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By 
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Introduction 
Ostrowski was a Russian mathematician who taught for many years at the 

University of Basil, Switzerland. He proposed an enhancement to Newton’s root 

seeking algorithm. Ostrowski suggested a new twist such that each iteration offers 

two refinements for the root—one of them being intermediate. The Ostrowski 

algorithm matches Halley’s root seeking algorithm in its third order rate of 

convergence. Recently, the Ostrowski algorithm inspired many mathematicians to 

device root-seeking algorithms with two or more refinements to the root per 

iteration. 

I recently applied Ostrowski’s approach to the Illinois algorithm (an improved 

version of the False Position algorithm) and obtained better rates of convergence 

better than those of the Illinois algorithm. I was a little baffled as to why Ostrowski 

improved only the Newton’s method and did not become more ambitious to 

enhance Halley’s superior method! Moreover, there has been many articles on 

further improving Ostrowski’s work, but none to improve Halley’s method using 

the Ostrowski approach. 

I decided to experiment with applying Ostrowski’s approach to Halley’s algorithm. 

Since the latter method is a bit more advanced than Newton’s method (requiring 

the calculations of the first AND second derivatives), applying the Ostrowski 

approach was NOT trivial. I decided, nevertheless, to give it a go. I started with a 

simple improvement to Halley’s method, but that did not yield better calculations. 

After two or three incarnations, I was able to find a satisfactory marriage between 

Ostrowski and Halley. This paper reports the algorithm details and also includes a 

comparison between the methods of Newton, Halley, Ostrowski, and my new 

Ostrowski-Halley algorithm. The results include testing these algorithms with two 

dozen functions and reporting the number of function calls AND iterations.  

With the advance of computers in general and increasingly fast computers in 

particular, it has become more feasible to work with new non-legacy root seeking 
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algorithms like Ostrowski and the new method that I propose. These algorithms 

require a bit more computation effort (involving the basic mathematical 

operations) that does not impose significant burden on today’s fast CPUs. This 

ease of automated calculation is far cry from the days of pre-20th centuries’ manual 

calculations performed by humans working for the famous mathematicians. 

Manual calculations favored algorithms that required simpler calculations per 

iteration. Even when electronics firms, like HP and TI, launched programmable 

calculators in the seventies, the legacy algorithms were a perfect fit for these 

calculators with their limited memory and CPU speed. The advent of several 

generations of PCs, with their ever-increasing CPU speed and memory, made new 

root-seeking algorithms possible and feasible. For example, I recently developed 

smart enhancements to the Bisection method by adding more decision-making 

components. These variants of Bisection succeeded in improving on the number of 

iterations. The extra calculations and decision-making per iteration was, by no 

means, punishing the computer’s CPU. 

While the number of iterations in root-seeking is important, we must not totally 

disregard the number of function calls. They are the proverbial cost of doing 

business. This is very true when the target function required significant 

calculations/iterations, such as series or product involving many terms. Many of 

the new advanced root-seeking algorithms succeed in quickly converging to the 

desired answer. This achievement comes at the cost of making a relatively large 

number of function calls. There is also the issue of additional basic mathematical 

operations and decision-making needed by the more sophisticated root-seeking 

algorithms. Most mathematicians seem to ignore this kind of additional overhead, 

pointing out to the fact that we are using CPUs that are quite fast. The gain in CPU 

speed, they argue, can certainly more than make up for the additional CPU effort 

needed to handle the additional overhead operations. I would not be surprised if a 

few mathematicians consider the new CPU speeds as making the number of 

function calls less relevant. 

Legacy Root-Seeking Algorithms 
In this section we briefly discuss the root seeking methods of Newton, Halley, and 

Ostrowski. 

The Newton Method 

One of the most popular root-seeking algorithms is the Newton method (also called 

the Newton-Raphson method). While Isaac Newton had little to do with the 
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algorithm in its current form, it was Thomas Simpson (known for Simpson’s rule 

for numerical integration) who gave it its name and homage to Isaac Newton. 

