
Polynomial Roots by Optimization 1

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Polynomial Roots by Optimization
By

Namir C. Shammas

Contents
Contents ... 1

Introduction ... 1

The Devil is in the Details .. 2

Back to the Drawing Board .. 3

A Funny Thing Happened on the Way to Heaven .. 8

A Quasi Lin-Bairstow Method ..10

The Durand-Kerner Algorithm ..13

Conclusions ..16

Document History ...17

Introduction
Numerical Analysts have put much effort in calculating the roots of polynomials.

There seems to be three schools of thought that vary in the complexity of the

problem:

1. Algorithms that find the real roots for real-coefficient polynomials.

2. Algorithms that find all roots for real-coefficient polynomials.

3. Algorithms that find all roots for complex-coefficient polynomials.

The first brand of problems can use classical root-finding algorithms to determine

the real roots of polynomials. They should include a criterion (such as the maximum

number of iterations) to determine when all the real roots have been obtained. By

contrast, the third brand of problems require a programming language, such as

MATLAB, that can handle complex math with ease. Moreover, such a language can

switch between real and complex calculations in a seamless and transparent way.

This article deals with the second brand of problems. The most popular algorithm

that calculates all real and complex roots of real-coefficient polynomials is the Lin-

Polynomial Roots by Optimization 2

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Bairstow method. This method repeatedly factors out quadratic polynomials and

determine their real and complex roots. The Lin-Bairstow method is quite robust and

requires only real-math arithmetical operations. This feature makes it very attractive

for system that don’t support complex math or require using complex math libraries.

You can implement the Lin-Bairstow on a whole diverse systems and programming

languages.

This article looks at calculating the real and complex roots of real-coefficient

polynomials. The approach I will be using involves optimization of the Vieta

Formulas. These formulas describe mathematical properties of the roots and

coefficients of the following general polynomial:

P(x) = anx
n + an-1x

n-1 + … + a1x + a0 (1)

The Vieta formulas describe the relations between the coefficient polynomials with

the roots x1, …, xn:

x1 + x2 + … + xn-1 + xn = –an-1 / an (2)

(x1 x2 + x1 x3 + … + x1 xn) + (x2 x3 + x2 x4 + … + x4 xn) + … + xn-1 xn = an-2 / an

…

x1 x2 x3 x4 … xn = (–1)n a0/ an

The basic approach that I propose is to optimize the roots (starting with guesses)

until all the equations in set 2 are obeyed. The optimizing function would be the

norm of the sum of difference squared between the left-hand side and right-hand side

of equations in set 2.

𝐹(𝒙, 𝒂) = ∑ (𝐿𝐻𝑆(𝑖) − 𝑅𝐻𝑆(𝑖))^2𝑛
𝑖−1 (3)

The Devil is in the Details
The first step in solving the roots of real-coefficient polynomials is to develop

programming code for equation 3. I had solicited the help of fellow calculator

enthusiasts (and math minded folks) at www.hpmuseum.com. My math challenge

was met quickly by Spanish member Valentin Albillo. He provided code for the HP-

71B calculator in BASIC. The solution Albillo provided is stunningly simple—the

work of a brilliant mathematician. I was able to find just another similar solution in

http://www.hpmuseum.com/

Polynomial Roots by Optimization 3

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

C++ code on the web. It seems that many programmers have shied away from coding

the Vieta Formulas to yield equation 3. I was very fortunate that Albillo accepted

my challenge and provided me with an essential tool for the optimization process.

I chose to use MATLAB for various reasons, including its ability to switch between

real and complex math in a seamless and transparent way. This feature of MATLAB

proved to be more valuable than I thought—more about that later in this article. To

add more good news, the latest version of MATLAB includes the robust Particle

Swarm Optimization (PSO) function particleswarm(). The PSO algorithm is a robust

evolutionary method and having a finetuned version in MATLAB was a temptation

I could not resist.

