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Introduction 
Numerical Analysts have put much effort in calculating the roots of polynomials. 

There seems to be three schools of thought that vary in the complexity of the 

problem: 

 

1. Algorithms that find the real roots for real-coefficient polynomials. 

2. Algorithms that find all roots for real-coefficient polynomials. 

3. Algorithms that find all roots for complex-coefficient polynomials. 

 

The first brand of problems can use classical root-finding algorithms to determine 

the real roots of polynomials. They should include a criterion (such as the maximum 

number of iterations) to determine when all the real roots have been obtained. By 

contrast, the third brand of problems require a programming language, such as 

MATLAB, that can handle complex math with ease. Moreover, such a language can 

switch between real and complex calculations in a seamless and transparent way. 

 

This article deals with the second brand of problems. The most popular algorithm 

that calculates all real and complex roots of real-coefficient polynomials is the Lin-
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Bairstow method. This method repeatedly factors out quadratic polynomials and 

determine their real and complex roots. The Lin-Bairstow method is quite robust and 

requires only real-math arithmetical operations. This feature makes it very attractive 

for system that don’t support complex math or require using complex math libraries. 

You can implement the Lin-Bairstow on a whole diverse systems and programming 

languages. 

 

This article looks at calculating the real and complex roots of real-coefficient 

polynomials. The approach I will be using involves optimization of the Vieta 

Formulas. These formulas describe mathematical properties of the roots and 

coefficients of the following general polynomial: 

 

P(x) = anx
n + an-1x

n-1 + … + a1x + a0       (1) 

 

The Vieta formulas describe the relations between the coefficient polynomials with 

the roots x1, …, xn: 
 

x1 + x2 + … + xn-1 + xn = –an-1 / an       (2) 

 

(x1 x2 + x1 x3 + … + x1 xn) + (x2 x3 + x2 x4 + … + x4 xn) + … + xn-1 xn = an-2 / an 
 

… 
 

x1 x2 x3 x4 … xn = (–1)n a0/ an 
 

The basic approach that I propose is to optimize the roots (starting with guesses) 

until all the equations in set 2 are obeyed. The optimizing function would be the 

norm of the sum of difference squared between the left-hand side and right-hand side 

of equations in set 2. 

 

𝐹(𝒙, 𝒂) =  ∑ (𝐿𝐻𝑆(𝑖) − 𝑅𝐻𝑆(𝑖))^2𝑛
𝑖−1       (3) 

The Devil is in the Details 
The first step in solving the roots of real-coefficient polynomials is to develop 

programming code for equation 3. I had solicited the help of fellow calculator 

enthusiasts (and math minded folks) at www.hpmuseum.com. My math challenge 

was met quickly by Spanish member Valentin Albillo. He provided code for the HP-

71B calculator in BASIC. The solution Albillo provided is stunningly simple—the 

work of a brilliant mathematician. I was able to find just another similar solution in 

http://www.hpmuseum.com/
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C++ code on the web. It seems that many programmers have shied away from coding 

the Vieta Formulas to yield equation 3. I was very fortunate that Albillo accepted 

my challenge and provided me with an essential tool for the optimization process. 

 

I chose to use MATLAB for various reasons, including its ability to switch between 

real and complex math in a seamless and transparent way. This feature of MATLAB 

proved to be more valuable than I thought—more about that later in this article. To 

add more good news, the latest version of MATLAB includes the robust Particle 

Swarm Optimization (PSO) function particleswarm(). The PSO algorithm is a robust 

evolutionary method and having a finetuned version in MATLAB was a temptation 

I could not resist. 

 

Armed with Albillo’s code and the particleswarm() function I approached the 

problem of optimizing equation 3 in very general terms. I took into account that each 

root is basically complex—the real roots having imaginary values of 0. This meant 

that for a polynomial of order N, I had to optimize 2*(N+1) variables. 

 

My first and valiant attempt to optimize equation 3 used a general optimization 

approach and hoped for the best—obtaining some real roots and pairs of conjugate 

complex roots. The MATLAB code yielded results but none was correct! I had bit 

more than I could chew! I had expected my MATLAB code to behave more 

intelligently that its code delivered. 

