(𝑎 + (2𝑘 − 1)ℎ𝑛

2𝑛−1

𝑘=1  

R(n,m) = 
1

4𝑚−1
 (4m R(n,m-1) – R(n-1,m-1)) 
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Where hn = (b-a)/2n 

The step that calculates the element R(n,0) uses the trapezoidal rules to estimate 

the integral value. This article looks at other alternative for basic integration 

methods. 

Implementation of the Basic Romberg Method 
Let me present a Visual Basic (VBA Excel) function that implements the basic 

Romberg method: 
 

Function MyFx(ByVal sExpress As String, ByVal sVarName As String, ByVal X As Double) As Double 

  MyFx = Evaluate(Replace(sExpress, sVarName, "(" & CStr(X) & ")")) 

End Function 

 

Function RombergBasic(ByVal sExpress As String, ByVal sVarName As String, _ 

                      ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double 

               

  ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values 

  ' for the row and column indices of matrix R(,). These offsets are helpful when translating 

  ' the VBA function into other BASIC dialects or languages that do not support zero indices 

  ' for the rows and columns of a matrix. 

  Const ROW0 = 1 

  Const COL0 = 1 

  Dim I As Integer, J As Integer, MaxCols As Integer, M As Long 

  Dim R() As Double, h As Double, X As Double, Sum As Double 

  Dim Func As String 

   

  MaxCols = CInt(Abs(Log(Toler) / Log(10))) 

  ReDim R(1 + ROW0, MaxCols + COL0) 

   

  h = B - A 

  R(ROW0, COL0) = h / 2 * (MyFx(sExpress, sVarName, A) + _ 

                     MyFx(sExpress, sVarName, B)) 

  For I = 1 To MaxCols 

    h = h / 2 

    Sum = 0 

    For J = 1 To 2 ^ (I - 1) 

      Sum = Sum + MyFx(sExpress, sVarName, A + (2 * J - 1) * h) 

    Next J 

    R(1 + ROW0, COL0) = R(ROW0, COL0) / 2 + h * Sum 

    M = 1 

    For J = 1 To I 

      M = 4 * M 

      R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - _ 

                              R(0 + ROW0, J - 1 + COL0)) / (M - 1) 

    Next J 

    For J = 0 To I 

      R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0) 

    Next J 

  Next I 

  RombergBasic = R(0 + ROW0, MaxCols + COL0) 

End Function 

 

The function MyFX(ByVal sExpress As String, ByVal sVarName As String, 

ByVal X As Double) is a helper function. It evaluates the expression in parameter 

sExpress by replacing the variable names in that expression with the value of 

parameter X. The parameter sVarName specifies the name of the variable in the 

first parameter. Using this function, you can supply the expressions for the 

integrated function dynamically. 
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The function RombergBasic calculates the integral and has the following 

parameters: 

 The parameter sExpress represents the expression for the function f(x). 

 The parameter sVarName contains the name of the variable in the integrated 

function. 

 The parameters A and B define the integral limits. 

 The parameter Toler represents the tolerance. The function translates the 

value of this parameter into the number of columns, in the triangular 

Romberg matrix, required to calculate the integral. 

 

Since the Romberg method uses data in the current and last matrix rows, all of the 

implemented functions maintain the data in only two rows of the matrix to reduce 

memory requirements.  

The Romberg-Simpson Method 
The first facelift that I will perform on the basic Romberg method is this. I will 

replace the trapezoidal methods with the Simpson one-third method. I will call this 

variant of the integration algorithm the Romberg-Simpson. 

 

The method uses the following basic calculations: 

R(0,0) = 
(𝑏−𝑎)

3
 (𝑓(𝑏) +  4f((a + b)/2) +  𝑓(𝑎)) 

Sum(a,b,n,h) = ∑(𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 2𝑓(𝑎 + 2ℎ) + ⋯ + 4𝑓(𝑏 − ℎ) + 𝑓(𝑏)) 

R(n,0) = (R(n-1,0) + h Sum(a,b,n,h)/4 

R(n,m) = 
1

4𝑚−1
 (4m R(n,m-1) – R(n-1,m-1)) 

Where h = (b-a)/2n 

Here is the Visual Basic implementation for the Romberg-Simpson method: 
 

Function RombergSimpson(ByVal sExpress As String, ByVal sVarName As String, _ 

                 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double 

               

  ' Romberg's method variant that uses Simpson's rule instead of trapezoidal integration 

  ' 

  ' Examples for calling this function are: 

  ' 

  ' 1) RombergSimpson("1/X", "X", 1, 2, 1E-8) returns the value for ln(2) 

  ' 

  ' 2) RombergSimpson("exp(X)", "X", 0, 1, 1E-8) returns the value for exp(1)-1 

  ' 

  ' 3) RombergSimpson("EXP($X)", "$X", 0, 1, 1E-8) returns the value for exp(1)-1 

  ' 

  ' Note that the second example uses the variable name of $X instead of X, because the 

  ' letter X also appears in the name of the exponential function EXP. Thus, using the name 

  ' $X yields the correct result. 