Armed with Albillo’s code and the particleswarm() function I approached the

problem of optimizing equation 3 in very general terms. I took into account that each

root is basically complex—the real roots having imaginary values of 0. This meant

that for a polynomial of order N, I had to optimize 2*(N+1) variables.

My first and valiant attempt to optimize equation 3 used a general optimization

approach and hoped for the best—obtaining some real roots and pairs of conjugate

complex roots. The MATLAB code yielded results but none was correct! I had bit

more than I could chew! I had expected my MATLAB code to behave more

intelligently that its code delivered.

Back to the Drawing Board
After my first attempt yielding failure, I decided to study the problem more carefully.

I decided that I needed to first extract the real roots and let equation 3 deal with a

reduced polynomial that has pairs of conjugate complex roots. The code for the

optimized MATLAB function should consider that there are pairs of conjugate

complex roots. This approach reduced the number of optimized variables and forced

the optimization process to consider the pairs of conjugate complex roots.

Listing 1 shows the MATLAB code.
Function [xroots,nroots] =

newtonpolyrootsEx(polyCoeffs,toler,maxiter,maxIterOptim)

% NEWTONPOLYROOTSEX extracts real and complex roots of a polynomial

% in two stages:

% Stage 1: Using Newton's method to determine the real roots of the

% polpoynomial.

% Stage 2: Using the optimization of the Vieta's formulas for the

% reduced polynomials that have only complex roots.

Polynomial Roots by Optimization 4

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

%

% INPUT

% =====

% polyCoeffs - array of polynomial coefficients. The first element is the

% coeffiient of the highest power, and so on.

% toler - the toleranced used in finding real roots using Newton's method.

% maxiter - the maximum number of iteration used with Newton's method.

% maxIterOptim - the maximum number of iteration used with optimizing

% the sum of squares of the differences between the LHS and RHS of the Vieta

% formulas.

%

% OUTPUT

% ======

% xroots - two-dimensional matrix of the roots. The values in column 1 are

% the real parts, and in column 2 are the imaginary parts.

% nroots - the number of roots.

%

% EXAMPLE

% =======

% c=[1 -2 44 -66 22 -11 -55]

%

% c =

%

% 1 -2 44 -66 22 -11 -55

%

% [xroots,nroots] = newtonpolyrootsEx(c,1e-10,100,1000)

% Optimization ended: relative change in the objective value

% over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

%

% xroots =

%

% 1.6089 0

% -0.7138 0

% 0.2341 -6.5335

% 0.2341 6.5335

% 0.3184 -1.0095

% 0.3184 1.0095

%

%

% nroots =

%

% 6

%

%

 global polcoeff

 n = length(polyCoeffs) - 1;

 xroots = zeros(n,1); % max real roots, maybe?

 nroots = 0;

 x = complex(pi,pi);

 % --------------------- Stage 1 -----------------------

 % Use Newton's method with real-only math to find the real

 % roots of the polynomial. With each real root found, the code

 % deflate the current polynomial.

 while n>1

 polyCoeffsDeriv = polyder(polyCoeffs);

 for i=1:maxiter

Polynomial Roots by Optimization 5

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 drv = polyval(polyCoeffsDeriv, x);

 diff = polyval(polyCoeffs, x)*drv/(drv^2 + 1e-10);

 x = real(x - real(diff));

 if abs(real(diff))<toler, break; end

 end

 if i<maxiter

 nroots = nroots + 1;

 xroots(nroots) = x;

 [polyCoeffs,~] = deconv(polyCoeffs,poly([x]));

 n = n - 1;

 else

 break;

 end

 end

 % --------------------- Stage 2 -----------------------

 % Determine the complex roots of the deflated polynomial by

 % optimizing the norm of the differences between the LHS and

 % RHS of the Vieta formulas.