The equation for Newton’s method that refined a guess for the root is: 

𝑥𝑖+1 =  𝑥𝑖  – 
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
         (1) 

Equation 1 required evaluating the function f(x) and it’s derivative f’(x) which can 

be approximated using the forward difference approximation: 

𝑓’(𝑥)  =  (𝑓(𝑥 + ℎ) –  𝑓(𝑥))/ℎ      (2) 

Where h = 0.02(1 + |x|). Newton’s method usually converges at a second order 

rate. 

The Halley Method 

Halley devised a method for calculating roots that has a third order convergence 

rate. The root-refining equation for this algorithm is: 

𝑥𝑖+1 =  𝑥𝑖  – 
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
[1 − 

𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

𝑓′′(𝑥𝑖)

2𝑓′(𝑥𝑖)
]

−1

     (3) 

Or, 

𝑥𝑖+1 =  𝑥𝑖 −  
2 𝑓(𝑥𝑖) 𝑓′(𝑥𝑖)

2[𝑓′(𝑥𝑖)]2− 𝑓(𝑥𝑖) 𝑓′′(𝑥𝑖)
      (3b) 

The first and second derivatives are calculated using the following central 

difference approximations: 

𝑓’(𝑥)  =  (𝑓(𝑥 + ℎ)–  𝑓(𝑥 − ℎ))/2ℎ     (4) 

𝑓’’(𝑥)  =  (𝑓(𝑥 + ℎ) –  2𝑓(𝑥) + 𝑓(𝑥 − ℎ))/ℎ2   (5) 

The Ostrowski Method 

While relatively newer than the previous algorithms, I am including the Ostrowski 

method in this section, since it is a few decades old. The Ostrowski method 

generates two refinements for the root in each iteration, the first refinement is an 

intermediate one. The method uses the following two equations: 

𝑦𝑖 =  𝑥𝑖  – 
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
         (6) 
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𝑥𝑖+1 =  𝑦𝑖  – 
𝑓(𝑦𝑖)(𝑥𝑖− 𝑦𝑖)

𝑓(𝑥𝑖)−2𝑓(𝑦𝑖)
        (7) 

The Ostrowski method has a convergence rate resembling that of Halley’s method. 

Both the Halley and Ostrowski methods require three function calls per iteration. 

This number is compared to two function calls (when using the forward or 

backward difference approximation to the first derivative) for the Newton method. 

If you us the central difference approximation for the first derivative (which is a bit 

more accurate than the forward or backward difference) then each iteration in 

Newton’s method makes three function calls. In this case, you already have the 

basic information that makes it easy to calculate the second derivative and graduate 

to using Halley’s method with a small extra computational effort. 

The New Ostrowski-Halley Algorithm 
Let me present the pseudo-code for the new Ostrowski-Halley method. Given the 

function f(x)=0, an initial guess, x, and a tolerance Toler for the guess: 

Do 

  h = 0.01 * (1 + |x|) 

  F0 = f(x) 

  Fp = f(x + h) 

  Fm = f(x - h) 

  Deriv1 = (Fp - Fm) / 2 / h 

  Deriv2 = (Fp - 2 * F0 + Fm) / h / h 

  Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1) 

  z = x - Diff 

  Fz = f(z) 

  If |x – z| < h Then h = x - z 

  Deriv1b = (F0 - 2 * Fz) / (x - z) 

  Deriv2b = (Fp - 2 * Fz + Fm) / h / h 

  Diff2 = Fz / Deriv1b / (1 - Fz * Deriv2b /  

              Deriv1b / 2 / Deriv1b) 

  x = z – Diff2 

Loop Until |Diff2| < Toler  

Return X as the refined guess for the root. 

 

The above pseudo-code shows how the method calculates an intermediate 

refinement for the root, z, then recalculates new versions of the first and second 

derivatives using z and f(z), and then obtains a second value for the refined root 

that is stored in x. The expressions that assign values to variables Derive1b, 

Derive2b, and Diff2 are the heart of the Ostrowski modification to Halley’s 

method.  
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Excel VBA Code 
I present Excel VBA code that calculates roots using the methods of Newton, 

Halley, Ostrowski, and the new Ostrowski-Halley algorithm. Figure 1 shows a 

sample worksheet. You can download the Excel file that contains all the VBA code 

and the worksheets for the various tested functions. 