Back to the Drawing Board 
After my first attempt yielding failure, I decided to study the problem more carefully. 

I decided that I needed to first extract the real roots and let equation 3 deal with a 

reduced polynomial that has pairs of conjugate complex roots. The code for the 

optimized MATLAB function should consider that there are pairs of conjugate 

complex roots. This approach reduced the number of optimized variables and forced 

the optimization process to consider the pairs of conjugate complex roots. 

 

Listing 1 shows the MATLAB code. 
Function [xroots,nroots] =   

newtonpolyrootsEx(polyCoeffs,toler,maxiter,maxIterOptim) 

% NEWTONPOLYROOTSEX extracts real and complex roots of a polynomial 

% in two stages: 

% Stage 1: Using Newton's method to determine the real roots of the 

% polpoynomial. 

% Stage 2: Using the optimization of the Vieta's formulas for the  

% reduced polynomials that have only complex roots. 
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% 

% INPUT 

% ===== 

% polyCoeffs - array of polynomial coefficients. The first element is the 

% coeffiient of the highest power, and so on. 

% toler - the toleranced used in finding real roots using Newton's method. 

% maxiter - the maximum number of iteration used with Newton's method. 

% maxIterOptim - the maximum number of iteration used with optimizing 

% the sum of squares of the differences between the LHS and RHS of the Vieta 

% formulas. 

% 

% OUTPUT 

% ====== 

% xroots - two-dimensional matrix of the roots. The values in column 1 are 

% the real parts, and in column 2 are the imaginary parts. 

% nroots - the number of roots. 

% 

% EXAMPLE 

% ======= 

% c=[1 -2 44 -66 22 -11 -55] 

%  

% c = 

%  

%      1    -2    44   -66    22   -11   -55 

%  

% [xroots,nroots] = newtonpolyrootsEx(c,1e-10,100,1000) 

% Optimization ended: relative change in the objective value  

% over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

%  

% xroots = 

%  

%     1.6089         0 

%    -0.7138         0 

%     0.2341   -6.5335 

%     0.2341    6.5335 

%     0.3184   -1.0095 

%     0.3184    1.0095 

%  

%  

% nroots = 

%  

%      6 

% 

% 

  global polcoeff 

  n = length(polyCoeffs) - 1; 

  xroots = zeros(n,1); % max real roots, maybe? 

  nroots = 0; 

  x = complex(pi,pi); 

  % --------------------- Stage 1 ----------------------- 

  % Use Newton's method with real-only math to find the real  

  % roots of the polynomial. With each real root found, the code  

  % deflate the current polynomial. 

  while n>1 

    polyCoeffsDeriv = polyder(polyCoeffs); 

    for i=1:maxiter 
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      drv = polyval(polyCoeffsDeriv, x); 

      diff = polyval(polyCoeffs, x)*drv/(drv^2 + 1e-10); 

      x = real(x - real(diff)); 

      if abs(real(diff))<toler, break; end 

    end 

    if i<maxiter 

      nroots = nroots + 1; 

      xroots(nroots) = x; 

      [polyCoeffs,~] = deconv(polyCoeffs,poly([x])); 

      n = n - 1;      

    else 

      break; 

    end 

  end 

  

  % --------------------- Stage 2 ----------------------- 

  % Determine the complex roots of the deflated polynomial by 

  % optimizing the norm of the differences between the LHS and  

  % RHS of the Vieta formulas. 

  if n >=2 && mod(n,2) == 0  

    lb = -20 + zeros(n,1); 

    ub = 20 + zeros(n,1); 

    nvars = n; 

    polcoeff = polyCoeffs; 

    options = optimoptions('particleswarm', 'MaxIterations', maxIterOptim); 

    options = optimoptions('particleswarm', 'FunctionTolerance', toler); 

    numRetry = 50; 

    while numRetry>0 

      [x,~,exitflag] = particleswarm(@optimFun,nvars,lb,ub,options); 

      if exitflag==1, break; end 

      numRetry = numRetry - 1; 

    end 

    for i=1:2:n 

      nroots = nroots + 1; 

      xroots(nroots,1) = x(i); 

      xroots(nroots,2) = x(i+1); 

      nroots = nroots + 1; 

      xroots(nroots,1) = x(i); 

      xroots(nroots,2) = -x(i+1);       

    end 

  end 

end 

  

function y = vf(X,A) 

% VF Uses the Vieta's Formulas to calculate a function 

% that returns the norm of the differences between the LHS  

% and RHS Vieta formulas. 