 if n >=2 && mod(n,2) == 0

 lb = -20 + zeros(n,1);

 ub = 20 + zeros(n,1);

 nvars = n;

 polcoeff = polyCoeffs;

 options = optimoptions('particleswarm', 'MaxIterations', maxIterOptim);

 options = optimoptions('particleswarm', 'FunctionTolerance', toler);

 numRetry = 50;

 while numRetry>0

 [x,~,exitflag] = particleswarm(@optimFun,nvars,lb,ub,options);

 if exitflag==1, break; end

 numRetry = numRetry - 1;

 end

 for i=1:2:n

 nroots = nroots + 1;

 xroots(nroots,1) = x(i);

 xroots(nroots,2) = x(i+1);

 nroots = nroots + 1;

 xroots(nroots,1) = x(i);

 xroots(nroots,2) = -x(i+1);

 end

 end

end

function y = vf(X,A)

% VF Uses the Vieta's Formulas to calculate a function

% that returns the norm of the differences between the LHS

% and RHS Vieta formulas.

%

% Many thanks to Valentin Albillo (of the hp museum web site) for providing

% me with a most elegant and compact HP-71B calculator BASIC code.

 n = length(X);

 A = A / A(1);

 %A = A(n+1:-1:1);

 B = zeros(n+1,1);

 B(n+1) = 1;

 for i=1:n

 for j=n-i:n-1

Polynomial Roots by Optimization 6

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 B(j+1) = B(j+2)-B(j+1)*X(i);

 end

 B(n+1) =-B(n+1)* X(i);

 end

 B = B - A';

 y = norm(B)^2;

end

function y = optimFun(x)

% The optimized function that uses the function vf(). This function cretaes

% complex variables from the array x.

 global polcoeff

 n = length(x);

 xr = zeros(n,1);

 j = 1;

 for i=1:2:n

 xr(j) = complex(x(i),x(i+1));

 xr(j+1) = complex(x(i),-x(i+1));

 j = j + 2;

 end

 y = vf(xr,polcoeff);

end

Listing 1. MATLAB code to obtain the roots of polynomials by optimization.

Listing 1 shows the code for function newtonpolyrootsEx() and reveals that the

process involves two main stages:

1. The first stage uses Newton’s method in real math mode to obtain all he real

roots of the targeted polynomial. The function polyval() calculates the value

of the polynomial for a given value of x. The function polyder() yields the

coefficients of the first derivative of a polynomial. The function deconv()

deflates a polynomial given a linear equation (i.e. ax + b) based on a single

real root.

2. Stage 2 works with the deflated polynomial that has complex roots. The

function particleswarm() performs optimization on the function optimFn().

The code for this function builds pairs of complex conjugate roots before

calling the Vieta Formula function vf(). The vf() function returns the value for

equation 3. This stage must be able to handle complex math.

This dual scheme algorithm works well and allows the optimization part to

systematically find the conjugate complex roots, thus reducing the number of

optimizing variables.

Polynomial Roots by Optimization 7

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Here is an example for solving for the roots of P(x) = x6 – 2 x5 + 44 x4 – 66 x3 + 22

x2 – 11 x - 55 = 0. I obtain the roots by calling function newtonpolyrootsEx() with

the following arguments:

• The array c which contains the polynomial coefficients.

• The tolerance value 10-10 used with Newton’s method.

• The maximum number of iterations of 100 used with Newton’s method.

• The maximum number of optimization iterations of 1000.

>> c=[1 -2 44 -66 22 -11 -55]

c =

 1 -2 44 -66 22 -11 -55

>> [xroots,nroots] = newtonpolyrootsEx(c,1e-10,100,1000)

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

xroots =

 1.6089 0

 -0.7138 0

 0.2341 -6.5335

 0.2341 6.5335

 0.3184 -1.0095

 0.3184 1.0095

nroots =

 6

>> roots(c)

ans =

 0.2341 + 6.5335i

 0.2341 - 6.5335i

 1.6089 + 0.0000i

 0.3184 + 1.0095i

 0.3184 - 1.0095i

 -0.7138 + 0.0000i

The last MATLAB command calls the built-in roots() function to calculate the roots

of the targeted polynomial and compare the results with function

newtonpolyrootsEx(). The function roots() uses eigenvalues and eigenvectors to

calculator the roots of polynomials.