  ' 

               

  ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values 

  ' for the row and column indices of matrix R(,). These offsets are helpful when translating 

  ' the VBA function into other BASIC dialects or languages that do not support zero indices 
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  ' for the rows and columns of a matrix. 

  Const ROW0 = 1 

  Const COL0 = 1 

  Dim I As Integer, J As Integer, MaxCols As Integer, M As Long, K As Integer 

  Dim R() As Double, h As Double, X As Double, Sum As Double, h2 As Double 

   

  MaxCols = CInt(Abs(Log(Toler) / Log(10))) 

  ReDim R(1 + ROW0, MaxCols + COL0) 

   

  h = (B - A) / 2 

  R(ROW0, COL0) = h / 3 * (MyFx(sExpress, sVarName, A) + 4 * MyFx(sExpress, sVarName, A + h) + _ 

                       MyFx(sExpress, sVarName, B)) 

  For I = 1 To MaxCols 

    h = h / 2 

    ' Note: The next statement has a programming trick. It subtracts fx(B) from the sum so that 

    ' when the loop adds 2*f(B) to the sum, the latter will have the correct value of: 

    ' 

    ' Sum = fx(A) + 4 * fx(A+h) + 2 * fx(A+2h) + ... + 4 * fx(B-h) + fx(B) 

    ' 

    Sum = MyFx(sExpress, sVarName, A) - MyFx(sExpress, sVarName, B) 

    X = A + h 

    Do While X < B 

      Sum = Sum + 4 * MyFx(sExpress, sVarName, X) + 2 * MyFx(sExpress, sVarName, X + h) 

      X = X + 2 * h 

    Loop 

    R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 4 

    M = 1 

    For J = 1 To I 

      M = 4 * M 

      R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - _ 

                              R(0 + ROW0, J - 1 + COL0)) / (M - 1) 

    Next J 

    For J = 0 To I 

      R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0) 

    Next J 

  Next I 

  RombergSimpson = R(0 + ROW0, MaxCols + COL0) 

End Function 

 

 In this article, I use red fonts to highlight relevant code in the various 

functions. 

  

The function RombergSimpson has the same parameters as function 

RombergBasic. I use the constants ROW0 and COL0 as offsets for the row and 

column indices of the Romberg matrix. Since Visual Basic handles matrices that 

are either zero-based or one-based, setting these constants to 0 or 1 is fine. I put 

these index offset constants so that if you want to translate the code to other 

languages that support one-based array/matrix indexing (like Matlab) then you can 

easily translate the code.  Simply replace ROW0 and COL0 with 1 in your 

translated code. 

 

Notice the following statement located before the main For loop: 
 

  R(ROW0, COL0) = h / 3 * (MyFx(sExpress, sVarName, A) + 4 * MyFx(sExpress, sVarName, A + h) + _ 

                       MyFx(sExpress, sVarName, B)) 
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The above statement initializes the first element in the Romberg matrix by 

applying the basic Simpson’s rule. The function uses the following statements to 

calculate better approximations for the integral using Simpson’s rule: 
 

    Sum = MyFx(sExpress, sVarName, A) - MyFx(sExpress, sVarName, B) 

    X = A + h 

    Do While X < B 

      Sum = Sum + 4 * MyFx(sExpress, sVarName, X) + 2 * MyFx(sExpress, sVarName, X + h) 

      X = X + 2 * h 

    Loop 

 

The above code implements a composite version of Simpson’s rule that calculates 

the integral using more than three points. Finally, notice the following statement: 
 

R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 4 

 

The above statement calculates the value for element R(1+ROW0, COL0) using 

the values of R(ROW0, COL0) and the calculated Simpson integral sum. The 

expression averages the two integrals (in R(ROW0,COL0) and h/3*Sum) using 

unequal weights. The expression assigns a weight of 1 to R(ROW0,COL0) and a 

weight of 3 to the Simpson’s rule result (and that is why the statement shows h * 

Sum instead of h/3*Sum). The result is divided by 4 which is the sum of the 

weights. I have found that these weights give better results than using equal 

weights. 

The Extended Romberg-Simpson Method 
The second facelift that I will perform on the basic Romberg method is one that 

uses the basic Simpson’s rule as well as the Alternative Extended Simpson’s rule.  
 

Here is the Visual Basic implementation for the Extended Romberg-Simpson 

method: 
 

Function RombergSimpsonEx(ByVal sExpress As String, ByVal sVarName As String, _ 

                 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double 

               

  ' Romberg's method variant that uses Simpson's rule and the Alternative extended Simpson's rule 

  ' instead of trapezoidal integration 

  ' 

  ' Examples for calling this function are: 

  ' 

  ' 1) RombergSimpsonEx("1/X", "X", 1, 2, 1E-8) returns the value for ln(2) 

  ' 

  ' 2) RombergSimpsonEx("exp(X)", "X", 0, 1, 1E-8) returns the value for exp(1)-1 

  ' 

  ' 3) RombergSimpsonEx("EXP($X)", "$X", 0, 1, 1E-8) returns the value for exp(1)-1 

  ' 

  ' Note that the second example uses the variable name of $X instead of X, because the 

  ' letter X also appears in the name of the exponential function EXP. Thus, using the name 

  ' $X yields the correct result. 