% 

% Many thanks to Valentin Albillo (of the hp museum web site) for providing 

% me with a most elegant and compact HP-71B calculator BASIC code. 

  n = length(X); 

  A = A / A(1); 

  %A = A(n+1:-1:1); 

  B = zeros(n+1,1); 

  B(n+1) = 1; 

  for i=1:n 

    for j=n-i:n-1 
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      B(j+1) = B(j+2)-B(j+1)*X(i); 

    end 

    B(n+1) =-B(n+1)* X(i); 

  end 

  B = B - A'; 

  y = norm(B)^2; 

end 

  

function y = optimFun(x) 

% The optimized function that uses the function vf(). This function cretaes 

% complex variables from the array x. 

  global polcoeff 

  n = length(x); 

  xr = zeros(n,1); 

  j = 1; 

  for i=1:2:n 

    xr(j) = complex(x(i),x(i+1)); 

    xr(j+1) = complex(x(i),-x(i+1)); 

    j = j + 2; 

  end 

  y = vf(xr,polcoeff); 

end 

Listing 1. MATLAB code to obtain the roots of polynomials by optimization. 

 

Listing 1 shows the code for function newtonpolyrootsEx() and reveals that the 

process involves two main stages: 

 

1. The first stage uses Newton’s method in real math mode to obtain all he real 

roots of the targeted polynomial. The function polyval() calculates the value 

of the polynomial for a given value of x. The function polyder() yields the 

coefficients of the first derivative of a polynomial. The function deconv() 

deflates a polynomial given a linear equation (i.e. ax + b) based on a single 

real root. 

2. Stage 2 works with the deflated polynomial that has complex roots. The 

function particleswarm() performs optimization on the function optimFn(). 

The code for this function builds pairs of complex conjugate roots before 

calling the Vieta Formula function vf(). The vf() function returns the value for 

equation 3. This stage must be able to handle complex math. 

 

This dual scheme algorithm works well and allows the optimization part to 

systematically find the conjugate complex roots, thus reducing the number of 

optimizing variables. 
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Here is an example for solving for the roots of P(x) = x6 – 2 x5 + 44 x4 – 66 x3 + 22 

x2 – 11 x - 55 = 0. I obtain the roots by calling function newtonpolyrootsEx() with 

the following arguments: 

 

• The array c which contains the polynomial coefficients. 

• The tolerance value 10-10 used with Newton’s method. 

• The maximum number of iterations of 100 used with Newton’s method. 

• The maximum number of optimization iterations of 1000. 

 
>> c=[1 -2 44 -66 22 -11 -55] 

 

c = 

 

     1    -2    44   -66    22   -11   -55 

 

>> [xroots,nroots] = newtonpolyrootsEx(c,1e-10,100,1000) 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

xroots = 

 

    1.6089         0 

   -0.7138         0 

    0.2341   -6.5335 

    0.2341    6.5335 

    0.3184   -1.0095 

    0.3184    1.0095 

 

 

nroots = 

 

     6 

 

>> roots(c) 

 

ans = 

 

   0.2341 + 6.5335i 

   0.2341 - 6.5335i 

   1.6089 + 0.0000i 

   0.3184 + 1.0095i 

   0.3184 - 1.0095i 

  -0.7138 + 0.0000i 

 

The last MATLAB command calls the built-in roots() function to calculate the roots 

of the targeted polynomial and compare the results with function 

newtonpolyrootsEx(). The function roots() uses eigenvalues and eigenvectors to 

calculator the roots of polynomials. 