Polynomial Roots by Optimization 8

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

A Funny Thing Happened on the Way to Heaven
I have been using Newton’s method since the middle of the 70s. Just about all the

implementations I wrote use real math. I discovered that MATLAB allows Newton’s

method to obtain both real and complex roots in a simple and systematic way. Listing

2 shows the code for the MATLAB function newtonpolyroots():

function [xroots,nroots] = newtonpolyroots(polyCoeffs,toler,maxiter)
% NEWTONPOLYROOTS extracts real and complex roots of a polynomial
% using Newton's method and real/complex math operations.
%
% INPUT
% =====
% polyCoeffs - array of polynomial coefficients. The first element is the
% coeffiient of the highest power, and so on.
% toler - the toleranced used in finding real roots using Newton's method.
% maxiter - the maximum number of iteration used with Newton's method.
%
% OUTPUT
% ======
% xroots - two-dimensional matrix of the roots. The values in column 1 are
% the real parts, and in column 2 are the imaginary parts.
% nroots - the number of roots.
%
% c=[1 -2 44 -66 22 -11 -55]
%
% c =
%
% 1 -2 44 -66 22 -11 -55
%
% [xroots,nroots] = newtonpolyroots(c,1e-10,100)
%
% xroots =
%
% 0.3184 + 1.0095i
% 0.3184 - 1.0095i
% -0.7138 + 0.0000i
% 1.6089 - 0.0000i
% 0.2341 - 6.5335i
% 0.2341 + 6.5335i
%
%
% nroots =
%
% 6
%
 n = length(polyCoeffs) - 1;

 % check if any polynomial coefficient is complex
 isComplexCoeff = false;
 for i=1:n
 if abs(imag(polyCoeffs(i))) > 1e-10
 isComplexCoeff = true;
 break;

Polynomial Roots by Optimization 9

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 end
 end

 xroots = zeros(n,1); % max real roots, maybe?
 nroots = 0;
 x = complex(pi,pi);
 while n>1
 polyCoeffsDeriv = polyder(polyCoeffs);
 for i=1:maxiter
 drv = polyval(polyCoeffsDeriv, x);
 diff = polyval(polyCoeffs, x)*drv/(drv^2 + 1e-10);
 x = x - diff;
 if abs(diff)<toler, break; end
 end
 if i<=maxiter
 nroots = nroots + 1;
 xroots(nroots) = x;
 [polyCoeffs,~] = deconv(polyCoeffs,poly([x]));
 n = n - 1;

 if abs(imag(x)) > 1e-7 && ~isComplexCoeff
 x = complex(real(x),-imag(x));
 nroots = nroots + 1;
 xroots(nroots) = x;
 [polyCoeffs,~] = deconv(polyCoeffs,poly([x]));
 n = n - 1;
 end

 else
 break;
 end
 end

 if i<=maxiter && n==1
 nroots = nroots + 1;
 xroots(nroots) = -polyCoeffs(2)/polyCoeffs(1);
 end
end

 Listing 2. MATLAB code to obtain the roots of polynomials using Newton’s

method.

Listing 2 shows Newton’s method operating in real and complex modes to calculate

all the real and imaginary roots of a real-coefficient polynomial. The function sets

the initial guess for the first root as complex(π, π). The function also extracts the

conjugate complex root when it finds a complex root. The function uses the current

root as the guess for the next root.

Here is a sample session with function newtonpolyroots() to obtain the roots of the

polynomial in the previous example. I obtain the roots by calling function

newtonpolyroots() with the following arguments:

Polynomial Roots by Optimization 10

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

• The array c which contains the polynomial coefficients.

• The tolerance value 10-10.

• The maximum number of iterations of 100.