  ' 

               

  ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values 

  ' for the row and column indices of matrix R(,). These offsets are helpful when translating 

  ' the VBA function into other BASIC dialects or languages that do not support zero indices 

  ' for the rows and columns of a matrix. 

  Const ROW0 = 1 

  Const COL0 = 1 



A New Face of Romberg Integration 

Copyright © 2012, 2014 Namir Clement Shammas  Page 6 

 

  Dim I As Integer, J As Integer, MaxCols As Integer, M As Long, K As Integer 

  Dim R() As Double, h As Double, X As Double, Sum As Double, h2 As Double 

  Dim N As Integer 

   

  MaxCols = CInt(Abs(Log(Toler) / Log(10))) 

  ReDim R(1 + ROW0, MaxCols + COL0) 

   

  N = 2 

  h = (B - A) / 2 

  R(ROW0, COL0) = h / 3 * (MyFx(sExpress, sVarName, A) + 4 * MyFx(sExpress, sVarName, A + h) + _ 

                       MyFx(sExpress, sVarName, B)) 

  For I = 1 To MaxCols 

    N = 2 + N 

    h = h / 2 

    ' Note: The next statement has a programming trick. It subtracts fx(B) from the sum so that 

    ' when the loop adds 2*f(B) to the sum, the latter will have the correct value of: 

    ' 

    ' Sum = fx(A) + 4 * fx(A+h) + 2 * fx(A+2h) + ... + 4 * fx(B-h) + fx(B) 

    ' 

    If CInt((B - A) / h - 0.5) < 8 Then 

      Sum = MyFx(sExpress, sVarName, A) - MyFx(sExpress, sVarName, B) 

      X = A + h 

      Do While X < B 

        Sum = Sum + 4 * MyFx(sExpress, sVarName, X) + 2 * MyFx(sExpress, sVarName, X + h) 

        X = X + 2 * h 

      Loop 

      R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 4 

    Else 

      ' use the alternative extended Simpson's rule 

      Sum = 17 * (MyFx(sExpress, sVarName, A) + MyFx(sExpress, sVarName, B)) 

      Sum = Sum + 59 * (MyFx(sExpress, sVarName, A + h) + MyFx(sExpress, sVarName, B - h)) 

      Sum = Sum + 43 * (MyFx(sExpress, sVarName, A + 2 * h) + MyFx(sExpress, sVarName, B-2 * h)) 

      Sum = Sum + 49 * (MyFx(sExpress, sVarName, A + 3 * h) + MyFx(sExpress, sVarName, B-3 * h)) 

      X = 4 * h + A 

      Do While X < (B - 3 * h) 

        Sum = Sum + 48 * MyFx(sExpress, sVarName, X) 

        X = X + h 

      Loop 

      R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 49 

    End If 

     

    M = 1 

    For J = 1 To I 

      M = 4 * M 

      R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - _ 

                               R(0 + ROW0, J - 1 + COL0)) / (M - 1) 

    Next J 

    For J = 0 To I 

      R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0) 

    Next J 

  Next I 

  RombergSimpsonEx = R(0 + ROW0, MaxCols + COL0) 

End Function 

 

The function RombergSimpsonEx has the same parameters as the first two 

Romberg functions that I presented. This function is an extension of 

RombergSimpson. When the number of rows reaches 8, the function switches from 

using the basic Simpson’s one-third rule to the Alternative Extended Simpson’s 

rule. Once the function calculates the area sum for this algorithm, it calculates the 

new value in the Romberg matrix using: 
 

R(1 + ROW0, COL0) = (R(ROW0, COL0) + h * Sum) / 49 
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Notice that the value for the Romberg matrix element is calculated using R(ROW0, 

COL0) and the calculated Simpson integral sum. The above equation assigns a 

weight of 1 to R(ROW0, COL0) and a weight of 48 to the calculated sum. As with 

function RombergSimpson, I have found that these weights give better results than 

using equal weights. 

The Romberg-Gauss Method 
Another variant of the Romberg method that I studied is one where I replaced the 

trapezoidal rule with Legendre-Gaussian quadrature. I will call this method 

Romberg-Gauss. Combining two versatile methods should yield interesting results. 

You may say that the algorithm is an overkill, since the Gaussian quadrature by 

itself can do a good job in calculating an integral. My motive for the Romberg-

Gauss method is mainly driven by curiosity.  