Polynomial Roots by Optimization  8 

 

Copyright © 2018 by Namir Clement Shammas Version 1.0.0 

A Funny Thing Happened on the Way to Heaven 
I have been using Newton’s method since the middle of the 70s. Just about all the 

implementations I wrote use real math. I discovered that MATLAB allows Newton’s 

method to obtain both real and complex roots in a simple and systematic way. Listing 

2 shows the code for the MATLAB function newtonpolyroots(): 

 
function [xroots,nroots] = newtonpolyroots(polyCoeffs,toler,maxiter) 
% NEWTONPOLYROOTS extracts real and complex roots of a polynomial 
% using Newton's method and real/complex math operations. 
% 
% INPUT 
% ===== 
% polyCoeffs - array of polynomial coefficients. The first element is the 
% coeffiient of the highest power, and so on. 
% toler - the toleranced used in finding real roots using Newton's method. 
% maxiter - the maximum number of iteration used with Newton's method. 
% 
% OUTPUT 
% ====== 
% xroots - two-dimensional matrix of the roots. The values in column 1 are 
% the real parts, and in column 2 are the imaginary parts. 
% nroots - the number of roots. 
% 
% c=[1 -2 44 -66 22 -11 -55] 
% 
% c = 
%  
%      1    -2    44   -66    22   -11   -55 
%  
% [xroots,nroots] = newtonpolyroots(c,1e-10,100) 
%  
% xroots = 
%  
%    0.3184 + 1.0095i 
%    0.3184 - 1.0095i 
%   -0.7138 + 0.0000i 
%    1.6089 - 0.0000i 
%    0.2341 - 6.5335i 
%    0.2341 + 6.5335i 
%  
%  
% nroots = 
%  
%      6 
%       
  n = length(polyCoeffs) - 1; 

   
  % check if any polynomial coefficient is complex 
  isComplexCoeff = false; 
  for i=1:n 
    if abs(imag(polyCoeffs(i))) > 1e-10 
      isComplexCoeff = true; 
      break; 
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    end 
  end 

   
  xroots = zeros(n,1); % max real roots, maybe? 
  nroots = 0; 
  x = complex(pi,pi); 
  while n>1 
    polyCoeffsDeriv = polyder(polyCoeffs); 
    for i=1:maxiter 
      drv = polyval(polyCoeffsDeriv, x); 
      diff = polyval(polyCoeffs, x)*drv/(drv^2 + 1e-10); 
      x = x - diff; 
      if abs(diff)<toler, break; end 
    end 
    if i<=maxiter 
      nroots = nroots + 1; 
      xroots(nroots) = x; 
      [polyCoeffs,~] = deconv(polyCoeffs,poly([x])); 
      n = n - 1; 

       
      if abs(imag(x)) > 1e-7 && ~isComplexCoeff 
        x = complex(real(x),-imag(x)); 
        nroots = nroots + 1; 
        xroots(nroots) = x; 
        [polyCoeffs,~] = deconv(polyCoeffs,poly([x])); 
        n = n - 1; 
      end 

       
    else 
      break; 
    end 
  end 

   
  if i<=maxiter && n==1 
    nroots = nroots + 1; 
    xroots(nroots) = -polyCoeffs(2)/polyCoeffs(1); 
  end 
end 

 Listing 2. MATLAB code to obtain the roots of polynomials using Newton’s 

method. 
 

Listing 2 shows Newton’s method operating in real and complex modes to calculate 

all the real and imaginary roots of a real-coefficient polynomial.  The function sets 

the initial guess for the first root as complex(π, π). The function also extracts the 

conjugate complex root when it finds a complex root. The function uses the current 

root as the guess for the next root. 

 

Here is a sample session with function newtonpolyroots() to obtain the roots of the 

polynomial in the previous example. I obtain the roots by calling function 

newtonpolyroots() with the following arguments: 
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• The array c which contains the polynomial coefficients. 

• The tolerance value 10-10. 

• The maximum number of iterations of 100. 
 