>> [xroots,nroots] = newtonpolyroots(c,1e-10,100)

xroots =

 0.3184 + 1.0095i

 0.3184 - 1.0095i

 -0.7138 + 0.0000i

 1.6089 - 0.0000i

 0.2341 - 6.5335i

 0.2341 + 6.5335i

nroots =

 6

>> roots(c)

ans =

 0.2341 + 6.5335i

 0.2341 - 6.5335i

 1.6089 + 0.0000i

 0.3184 + 1.0095i

 0.3184 - 1.0095i

 -0.7138 + 0.0000i

A Quasi Lin-Bairstow Method
I actually started this paper by looking at integrating optimization with the Lin-

Bairtow approach. This algorithm is based on the following equation:

P(x) – q(x) B(x) + r(x) (4)

Where q(x) (equal to x2 + q1x + q0) is a quadratic polynomial and r(x) is a linear

equation (equal to r1x + r0). When q(x) contains exact real or complex roots of P(x),

the coefficients of r(x) are both zero. Optimization works by altering the two

coefficients of q(x) such that the sum r1
2 + r0

2 become zero or a very small positive

number.

There is a wealth of classical and evolutionary algorithms one can choose from. I

have tested a good variety of classical optimization algorithms. The results is that

many of these algorithms give correct roots with certain polynomials but not others,

Polynomial Roots by Optimization 11

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

depending on the combination and sequences of polynomial coefficients. In other

words, many of the classical optimization algorithms are not robust as one might

have hoped.

Listing 3 shows the slb() function that implements the Quasi Lin-Bairstow method

using, for example, the particleswarm() optimization function.

function [xroots,nroots] = slb(polyCoeffs,toler,maxIter,maxRetry)
%SLB implements a quasi Lin-Bairstow method by using the particleswarm
%function for PSo optimization.
 global polcoeff

 if nargin<2, toler=1e-10; end
 if nargin<3, maxIter=10000; end
 if nargin<4, maxRetry=1; end

 rng('shuffle')
 polcoeff = polyCoeffs/polyCoeffs(1);
 order=length(polcoeff)-1;
 xroots=zeros(order,2);
 nroots=0;
 while order>=2
 lb = [-20 -20];
 ub = [20 20];
 nvars = 2;
 options = optimoptions('particleswarm', 'MaxIterations', maxIter);
 options = optimoptions('particleswarm', 'FunctionTolerance', toler);
 numRetry = maxRetry;
 while numRetry>0
 [x,~,exitflag] = particleswarm(@optimFun,nvars,lb,ub,options);
 if exitflag==1, break; end
 numRetry = numRetry - 1;
 end
 xaug = [1 x]; % augment x
 [r1,i1,r2,i2]=quadratic(xaug);
 xroots(nroots+1,1)=r1;
 xroots(nroots+1,2)=i1;
 xroots(nroots+2,1)=r2;
 xroots(nroots+2,2)=i2;
 nroots = nroots + 2;
 order = order - 2;
 [q,~] = deconv(polcoeff, xaug);
 polcoeff = q;
 if exitflag~=1
 fprintf('Exit flag is %i ', exitflag)
 fprintf('for roots (%f,i%f) and (%f,i%f)\n', r1, i1, r2, i2);
 end
 end

 if order == 1
 xroots(nroots+1,1)=-polcoeff(2)/polcoeff(1);
 xroots(nroots+1,2)=0;

Polynomial Roots by Optimization 12

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 nroots = nroots + 1;
 end
end

function [r1,i1,r2,i2]=quadratic(coeff)
 discr=coeff(2)^2-4*coeff(1)*coeff(3);
 if discr>=0
 i1=0;
 i2=0;
 r1=(-coeff(2)+sqrt(discr))/2/coeff(1);
 r2=(-coeff(2)-sqrt(discr))/2/coeff(1);
 else
 r1 =-coeff(2)/2/coeff(1);
 r2 = r1;
 i1 = sqrt(abs(discr))/2/coeff(1);
 i2 = -i1;
 end
end

function y = optimFun(x)
 global polcoeff
 xaug = [1 x];
 [~,r] = deconv(polcoeff,xaug);
 y = norm(r);
end

 Listing 3. MATLAB code to obtain the roots of polynomials using the quasi Lin-

Bairstow method.