 

The first step in using Gaussian quadrature involves writing a function that 

performs the integration for a varying number of points. Currently, the function 

supports up to 11 points, which should be adequate for our purposes. Here is the 

listing of the function GaussQuad: 
 

Function GaussQuad(ByVal sExpress As String, ByVal sVarName As String, _ 

                   ByVal N As Integer, ByVal A As Double, ByVal B As Double) As Double 

  Const MAX = 11 

  Dim Wt(MAX) As Double, X(MAX) As Double 

  Dim Sum As Double, h1 As Double, h2 As Double 

  Dim I As Integer 

   

  If N > MAX Then N = MAX 

  h1 = (B - A) / 2 

  h2 = (B + A) / 2 

  Select Case N 

    Case 2 

      Wt(1) = 1 

      Wt(2) = 1 

      X(1) = -0.577350269189626 

      X(2) = -X(1) 

       

     Case 3 

       Wt(1) = 0.888888888888889 

       X(1) = 0 

       Wt(2) = 0.555555555555556 

       X(2) = -0.774596669241483 

       Wt(3) = Wt(2) 

       X(3) = -X(2) 

        

     Case 4 

       Wt(1) = 0.652145154862546 

       X(1) = 0.339981043584856 

       Wt(2) = 0.347854845137454 

       X(2) = 0.861136311594053 

       For I = 3 To 4 

         Wt(I) = Wt(I - 2) 

         X(I) = -X(I - 2) 

       Next I 

        

        

     Case 5 

       Wt(1) = 0.568888888888889 
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       X(1) = 0 

       Wt(2) = 0.478628670499367 

       X(2) = 0.538469310105683 

       Wt(3) = 0.236926885056189 

       X(3) = 0.906179845938664 

       For I = 4 To 5 

         Wt(I) = Wt(I - 2) 

         X(I) = -X(I - 2) 

       Next I 

        

     Case 6 

       Wt(1) = 0.360761573048139 

       X(1) = 0.661209386466264 

       Wt(2) = 0.467913934572691 

       X(2) = 0.238619186083197 

       Wt(3) = 0.17132449237917 

       X(3) = 0.932469514203152 

       For I = 4 To 6 

         Wt(I) = Wt(I - 3) 

         X(I) = -X(I - 3) 

       Next I 

        

     Case 7 

       Wt(1) = 0.417959183673469 

       X(1) = 0 

       Wt(2) = 0.381830050505119 

       X(2) = 0.405845151377397 

       Wt(3) = 0.279705391489277 

       X(3) = 0.741531185599394 

       Wt(4) = 0.12948496616887 

       X(4) = 0.949107912342758 

       For I = 5 To 7 

         Wt(I) = Wt(I - 3) 

         X(I) = -X(I - 3) 

       Next I 

        

     Case 8 

       Wt(1) = 0.362683783378362 

       X(1) = 0.18343464249565 

       Wt(2) = 0.313706645877887 

       X(2) = 0.525532409916329 

       Wt(3) = 0.222381034453375 

       X(3) = 0.796666477413627 

       Wt(4) = 0.101228536290376 

       X(4) = 0.960289856497536 

       For I = 5 To 8 

         Wt(I) = Wt(I - 4) 

         X(I) = -X(I - 4) 

       Next I 

        

     Case 9 

       Wt(1) = 0.33023935500126 

       X(1) = 0 

       Wt(2) = 0.180648160694857 

       X(2) = 0.836031107326636 

       Wt(3) = 8.12743883615744E-02 

       X(3) = 0.968160239507626 

       Wt(4) = 0.312347077040003 

       X(4) = 0.324253423403809 

       Wt(5) = 0.260610696402935 

       X(5) = 0.61337143270059 

       For I = 6 To 9 

         Wt(I) = Wt(I - 4) 

         X(I) = -X(I - 4) 

       Next I 

        

     Case 10 

       Wt(1) = 0.295524224714753 

       X(1) = 0.148874338981631 

       Wt(2) = 0.269266719309996 

       X(2) = 0.433395394129247 
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       Wt(3) = 0.219086362515982 

       X(3) = 0.679409568299024 

       Wt(4) = 0.149451349150581 

       X(4) = 0.865063366688985 

       Wt(5) = 6.66713443086881E-02 

       X(5) = 0.973906528517172 

       For I = 6 To 10 

         Wt(I) = Wt(I - 5) 

         X(I) = -X(I - 5) 

       Next I 

      

     Case 11 

       Wt(1) = 0.272925086777901 

       X(1) = 0 

       Wt(2) = 0.262804544510247 

       X(2) = 0.269543155952345 

       Wt(3) = 0.233193764591991 

       X(3) = 0.519096129206812 

       Wt(4) = 0.186290210927734 

       X(4) = 0.730152005574049 

       Wt(5) = 0.125580369464905 

       X(5) = 0.887062599768095 

       Wt(6) = 5.56685671161737E-02 

       X(6) = 0.978228658146057 

       For I = 7 To 11 

         Wt(I) = Wt(I - 5) 

         X(I) = -X(I - 5) 

       Next I 

        

  End Select 

   

  Sum = 0 

  For I = 1 To N 

    Sum = Sum + Wt(I) * MyFx(sExpress, sVarName, h1 * X(I) + h2) 

  Next I 

  GaussQuad = h1 * Sum 

End Function 

 

The function GaussQuad has parameters similar to the previous Romberg 

functions. The Toler parameter does not exist in function GaussQuad. 