>> [xroots,nroots] = newtonpolyroots(c,1e-10,100) 

 

xroots = 

 

   0.3184 + 1.0095i 

   0.3184 - 1.0095i 

  -0.7138 + 0.0000i 

   1.6089 - 0.0000i 

   0.2341 - 6.5335i 

   0.2341 + 6.5335i 

 

 

nroots = 

 

     6 

 

>> roots(c) 

 

ans = 

 

   0.2341 + 6.5335i 

   0.2341 - 6.5335i 

   1.6089 + 0.0000i 

   0.3184 + 1.0095i 

   0.3184 - 1.0095i 

  -0.7138 + 0.0000i 

A Quasi Lin-Bairstow Method 
I actually started this paper by looking at integrating optimization with the Lin-

Bairtow approach. This algorithm is based on the following equation: 
 

P(x) – q(x) B(x) + r(x)         (4) 
 

Where q(x) (equal to x2 + q1x + q0) is a quadratic polynomial and r(x) is a linear 

equation (equal to r1x + r0). When q(x) contains exact real or complex roots of P(x), 

the coefficients of r(x) are both zero. Optimization works by altering the two 

coefficients of q(x) such that the sum r1
2 + r0

2 become zero or a very small positive 

number. 

 

There is a wealth of classical and evolutionary algorithms one can choose from. I 

have tested a good variety of classical optimization algorithms. The results is that 

many of these algorithms give correct roots with certain polynomials but not others, 
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depending on the combination and sequences of polynomial coefficients. In other 

words, many of the classical optimization algorithms are not robust as one might 

have hoped. 

 

Listing 3 shows the slb() function that implements the Quasi Lin-Bairstow method 

using, for example, the particleswarm() optimization function. 

 
function [xroots,nroots] = slb(polyCoeffs,toler,maxIter,maxRetry) 
%SLB implements a quasi Lin-Bairstow method by using the particleswarm 
%function for PSo optimization. 
  global polcoeff 

   
  if nargin<2, toler=1e-10; end 
  if nargin<3, maxIter=10000; end 
  if nargin<4, maxRetry=1; end 

  
  rng('shuffle') 
  polcoeff = polyCoeffs/polyCoeffs(1); 
  order=length(polcoeff)-1; 
  xroots=zeros(order,2); 
  nroots=0; 
  while order>=2    
    lb = [-20 -20]; 
    ub = [20 20]; 
    nvars = 2; 
    options = optimoptions('particleswarm', 'MaxIterations', maxIter); 
    options = optimoptions('particleswarm', 'FunctionTolerance', toler); 
    numRetry = maxRetry; 
    while numRetry>0 
      [x,~,exitflag] = particleswarm(@optimFun,nvars,lb,ub,options); 
      if exitflag==1, break; end 
      numRetry = numRetry - 1; 
    end 
    xaug = [1 x]; % augment x 
    [r1,i1,r2,i2]=quadratic(xaug); 
    xroots(nroots+1,1)=r1; 
    xroots(nroots+1,2)=i1; 
    xroots(nroots+2,1)=r2; 
    xroots(nroots+2,2)=i2;  
    nroots = nroots + 2; 
    order = order - 2; 
    [q,~] = deconv(polcoeff, xaug); 
    polcoeff = q;       
    if exitflag~=1 
      fprintf('Exit flag is %i ', exitflag) 
      fprintf('for roots (%f,i%f) and (%f,i%f)\n', r1, i1, r2, i2); 
    end  
  end 

  

  if order == 1 
    xroots(nroots+1,1)=-polcoeff(2)/polcoeff(1); 
    xroots(nroots+1,2)=0; 
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    nroots = nroots + 1; 
  end 
end 

  
function [r1,i1,r2,i2]=quadratic(coeff) 
  discr=coeff(2)^2-4*coeff(1)*coeff(3); 
  if discr>=0 
      i1=0; 
      i2=0; 
      r1=(-coeff(2)+sqrt(discr))/2/coeff(1); 
      r2=(-coeff(2)-sqrt(discr))/2/coeff(1); 
  else 
      r1 =-coeff(2)/2/coeff(1); 
      r2 = r1; 
      i1 = sqrt(abs(discr))/2/coeff(1); 
      i2 = -i1; 
  end 
end 

  
function y = optimFun(x) 
  global polcoeff 
  xaug = [1 x]; 
  [~,r] = deconv(polcoeff,xaug); 
  y = norm(r); 
end 

 Listing 3. MATLAB code to obtain the roots of polynomials using the quasi Lin-

Bairstow method. 
 

Here is a sample session with function slb() to obtain the roots of the polynomial in 

the previous examples. I obtain the roots by calling function slb() with the following 

arguments: 
 

• The array c which contains the polynomial coefficients. 