Here is a sample session with function slb() to obtain the roots of the polynomial in

the previous examples. I obtain the roots by calling function slb() with the following

arguments:

• The array c which contains the polynomial coefficients.

• The tolerance value 10-10.

• The maximum number of iterations of 1000.

• The maximum number of 50 retries with the particleswarm() function.

>> [xroots,nroots] = slb(c,1e-10,1000,50)

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than

OPTIONS.FunctionTolerance.

xroots =

 0.3184 1.0095

 0.3184 -1.0095

Polynomial Roots by Optimization 13

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 1.6089 0

 -0.7138 0

 0.2341 4.4660

 0.2341 -4.4660

nroots =

 6

The Durand-Kerner Algorithm
Before I wrap things up with this study, I want to share with you an interesting

algorithm, that I came across, for calculating the roots of polynomials. The Durand-

Kerner algorithm simultaneously calculates the real and complex roots of real-

coefficient AND complex-coefficient polynomials. The approach resembles the

Gauss-Seidel method for solving a system of linear equations. The algorithm uses a

set of N equations to calculate N roots for the polynomial f(x). Here is an example

for the algorithm solving the roots of a fourth order polynomial. Notice that the

updated root values ARE used in subsequent equations, within the same iteration.

pn = pn-1 – f(pn-1)/[(pn-1 – qn-1)(pn-1 – rn-1)(pn-1 – sn-1)] (5)

qn = qn-1 – f(qn-1)/[(qn-1 – pn)(qn-1 – rn-1)(qn-1 – sn-1)]

rn = rn-1 – f(rn-1)/[(rn-1 – pn)(rn-1 – qn)(rn-1 – sn-1)]

sn = sn-1 – f(sn-1)/[(sn-1 – pn)(sn-1 – rn)(sn-1 – qn)]

Listing 4 shows the MATLAB code for the durand_kerner() function.

function xroots = durand_kerner(polyCoeffs,toler)
% DURAND_KERNER calculates the roots of a polynomial simultaneously. The
% method is relatively simple and easy to implement. The Durand-Kerner
% algorithm resembles the Gauss–Seidel method for solving simultneous linear
% equations.

 n = length(polyCoeffs) - 1;
 xroots = zeros(n,1);
 for i=1:n
 xroots(i) = complex(0.4,0.9)^i;
 end
 bStop = false;
 while ~bStop
 lastRoots=xroots;
 for i=1:n
 prod = 1;
 for j=1:n
 if i~=j
 prod = prod * (xroots(i) - xroots(j));
 end
 end
 xroots(i) = xroots(i) - polyval(polyCoeffs,xroots(i))/prod;

Polynomial Roots by Optimization 14

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

 end

 bStop = true;
 for i=1:n
 if abs(abs(lastRoots(i)) - abs(xroots(i)))>toler
 bStop = false;
 break;
 end
 end
 end

end

Listing 4. The MATLAB code for the durand_kerner() function.

Looking at Listing 4, notice how the guesses for the roots are initialized. The

function uses a for loop to initialize the initial, and somewhat arbitrary, guesses as

complex(0.4, 0.9)^i where i is the loop control variable. The imaginary parts for real

roots converge to 0.

Here is a sample session with function durand_kerner() to obtain the roots of the

polynomial in the previous examples. I obtain the roots by calling the function with

the following arguments:

• The array c which contains the polynomial coefficients.

• The tolerance value 10-10.

>> xroots = durand_kerner(c,1e-10)

xroots =

 0.2341 + 6.5335i

 -0.7138 + 0.0000i

 0.3184 + 1.0095i

 0.2341 - 6.5335i

 0.3184 - 1.0095i

 1.6089 + 0.0000i

Here is a version of the Durand-Kerner algorithm that resembles the Jacobi

algorithm for linear equations. Notice that the updated root values are NOT used in

subsequent equations. They will instead used in the next iterations.

pn = pn-1 – f(pn-1)/[(pn-1 – qn-1)(pn-1 – rn-1)(pn-1 – sn-1)] (6)

qn = qn-1 – f(qn-1)/[(qn-1 – pn-1)(qn-1 – rn-1)(qn-1 – sn-1)]

rn = rn-1 – f(rn-1)/[(rn-1 – pn-1)(rn-1 – qn-1)(rn-1 – sn-1)]

sn = sn-1 – f(sn-1)/[(sn-1 – pn-1)(sn-1 – rn-1)(sn-1 – qn-1)]

Listing 5 shows the MATLAB code for the durand_kerner2() function.