Conceptually, this missing parameter is replaced with the integer-typed parameter, 

N, that specifies the number of integration points. The function uses a Select 

statement to zoom in on the sought weights and abscissa points used in Gaussian 

quadrature. 

 

The function that implements the Romberg-Gauss method is: 
 

Function RombergGauss(ByVal sExpress As String, ByVal sVarName As String, _ 

                 ByVal A As Double, ByVal B As Double, ByVal Toler As Double) As Double 

               

  ' Romberg's method variant that uses Simpson's rule and the Alternative extended Simpson's rule 

  ' instead of trapezoidal integration 

  ' 

  ' Examples for calling this function are: 

  ' 

  ' 1) RombergGauss("1/X", "X", 1, 2, 1E-8) returns the value for ln(2) 

  ' 

  ' 2) RombergGauss("exp(X)", "X", 0, 1, 1E-8) returns the value for exp(1)-1 

  ' 

  ' 3) RombergGauss("EXP($X)", "$X", 0, 1, 1E-8) returns the value for exp(1)-1 

  ' 

  ' Note that the second example uses the variable name of $X instead of X, because the 

  ' letter X also appears in the name of the exponential function EXP. Thus, using the name 

  ' $X yields the correct result. 
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  ' 

               

  ' NOTE: The constants ROW0 and COL0 are offset values used to determine the lower values 

  ' for the row and column indices of matrix R(,). These offsets are helpful when translating 

  ' the VBA function into other BASIC dialects or languages that do not support zero indices 

  ' for the rows and columns of a matrix. 

  Const ROW0 = 1 

  Const COL0 = 1 

  Dim I As Integer, J As Integer, MaxCols As Integer, M As Long, K As Integer 

  Dim R() As Double, h As Double, X As Double, Sum As Double, h2 As Double 

  Dim N As Integer 

   

  MaxCols = CInt(Abs(Log(Toler) / Log(10))) 

  ReDim R(1 + ROW0, MaxCols + COL0) 

   

  N = 2 

  h = (B - A) / 2 

  R(ROW0, COL0) = GaussQuad(sExpress, sVarName, N, A, B) 

   

  For I = 1 To MaxCols 

    N = N + 1 

    R(1 + ROW0, COL0) = GaussQuad(sExpress, sVarName, N, A, B)     

    M = 1 

    For J = 1 To I 

      M = 4 * M 

      R(1 + ROW0, J + COL0) = (M * R(1 + ROW0, J - 1 + COL0) - R(0 + ROW0, J - 1 + COL0)) / (M - 

1) 

    Next J 

    For J = 0 To I 

      R(0 + ROW0, J + COL0) = R(1 + ROW0, J + COL0) 

    Next J 

  Next I 

  RombergGauss = R(0 + ROW0, MaxCols + COL0) 

End Function 

 

The function RombergGauss calls the function GaussQuad to obtain very good 

estimates of the integral. Notice that the statement which calculates R(1 + ROW0, 

COL0) simply calls the function GaussQuad. It does not use other elements in the 

Romberg matrices to calculate R(1 + ROW0, COL0). I have found this approach to 

yield better results. 

Test Scores! 
It’s time to separate the men from the boys, the winners from the losers! So how do 

the different methods stack up against each other? Table 1 shows the test results 

for various integrations. The table also includes columns that show the exact 

solution and the results of using 11-point and 6-point Legendre-Gauss quadrature 

(by calling function GaussQuad). The results are color coded—yellow for first 

place, green for second, and blue for third. 

 
Problem Exact Value RombergBasic RombergSimpson RombergSimpsonEx RombergGauss Legendre-

Gauss-11 

Legendre-

Gauss-6 

Color Scheme 

1/x from 1 to 2 0.693147181 0.693147181 0.693147181 0.693147181 0.693147181 0.693147181 0.69314718 1st rank 

1/x from 1 to 10 2.302585093 2.302585093 2.302585093 2.302585094 2.30258458 2.302583355 2.301408084 2nd Rank 

1/x from 1 to 

100 

4.605170186 4.605320986 4.605173699 4.605070339 4.539591105 4.550142068 4.230412779 3rd Rank 

ln(x)/x from 1 to 

10 

2.650949055 2.650949055 2.650949055 2.650949055 2.650949055 2.650949055 2.650949055  

ln(x)/x from 1 to 

100 

10.603796221 10.60378807 10.60398559 10.68648172 10.67441869 10.83360554 10.60378807  

sin(x) from 0 to 

1 

0.459697694 0.459697694 0.459697694 0.459697694 0.459697694 0.459697694 0.459697694 

 
sin(x)/x from 

1e-10 to pi/4 

0.758975881 0.758975881 0.758975881 0.761068293 0.758975881 0.758975881 0.758975881 
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Problem Exact Value RombergBasic RombergSimpson RombergSimpsonEx RombergGauss Legendre-