 

Figure 1. Sample Worksheet. 

Note the following cells and columns in Figure 1: 

 Cell A2 has the initial guess for the root. 

 Cell A4 has the tolerance value. 

 Cell A6 has the expression for f(x).  

 Columns B and C show the output for the refined root values and their 

function values for Newton’s method. The bottommost items in these two 

columns display the number of function calls for Newton’s method. 

 Columns D and E show the output for the refined root values and their 

function values for Halley’s method. The bottommost items in these two the 

number of function calls for Halley’s method. 

 Columns F and G show the output for the refined root values and their 

function values for Ostrowski’s method. The bottommost items in these two 

columns display the number of function calls for Ostrowski’s method. 

 Columns H, I, and J show the output for intermediate refined root values, the 

refined root values, and their function values for the new Ostrowski-Halley 

method. The bottommost items in these two columns display the number of 

function calls for the Ostrowski-Halley method. 

Here is the VBA code listing for version A: 
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Option Explicit 

 

Function Fx(ByVal sFx As String, ByVal X As Double) As Double 

  sFx = Replace(sFx, "EXP(", "!") 

  sFx = Replace(sFx, "X", "(" & X & ")") 

  sFx = Replace(sFx, "!", "EXP(") 

  Fx = Evaluate(sFx) 

End Function 

 

Sub Go() 

  Dim R As Long, C As Double 

  Dim X As Double, h As Double, Diff As Double 

  Dim F0 As Double, Deriv1 As Double, Deriv1b As Double 

  Dim Deriv2 As Double, Deriv2b As Double 

  Dim Fp As Double, Fm As Double 

  Dim Z As Double, Fz As Double, LastX As Double 

  Dim Toler As Double 

  Dim sFx As String 

   

  X = [A2].Value 

  Toler = [A4].Value 

  sFx = [A6].Value 

  sFx = UCase(Replace(sFx, " ", "")) 

   

  Range("B2:z1000").Clear 

   

  ' Newton's method 

  R = 2 

  C = 2 

  Do 

    h = 0.01 * (1 + Abs(X)) 

    F0 = Fx(sFx, X) 

    Diff = h * F0 / (Fx(sFx, X + h) - F0) 

    X = X - Diff 

    Cells(R, C) = X 

    Cells(R, C + 1) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(Diff) < Toler Or R > 1000 

  Cells(R + 1, C) = "Fx Calls=" 

  Cells(R + 1, C + 1) = 2 * (R - 2) 

   

  ' Halley 

  R = 2 

  C = C + 2 

  X = [A2].Value 

  Do 

    h = 0.01 * (1 + Abs(X)) 
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    F0 = Fx(sFx, X) 

    Fp = Fx(sFx, X + h) 

    Fm = Fx(sFx, X - h) 

    Deriv1 = (Fp - Fm) / 2 / h 

    Deriv2 = (Fp - 2 * F0 + Fm) / h / h 

    Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1) 

    X = X - Diff 

    Cells(R, C) = X 

    Cells(R, C + 1) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(Diff) < Toler 

  Cells(R + 1, C) = "Fx Calls=" 

  Cells(R + 1, C + 1) = 3 * (R - 2) 

   

  ' Ostrowski 

  R = 2 

  C = C + 2 

  X = [A2].Value 

  Do 

    LastX = X 

    h = 0.01 * (1 + Abs(X)) 

    F0 = Fx(sFx, X) 

    Fp = Fx(sFx, X + h) 

    Deriv1 = (Fp - F0) / h 

    Z = X - F0 / Deriv1 

    Fz = Fx(sFx, Z) 

    X = Z - Fz * (X - Z) / (F0 - 2 * Fz) 

    Cells(R, C) = X 

    Cells(R, C + 1) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(X - LastX) < Toler Or R > 1000 