• The tolerance value 10-10. 

• The maximum number of iterations of 1000. 

• The maximum number of 50 retries with the particleswarm() function. 
 

>> [xroots,nroots] = slb(c,1e-10,1000,50) 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

Optimization ended: relative change in the objective value  

over the last OPTIONS.MaxStallIterations iterations is less than 

OPTIONS.FunctionTolerance. 

 

xroots = 

 

    0.3184    1.0095 

    0.3184   -1.0095 
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    1.6089         0 

   -0.7138         0 

    0.2341    4.4660 

    0.2341   -4.4660 

 

 

nroots = 

 

     6 

The Durand-Kerner Algorithm 
Before I wrap things up with this study, I want to share with you an interesting 

algorithm, that I came across, for calculating the roots of polynomials. The Durand-

Kerner algorithm simultaneously calculates the real and complex roots of real-

coefficient AND complex-coefficient polynomials. The approach resembles the 

Gauss-Seidel method for solving a system of linear equations.  The algorithm uses a 

set of N equations to calculate N roots for the polynomial f(x). Here is an example 

for the algorithm solving the roots of a fourth order polynomial. Notice that the 

updated root values ARE used in subsequent equations, within the same iteration. 
 

pn = pn-1 – f(pn-1)/[(pn-1 – qn-1)(pn-1 – rn-1)(pn-1 – sn-1)]     (5) 

qn = qn-1 – f(qn-1)/[(qn-1 – pn)(qn-1 – rn-1)(qn-1 – sn-1)] 

rn = rn-1 – f(rn-1)/[(rn-1 – pn)(rn-1 – qn)(rn-1 – sn-1)] 

sn = sn-1 – f(sn-1)/[(sn-1 – pn)(sn-1 – rn)(sn-1 – qn)] 
 

Listing 4 shows the MATLAB code for the durand_kerner() function. 
 

function xroots = durand_kerner(polyCoeffs,toler) 
% DURAND_KERNER calculates the roots of a polynomial simultaneously. The 
% method is relatively simple and easy to implement. The Durand-Kerner 
% algorithm resembles the Gauss–Seidel method for solving simultneous linear 
% equations. 

  
  n = length(polyCoeffs) - 1; 
  xroots = zeros(n,1); 
  for i=1:n 
    xroots(i) = complex(0.4,0.9)^i; 
  end 
  bStop = false; 
  while ~bStop 
    lastRoots=xroots; 
    for i=1:n 
      prod = 1; 
      for j=1:n 
        if i~=j 
          prod = prod * (xroots(i) - xroots(j));   
        end 
      end 
      xroots(i) = xroots(i) - polyval(polyCoeffs,xroots(i))/prod; 
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    end 

     
    bStop = true; 
    for i=1:n 
      if abs(abs(lastRoots(i)) - abs(xroots(i)))>toler 
        bStop = false; 
        break; 
      end 
    end 
  end 

   
end 

Listing 4. The MATLAB code for the durand_kerner() function. 
 

Looking at Listing 4, notice how the guesses for the roots are initialized. The 

function uses a for loop to initialize the initial, and somewhat arbitrary, guesses as 

complex(0.4, 0.9)^i where i is the loop control variable. The imaginary parts for real 

roots converge to 0. 

 

Here is a sample session with function durand_kerner() to obtain the roots of the 

polynomial in the previous examples. I obtain the roots by calling the function with 

the following arguments: 
 

• The array c which contains the polynomial coefficients. 

• The tolerance value 10-10. 
 

>> xroots = durand_kerner(c,1e-10) 

 

xroots = 

 

   0.2341 + 6.5335i 

  -0.7138 + 0.0000i 

   0.3184 + 1.0095i 

   0.2341 - 6.5335i 

   0.3184 - 1.0095i 

   1.6089 + 0.0000i 

 

Here is a version of the Durand-Kerner algorithm that resembles the Jacobi 

algorithm for linear equations. Notice that the updated root values are NOT used in 

subsequent equations. They will instead used in the next iterations. 
 

pn = pn-1 – f(pn-1)/[(pn-1 – qn-1)(pn-1 – rn-1)(pn-1 – sn-1)]     (6) 

qn = qn-1 – f(qn-1)/[(qn-1 – pn-1)(qn-1 – rn-1)(qn-1 – sn-1)] 

rn = rn-1 – f(rn-1)/[(rn-1 – pn-1)(rn-1 – qn-1)(rn-1 – sn-1)] 

sn = sn-1 – f(sn-1)/[(sn-1 – pn-1)(sn-1 – rn-1)(sn-1 – qn-1)] 
 

Listing 5 shows the MATLAB code for the durand_kerner2() function. 