Gauss-11 

Legendre-

Gauss-6 

Color Scheme 

sin(x)cos(x) 

from 0 to 1 

0.354036709 0.354036709 0.354036709 0.354036709 0.354036709 0.354036709 0.354036709 

 
ln(x)/x^2 from 1 

to 2 

0.15342641 0.15342641 0.15342641 0.15342641 0.15342641 0.15342641 0.153426421 

 
ln(x)/x^2 from 1 

to 10 

0.669741491 0.669741491 0.669741491 0.669741485 0.66975646 0.669761624 0.674774153 

 
ln(x)/x^2 from 1 

to 100 

0.943948298 0.943066528 0.943917809 0.94437022 1.008005008 1.002756148 0.919835967 

 
Table 1. The test results. 

Examining Table 1 we observe the following: 

1. The function RombergSimpson has performed the best in most cases. 

2. The function RombergBasic comes second rank overall. 

3. The function RomberSimpsonEx comes third rank overall. 

4. The Gaussian quadrature also performed well. This should not come as a 

total surprise as the Legendre-Gauss quadrature is one of the main rivals of 

the Romberg integration method. 

 

We conclude that: 

1. Incorporating the Simpson’s one-third rule with the Romberg method 

enhances the algorithm in general. The improvement comes as a moderate 

additional effort in computing. 

2. The basic Romberg method is still a viable method since it has outdone most 

of the variant algorithms. 

3. The Extended Romberg-Simpson also shows some promise, albeit at some 

additional computing effort. 

4. Incorporating the Gaussian quadrature with the Romberg algorithm does not 

give the result method sustainable advantage. My hunch as to why this lack 

of advantage occurs is that the quadrature results do not work well with the 

Richardson extrapolation. 

Prologue 
In 2013 I was in communication with Graeme Dennes, of Melbourne, Australia. 

He offered several suggestions to improve the Romberg-Simpson method. Graeme 

focused on including VBA statements that detect the conditions for earlier 

termination of the Romberg iterations. In addition, he implemented a general-

purpose API-based Timer in VBA and used it to time the integration calculations. 

In March 2014, Graeme submitted an new improved version of his code which 

included the following changes: 

 The exit criteria has been enhanced to achieve further improvements in 

speed and accuracy. 

 The outputs now show the number of function evaluations as a more useful 

performance metric for comparison purposes. 
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 The Excel file has 200 test functions for even more diversity for comparison 

purposes 
 

Table 1 shows a partial view of Graeme’s latest Excel file that performs integration 

on many functions using his code. 

 
Table 2. Graeme Graeme’s latest Excel test file showing the results of integration of several 

test functions. 

Graeme includes an orange-colored button that allows you to toggle between 

performing the calculations and showing them, and hiding the results. You can of 

course change some of the input values in the leftmost columns. The tested 

functions start appearing in row 16. Graeme’s code contains the following 

modules: 
 

 The m_High_Res_Timer module. 

 The Quad_QUAD_ROMBERG module. 
 

 

Here is the listing for the m_High_Res_Timer module: 
 
Option Explicit 

 

 

Private Declare PtrSafe Function QueryPerformanceCounter Lib "kernel32" (ByRef x As Currency) As 

Long 

 

Private Declare PtrSafe Function QueryPerformanceFrequency Lib "kernel32" (ByRef x As Currency) 

As Long 

 

 

Public Function MicroTimer() As Double 

SHOW /HIDE

1

SELECT FUNCTION SHOW / HIDE Total Total Time Total True Total Number of

No. Cell Function Plotted Name Variable a b Func Evals: in Seconds: Error: Correct Digits:

4 0 0 542,624 48.185 0.0128 2475 of 3000 (82.5%)

↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓

TRUE

No. Cell Function Name Variable a b INTEGRAL Integral Est. Error Func Evals Time (secs) True Error Correct Digits Message

1 1/SQRT(x) FINITE_1 x 0 1 2 2.00000000000000 1.02E-13 255 0.015332 1.11E-16 15

2 SQRT(4-x^2) FINITE_2 x 0 2 3.14159265358979 3.14159265358979 7.69E-14 255 0.015685 1.41E-16 15

3 LN(x) FINITE_3 x 0 1 -1 -1.00000002065983 6.20E-08 8191 0.487040 2.07E-08 7

4 x*LN(x) FINITE_4 x 0 1 -0.25 -0.250000000000032 6.22E-13 4095 0.319614 1.26E-13 12

5 LN(x)/SQRT(x) FINITE_5 x 0 1 -4 -3.99964289999447 8.93E-05 8191 0.814806 8.93E-05 4

6 4/(1+x^2) FINITE_6 x 0 1 3.14159265358979 3.14159265358979 7.07E-16 511 0.050082 5.65E-16 15