  Cells(R + 1, C) = "Fx Calls=" 

  Cells(R + 1, C + 1) = 3 * (R - 2) 

   

   

  ' Ostrowski-Halley 

  R = 2 

  C = C + 2 

  X = [A2].Value 

  Do 

    h = 0.01 * (1 + Abs(X)) 

    F0 = Fx(sFx, X) 

    Fp = Fx(sFx, X + h) 

    Fm = Fx(sFx, X - h) 

    Deriv1 = (Fp - Fm) / 2 / h 

    Deriv2 = (Fp - 2 * F0 + Fm) / h / h 

    Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1) 
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    Z = X - Diff 

    Fz = Fx(sFx, Z) 

    If Abs(X - Z) < h Then h = X - Z 

    Deriv1b = (F0 - 2 * Fz) / (X - Z) 

    Deriv2b = (Fp - 2 * Fz + Fm) / h / h 

    Diff = Fz / Deriv1b / (1 - Fz * Deriv2b / _ 

           Deriv1b / 2 / Deriv1b) 

    X = Z - Diff 

    Cells(R, C) = Z 

    Cells(R, C + 1) = X 

    Cells(R, C + 2) = Fx(sFx, X) 

    R = R + 1 

  Loop Until Abs(Diff) < Toler Or R > 1000 

  Cells(R + 1, C + 1) = "Fx Calls=" 

  Cells(R + 1, C + 2) = 4 * (R - 2) 

End Sub 

Testing and Comparing the Algorithms 
Table 1 shows the list of test functions. The first two functions are ones that I have 

chosen. The remaining functions come from the Table II in the article by Galdino, 

Sérgio (2011). "A family of regula falsi root-finding methods". Proceedings of 

2011 World Congress on Engineering and Technology. 1. Retrieved 9 September 

2016. I am using the same function numbers in Table 1 as in Table II in the article 

by Sérgio. I skipped functions 16 and 17 in Table II. I would like to point out that 

Table II, in the article by Sérgio, erroneously replicates function number 16 and 17 

as function number 19 and 20, respectively. Table 1 shows the corrected form of 

function number 19 and 20, which are variants of function number 18. 

Function Number F(x)= 

Custom 1 sin(x-1)/(x-1)-1 

Custom 2 exp(x)-3*x^2 

2 x^2*(x^2/3+sqrt(2)*sin(x))-sqrt(3/18) 

3 11*x^11-1 

4 x^3+1 

5 x^3-3*x-5 

6 2*x*exp(-5)+1-2*exp(-5*x) 

7 2*x*exp(-10)+1-2*exp(-10*x) 

8 2*x*exp(-20)+1-2*exp(-20*x) 
9 (1+(1-5)^2)*x^2-(1-5*x)^2 

10 (1+(1-10)^2)*x^2-(1-10*x)^2 
11 (1+(1-20)^2)*x^2-(1-20*x)^2 
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Function Number F(x)= 

12 x^2-(1-x)^5 
13 x^2-(1-x)^10 
14 x^2-(1-x)^20 
15 (1+(1-5)^4)*x-(1-5*x)^4 
18 exp(-5*x)*(x-1)+x^5 
19 exp(-10*x)*(x-1)+x^10 
20 exp(-20*x)*(x-1)+x^20 
21 x^2+sin(x/5)-0.25 
22 x^2+sin(x/10)-0.25 
23 x^2+sin(x/20)-0.25 

Table 1. List of test functions. 

Table 2 shows the results that compare the efficiency of the various algorithms. 

The comma-delimited results report the number of iterations and the number of 

function calls. Remember that the Newton, Halley, Ostrowski, and the new 

algorithm use 2, 3, 3, and 4 function calls, per iterations, respectively. The table 

shows one, two, and three different guesses for various test functions. The 

tolerance value for all the calculations is 1E-9.  