Polynomial Roots by Optimization  15 

 

Copyright © 2018 by Namir Clement Shammas Version 1.0.0 

 
function xroots = durand_kerner2(polyCoeffs,toler) 

% DURAND_KERNER calculates the roots of a polynomial simultaneously. The 

% method is relatively simple and easy to implement. The Durand-Kerner 

% algorithm resembles the Jacobi method for solving simultneous linear 

% equations. 

 

  n = length(polyCoeffs) - 1; 

  xroots = zeros(n,1); 

  for i=1:n 

    xroots(i) = complex(0.4,0.9)^i; 

  end 

  bStop = false; 

  while ~bStop 

    lastRoots=xroots; 

    for i=1:n 

      prod = 1; 

      for j=1:n 

        if i~=j 

          prod = prod * (lastRoots(i) - lastRoots(j));   

        end 

      end 

      xroots(i) = lastRoots(i) - polyval(polyCoeffs,lastRoots(i))/prod; 

    end 

     

    bStop = true; 

    for i=1:n 

      if abs(abs(lastRoots(i)) - abs(xroots(i)))>toler 

        bStop = false; 

        break; 

      end 

    end 

  end 

   

end 

 

function y = optimFun(x) 

  global polcoeff 

  xaug = [1 x]; 

  [~,r] = deconv(polcoeff,xaug); 

  y = norm(r); 

end 

Listing 5. The MATLAB code for the durand_kerner2() function. 
 

Here is a sample session with function durand_kerner2() to obtain the roots of the 

polynomial in the previous examples. I obtain the roots by calling the function with 

the following arguments: 
 

• The array c which contains the polynomial coefficients. 

• The tolerance value 10-10. 
 

>> xroots = durand_kerner2(c,1e-10) 
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xroots = 

 

   1.6089 - 0.0000i 

   0.2341 + 6.5335i 

   0.3184 - 1.0095i 

  -0.7138 - 0.0000i 

   0.3184 + 1.0095i 

   0.2341 - 6.5335i 

Conclusions 
The Lin-Bairstow remains a versatile and robust algorithm used to calculate the real 

and complex roots for real-coefficient polynomials. The algorithm can obtain the 

results using only real math calculations. This feature makes it a valuable algorithm. 

 

The Quasi-Lin-Bairstow method that I covered works as good as the underlying 

server optimization algorithm. There seems to be a property of the collection of 

polynomial coefficients, that I am currently unaware of, that determines when the 

optimization algorithm give correct answers. Thus, the Quasi-Lin-Bairstow method 

that I discussed is a bit iffy! 

 

Newton’s method, implemented in a programming language like MATLAB, also 

proves to be a versatile algorithm that can reliably obtain real and complex roots. 

Newton’s method works for real-coefficient AND complex-coefficient polynomials 

when using MATLAB. Without the ability to switch between real and complex 

math, Newton’s method is only good for solving for the real roots of real-coefficient 

polynomials. 

 

The compound Newton-Vieta Formulas algorithm that I have proposed also provides 

a reliable algorithm that can work with a wide variety of real-coefficient 

polynomials. While the stage that uses Newton’s method does not require complex 

math, the stage that uses the Vieta formulas does require complex math. It remains 

a personal choice to either use just Newton’s method with real/complex math or use 

the compound Newton-Vieta Formulas algorithm. 

 

The Durand-Kerner algorithm is able to calculate all real and complex roots for real-

coefficient AND complex-coefficient polynomials when using programming 

languages like MATLAB. It is a valuable tool that you can add to your software 

toolbox.  This paper shows that both flavors (the Gauss-Seidel-like and Jacobi-like 

versions) of the Durand-Kerner method work well. 
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