7 SIN(x)^4*COS(x)^2 FINITE_7 x 0 1.57079632679490 0.0981747704246810 0.0981747704246809 9.66E-14 511 0.033268 1.27E-15 14

8 COS(x) FINITE_8 x 0 3.14159265358979 0 -3.67602986263905E-16 7.75E+00 8191 0.734519 3.68E-16 15

9 COS(LN(x)) FINITE_9 x 0 1 0.5 0.500000120614689 7.86E-08 8191 0.715191 2.41E-07 6

10 SQRT(4*x-x^2) FINITE_10 x 0 2 3.14159265358979 3.14159265358979 7.69E-14 255 0.030071 2.83E-16 15

11 5*x^2 FINITE_11 x 0 10 1666.66666666667 1666.66666666667 0.00E+00 63 0.008770 0.00E+00 15

12 x^0.125 FINITE_12 x 0 1 0.888888888888889 0.888888888635416 1.07E-09 8191 0.705251 2.85E-10 9

13 1/x FINITE_13 x 1 10 2.30258509299405 2.30258509299404 3.45E-14 1023 0.077601 9.64E-16 15

14 LN(x)/(1-x) FINITE_14 x 0.5 1 -0.582240526465013 -0.582240526465013 4.98E-14 255 0.017951 0.00E+00 15

15 EXP(-1/COS(x)) FINITE_15 x 0 1.04719755119660 0.307694394903451 0.307694394903450 2.71E-15 511 0.039261 2.89E-15 14

16 (x*(x+88)*(x-88)*(x+47)*(x-47)*(x+117)*(x-117))^2 FINITE_16 x 0 128 6.55134477611335E+27 6.55134477611343E+27 8.11E-14 1023 0.055648 1.26E-14 13

17 EXP(-(x^2)) FINITE_17 x 0 100 0.886226925452758 0.886226925452758 2.34E-15 4095 0.334456 5.01E-16 15

18 2*x^2/(x+1)/(x-1)-x/LN(x) FINITE_18 x 0 1 0.0364899739785776 0.0364899739785732 4.78E-13 2047 0.268353 1.18E-13 12

19 x*LN(1+x) FINITE_19 x 0 1 0.25 0.250000000000002 1.48E-13 255 0.028800 7.77E-15 14

20 x^2*ATAN(x) FINITE_20 x 0 1 0.210657251225807 0.210657251225807 2.02E-15 511 0.040849 5.27E-16 15

21 EXP(x)*COS(x) FINITE_21 x 0 1.57079632679490 1.90523869048268 1.90523869048268 5.83E-16 511 0.045262 1.05E-15 14

22 ATAN(SQRT(x^2+2))/(1+x^2)/SQRT(x^2+2) FINITE_22 x 0 1 0.514041895890071 0.514041895890071 6.48E-16 511 0.035798 6.48E-16 15

23 LN(x)*SQRT(x) FINITE_23 x 0 1 -0.444444444444444 -0.444444444440236 6.63E-11 8191 0.533775 9.47E-12 11

24 SQRT(1-x^2) FINITE_24 x 0 1 0.785398163397448 0.785398163397447 7.66E-14 255 0.016194 1.27E-15 14

25 SQRT(x)/SQRT(1-x^2) FINITE_25 x 0 1 1.19814023473559 1.19814023473560 2.38E-13 255 0.048248 4.26E-15 14

26 LN(x)^2 FINITE_26 x 0 1 2 2.00000074421026 1.00E-06 8191 0.666670 3.72E-07 6

ROMBERG PROGRAM OUTPUTS

UDF Name:   QUAD_ROMBERG_GD
 "HIDE RESULTS"

FUNCTION PLOTTER

CLICK THE "CLICK TO SHOW CHART" BUTTON, THEN SELECT FUNCTION WITH UP/DOWN BUTTONS

OVERALL PROGRAM PERFORMANCE

ROMBERG PROGRAM INPUTS

CLICK THE ORANGE BUTTON
CLICK BUTTON TO SWITCH

 BETWEEN "SHOW RESULTS" AND

ROMBERG QUADRATURE
AND FUNCTION PLOTTING CHART

Finite Interval (a,b) CLICK TO HIDE 
RESULTS

CLICK TO SHOW 
CHART
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    Dim Frequency As Currency, Counter As Currency 

     

    MicroTimer = 0 

    

    If Not Frequency Then QueryPerformanceFrequency Frequency 

        

    If Frequency Then QueryPerformanceCounter Counter Else Exit Function 

 

    MicroTimer = Counter / Frequency 

 

End Function 

 

Here is the listing for the Quad_QUAD_ROMBERG module: 
 
Option Explicit 

 

 

' Romberg integrator by Graeme Dennes (Melbourne, Australia). Released 2014-03-31 

' 

' Based on the Composite Midpoint Rule (the end points are not used), enabling 

' the end points, (a,b), to be located at discontinuities without causing problems. 