Function 

Number 

Initial 

Guess 

Newton Halley Ostrowski Ostrowski-

Halley 

Custom 1 0 Failed 16, 48 Failed 10, 40 

Custom 2 3 13, 26 6, 18 6, 18 5, 20 

Custom 2 5 10, 20 6, 18 6, 18 4, 16 

Custom 2 -1 7, 14 4, 12 4, 12 3, 12 

Custom 2 1 6, 12 4, 12 4, 12 2, 8 

2 1 8 , 16 5, 15 5, 15 3, 12 

3 1 12, 24 7, 21 7, 21 4, 16 

4 -1.8 8, 16 5, 15 5, 15 4, 16 

5 3 8, 16 5, 15 5, 15 3, 12 

6 0 8, 16 5, 15 5, 15 3, 12 

6 1 59, 118 6, 18 18, 54 6, 24  

7 0 8, 16 5, 15 5, 15 4, 16 

8 0` 8, 16 5, 15 5, 15 3, 12 

9 0 6, 12 3, 9 4, 12 3, 12 

9 1 7, 14 4, 12 4, 12 3, 12 

10 0 6, 12 3, 9 4, 12 2, 8 

10 1 6, 12 3, 9 4, 12 2, 8 
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Function 

Number 

Initial 

Guess 

Newton Halley Ostrowski Ostrowski-

Halley 

11 0 5, 10 3, 9 3, 9 2, 8 

11 1 6, 12 3, 9 4, 12 2, 8 

12 0 8, 16 5, 15 4, 12 3, 12 

12 1 6, 12 5, 15 5, 15 3, 12 

13 0 9, 18 5, 15 5, 15 4, 16 

13 1 9, 18 6, 18 5, 15 4, 16 

14 0 11, 22 7, 21 6, 18 5, 20 

14 1 11, 22 7, 21 6, 18 5, 20 

15 0 4, 8 3, 9 3, 9 2, 8 

15 1 6, 12 3, 9 4, 12 2, 8 

18 0 9, 18 6, 18 5, 15 5, 20 

18 1 9, 18 5, 15 5, 15 4, 16 

19 0 12, 24 8, 24 7, 21 6, 24 

19 1 14, 28 7, 21 7, 21 6, 24 

20 0 19, 38 12, 36 11, 33 9, 36 

20 1 24, 48 13, 39 8, 24 10, 40 

21 0 9, 18 5, 15 5, 15 4, 16 

21 1 8, 16 4, 12 5, 15 3, 12 

22 0 10, 20 6, 18 6, 18 5, 20 

22 1 8, 16 4, 12 5, 15 3, 12  

23 0 11, 22 6, 18 6, 18 6, 24 

23 1 8, 16 4, 12 5, 15 3, 12 

Table 2. Test functions for different algorithms showing the initial guesses, and the 

number of iterations and total function calls for each algorithm. 

Looking at Table 2, you can see that the new Ostrowski-Halley algorithm does 

very well. I use red fonts to indicate the minimum number of function calls and the 

minimum number of iterations. The competition between Halley’s method, 

Ostrowski’s method and the new algorithm is stiff. The Ostrowski method seems 

to be in second place, followed by Halley’s method, and ending with Newton’s 

method. The new algorithm does very well in having less function calls and/or less 

iterations. 

Note 
If you download the ZIP file containing the Excel that contains the test functions, 

you can use either Excel file in the following ways: 
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1. Single-sheet mode. Select (or even create a copy of) a worksheet for a 

function you want to test. Optionally update all or some of the input 

parameters in cells A2, A4, and/or A6. Execute the macro Go() to perform 

the calculations on the tested root-seeking algorithms. 

2. Multiple-sheets mode. You can optionally update all or some the input 

parameters in cells A2, A4, and/or A6, in all or some of the worksheets. To 

recalculate the roots in ALL of the worksheets execute macro doAll(). This 

macro will display a prompt message asking you to verify if you wish to 

recalculate the roots in ALL of the worksheets. Click the Yes button to 

proceed or click the No button to exit. The macro will quickly visit each 

worksheet containing the word “Roots” in its tab name and perform the 

calculations. If there are no runtime errors, this macro will perform its task 

very quickly. 