Polynomial Roots by Optimization 15

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

function xroots = durand_kerner2(polyCoeffs,toler)

% DURAND_KERNER calculates the roots of a polynomial simultaneously. The

% method is relatively simple and easy to implement. The Durand-Kerner

% algorithm resembles the Jacobi method for solving simultneous linear

% equations.

 n = length(polyCoeffs) - 1;

 xroots = zeros(n,1);

 for i=1:n

 xroots(i) = complex(0.4,0.9)^i;

 end

 bStop = false;

 while ~bStop

 lastRoots=xroots;

 for i=1:n

 prod = 1;

 for j=1:n

 if i~=j

 prod = prod * (lastRoots(i) - lastRoots(j));

 end

 end

 xroots(i) = lastRoots(i) - polyval(polyCoeffs,lastRoots(i))/prod;

 end

 bStop = true;

 for i=1:n

 if abs(abs(lastRoots(i)) - abs(xroots(i)))>toler

 bStop = false;

 break;

 end

 end

 end

end

function y = optimFun(x)

 global polcoeff

 xaug = [1 x];

 [~,r] = deconv(polcoeff,xaug);

 y = norm(r);

end

Listing 5. The MATLAB code for the durand_kerner2() function.

Here is a sample session with function durand_kerner2() to obtain the roots of the

polynomial in the previous examples. I obtain the roots by calling the function with

the following arguments:

• The array c which contains the polynomial coefficients.

• The tolerance value 10-10.

>> xroots = durand_kerner2(c,1e-10)

Polynomial Roots by Optimization 16

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

xroots =

 1.6089 - 0.0000i

 0.2341 + 6.5335i

 0.3184 - 1.0095i

 -0.7138 - 0.0000i

 0.3184 + 1.0095i

 0.2341 - 6.5335i

Conclusions
The Lin-Bairstow remains a versatile and robust algorithm used to calculate the real

and complex roots for real-coefficient polynomials. The algorithm can obtain the

results using only real math calculations. This feature makes it a valuable algorithm.

The Quasi-Lin-Bairstow method that I covered works as good as the underlying

server optimization algorithm. There seems to be a property of the collection of

polynomial coefficients, that I am currently unaware of, that determines when the

optimization algorithm give correct answers. Thus, the Quasi-Lin-Bairstow method

that I discussed is a bit iffy!

Newton’s method, implemented in a programming language like MATLAB, also

proves to be a versatile algorithm that can reliably obtain real and complex roots.

Newton’s method works for real-coefficient AND complex-coefficient polynomials

when using MATLAB. Without the ability to switch between real and complex

math, Newton’s method is only good for solving for the real roots of real-coefficient

polynomials.

The compound Newton-Vieta Formulas algorithm that I have proposed also provides

a reliable algorithm that can work with a wide variety of real-coefficient

polynomials. While the stage that uses Newton’s method does not require complex

math, the stage that uses the Vieta formulas does require complex math. It remains

a personal choice to either use just Newton’s method with real/complex math or use

the compound Newton-Vieta Formulas algorithm.

The Durand-Kerner algorithm is able to calculate all real and complex roots for real-

coefficient AND complex-coefficient polynomials when using programming

languages like MATLAB. It is a valuable tool that you can add to your software

toolbox. This paper shows that both flavors (the Gauss-Seidel-like and Jacobi-like

versions) of the Durand-Kerner method work well.

Polynomial Roots by Optimization 17

Copyright © 2018 by Namir Clement Shammas Version 1.0.0

Document History
Date Comment Version

August 6, 2018 Initial release. 1.0.0