' 

' Func is the string variable with the function to be integrated 

' intvar is the string holding the integrating variable 

' a and b are the lower and upper limits, respectively, of the integration interval. 

 

 

 

Function QUAD_ROMBERG_GD(Func As String, intvar As String, a As Double, b As Double) As Variant 

 

    Dim M(0 To 12, 0 To 12) As Double, Result(1 To 4) As Variant, Row_Index As Long 

    Dim Col_Index As Long, j As Long, k As Long, MaxLoops As Long 

    Dim errval As Double, h As Double, LowestErr As Double, parm1 As Double 

    Dim parm2 As Double, sum As Double, tol As Double, u As Double, x As Double 

    Dim ExitFlag As Boolean, one As Double, three As Double 

 

    ' Error handling 

    On Error Resume Next 

 

    ' Get the start time 

    Result(4) = MicroTimer 

 

    ' Set program tolerance 

    tol = 10 ^ -12 

 

    ' Set some values 

    MaxLoops = 12 

    LowestErr = 1 

    ExitFlag = False 

    one = 1 

    three = 3 

 

    'Start the process 

    parm1 = (b - a) / 4 

    parm2 = (b + a) / 2 

    k = -1 

    h = 4 

    Do 

        Do 

            k = k + 1 

            h = h / 2 

            u = -1 + h / 2 

            sum = 0 

            Do 

                x = parm2 + (parm1 * u * (three - (u * u))) 

                sum = sum + (one - (u * u)) * Evaluate(Replace(Func, intvar, x)) 

                u = u + h 

            Loop While u < one 

 

            M(k, 0) = 3 * parm1 * h * sum 

 

        Loop While k = 0 

 

        For j = 1 To k 

            M(k, j) = M(k, j - 1) + (M(k, j - 1) - M(k - 1, j - 1)) / (4 ^ j - 1) 

        Next j 
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        ' EXIT TEST 1:   For k = 2-4, check for diagonal match. 

        '                Exit with diagonal element 

        If k >= 2 And k <= 4 Then 

            LowestErr = Abs((M(k, k) - M(k - 1, k - 1)) / M(k, k)) 

            If LowestErr <= tol Then 

                Row_Index = k 

                Col_Index = k                     ' return diagonal element and error 

                Exit Do                           ' and exit 

            End If 

        End If 

 

 

        ' EXIT TEST 2:   For k >= 5, check for weighted error match. 

        '                Exit with the column/diagonal element with best match 

        If k >= 5 Then 

            For j = 1 To k 

                errval = Abs(((M(k - 1, j - 1) + 2 * M(k, j - 1)) / 3 - M(k, j)) / M(k, j)) 

                If errval <= tol Then 

                    ExitFlag = True               ' so set the flag 

                    If errval < LowestErr Then 

                        LowestErr = errval        ' save smallest error value from all matches in the row 

                        Row_Index = k 

                        Col_Index = j             ' save the column index of lowest error in the row 

                    End If 

                End If                            ' check for further matches, just in case they exist, 

            Next                                  ' then exit the loop with the best match in the row 

            If ExitFlag Then Exit Do              ' if flag = true then exit with element and its error 

        End If 

 

 

        ' EXIT TEST 3:  For k >= 8, check for column match. 

        '               Exit with column element with best match 

        If k >= 8 Then 

            For j = 0 To k - 1 

                errval = Abs((M(k, j) - M(k - 1, j)) / M(k, j))        ' check column convergence 

                If errval <= tol Then 

                    ExitFlag = True               ' so set the flag 

                    If errval < LowestErr Then 

                        LowestErr = errval        ' save smallest error value from all matches in the row 

                        Row_Index = k 

                        Col_Index = j             ' save the column index of lowest error in the row 

                    End If 

                End If                            ' check for further matches, just in case they exist, 

            Next                                  ' then exit the loop with the best match in the row 

            If ExitFlag Then Exit Do              ' if flag = true then exit with element and its error 

        End If 

 

 

        ' EXIT TEST 4:  For k = maxloops, exit with final diagonal element 

 

        If k = MaxLoops Then 

            LowestErr = Abs((M(k, k) - M(k - 1, k - 1)) / M(k, k)) 

            Row_Index = k 

            Col_Index = k                    ' select the diagonal element 

        End If 

 

    Loop While k < MaxLoops                  ' else try next loop 

 

    Result(1) = M(Row_Index, Col_Index)      ' so load the integral result 

    Result(2) = LowestErr                    ' and its error value 

    Result(3) = 2 ^ (k + 1) - 1              ' fx evals 

    Result(4) = MicroTimer - Result(4) 

     

    QUAD_ROMBERG_GD = Result 

     

End Function 

  

Conclusion 
Replacing the trapezoidal rule with the simplest version of Simpson’s rule gives 

the Romberg method an added advantage in many cases. Romberg’s method now 

has a new face to go by—the Romberg-Simpson method! 


