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The New Ostrowski-Halley Root Seeking
Algorithm

By
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Introduction

Ostrowski was a Russian mathematician who taught for many years at the
University of Basil, Switzerland. He proposed an enhancement to Newton’s root
seeking algorithm. Ostrowski suggested a new twist such that each iteration offers
two refinements for the root—one of them being intermediate. The Ostrowski
algorithm matches Halley’s root seeking algorithm in its third order rate of
convergence. Recently, the Ostrowski algorithm inspired many mathematicians to
device root-seeking algorithms with two or more refinements to the root per
iteration.

I recently applied Ostrowski’s approach to the Illinois algorithm (an improved
version of the False Position algorithm) and obtained better rates of convergence
better than those of the Illinois algorithm. | was a little baffled as to why Ostrowski
improved only the Newton’s method and did not become more ambitious to
enhance Halley’s superior method! Moreover, there has been many articles on
further improving Ostrowski’s work, but none to improve Halley’s method using
the Ostrowski approach.

I decided to experiment with applying Ostrowski’s approach to Halley’s algorithm.
Since the latter method is a bit more advanced than Newton’s method (requiring
the calculations of the first AND second derivatives), applying the Ostrowski
approach was NOT trivial. | decided, nevertheless, to give it a go. | started with a
simple improvement to Halley’s method, but that did not yield better calculations.
After two or three incarnations, | was able to find a satisfactory marriage between
Ostrowski and Halley. This paper reports the algorithm details and also includes a
comparison between the methods of Newton, Halley, Ostrowski, and my new
Ostrowski-Halley algorithm. The results include testing these algorithms with two
dozen functions and reporting the number of function calls AND iterations.

With the advance of computers in general and increasingly fast computers in
particular, it has become more feasible to work with new non-legacy root seeking
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algorithms like Ostrowski and the new method that | propose. These algorithms
require a bit more computation effort (involving the basic mathematical
operations) that does not impose significant burden on today’s fast CPUs. This
ease of automated calculation is far cry from the days of pre-20™" centuries’ manual
calculations performed by humans working for the famous mathematicians.
Manual calculations favored algorithms that required simpler calculations per
iteration. Even when electronics firms, like HP and TI, launched programmable
calculators in the seventies, the legacy algorithms were a perfect fit for these
calculators with their limited memory and CPU speed. The advent of several
generations of PCs, with their ever-increasing CPU speed and memory, made new
root-seeking algorithms possible and feasible. For example, | recently developed
smart enhancements to the Bisection method by adding more decision-making
components. These variants of Bisection succeeded in improving on the number of
iterations. The extra calculations and decision-making per iteration was, by no
means, punishing the computer’s CPU.

While the number of iterations in root-seeking is important, we must not totally
disregard the number of function calls. They are the proverbial cost of doing
business. This is very true when the target function required significant
calculations/iterations, such as series or product involving many terms. Many of
the new advanced root-seeking algorithms succeed in quickly converging to the
desired answer. This achievement comes at the cost of making a relatively large
number of function calls. There is also the issue of additional basic mathematical
operations and decision-making needed by the more sophisticated root-seeking
algorithms. Most mathematicians seem to ignore this kind of additional overhead,
pointing out to the fact that we are using CPUs that are quite fast. The gain in CPU
speed, they argue, can certainly more than make up for the additional CPU effort
needed to handle the additional overhead operations. | would not be surprised if a
few mathematicians consider the new CPU speeds as making the number of
function calls less relevant.

Legacy Root-Seeking Algorithms
In this section we briefly discuss the root seeking methods of Newton, Halley, and
Ostrowski.

The Newton Method
One of the most popular root-seeking algorithms is the Newton method (also called
the Newton-Raphson method). While Isaac Newton had little to do with the
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algorithm in its current form, it was Thomas Simpson (known for Simpson’s rule
for numerical integration) who gave it its name and homage to Isaac Newton.

The equation for Newton’s method that refined a guess for the root is:
f(xi)
Xiy1 = Xj - 1
1+1 l f’(xi) ( )

Equation 1 required evaluating the function f(x) and it’s derivative f’(x) which can
be approximated using the forward difference approximation:

fx) = (x+h)-fx)/h (2)

Where h = 0.02(1 + [x|). Newton’s method usually converges at a second order
rate.

The Halley Method
Halley devised a method for calculating roots that has a third order convergence
rate. The root-refining equation for this algorithm is:

o FOD [, FG) fre]
Yir1 = X ~pes 1V Fan 2re (3)
Or,
2 f(xp) fr(x;)
Xit1 = X — T (3b)

2[fr(x)]%= fCxp) fro(xp)

The first and second derivatives are calculated using the following central
difference approximations:

fx) = (flx+h)- f(x—h)/2h (4)
') = (fe+h) - 2f(x) + f(x — b)) /h? (5)

The Ostrowski Method

While relatively newer than the previous algorithms, I am including the Ostrowski
method in this section, since it is a few decades old. The Ostrowski method
generates two refinements for the root in each iteration, the first refinement is an
intermediate one. The method uses the following two equations:

N 4 €1))
yl - xl f’(xi) (6)
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Fi)(xi—yi)
fx)-2fyi) (7)

The Ostrowski method has a convergence rate resembling that of Halley’s method.
Both the Halley and Ostrowski methods require three function calls per iteration.
This number is compared to two function calls (when using the forward or
backward difference approximation to the first derivative) for the Newton method.
If you us the central difference approximation for the first derivative (which is a bit
more accurate than the forward or backward difference) then each iteration in
Newton’s method makes three function calls. In this case, you already have the
basic information that makes it easy to calculate the second derivative and graduate
to using Halley’s method with a small extra computational effort.

Xi+1 = Yi—

The New Ostrowski-Halley Algorithm
Let me present the pseudo-code for the new Ostrowski-Halley method. Given the
function f(x)=0, an initial guess, x, and a tolerance Toler for the guess:

Do
h=20.01* (1 + |x]|)
FO = f(x)
Fp = f(x + h)
Fm = f£f(x - h)
Derivl = (Fp - Fm) / 2 / h
Deriv2 = (Fp - 2 * FO + Fm) / h / h

Diff = FO / Derivl / (1 - FO * Deriv2 / Derivl / 2 / Derivl)
z = x — Diff

Fz = f(z)

If |x — z] < h Then h = x - z
Derivlb = (FO - 2 * Fz) / (x - 2z)
Deriv2b = (Fp - 2 * Fz + Fm) / h / h

Diff2 = Fz / Derivlb / (1 - Fz * Deriv2b /
Derivlb / 2 / Derivlb)
x = z — Diff2
Loop Until |Diff2]| < Toler
Return X as the refined guess for the root.

The above pseudo-code shows how the method calculates an intermediate
refinement for the root, z, then recalculates new versions of the first and second
derivatives using z and f(z), and then obtains a second value for the refined root
that is stored in x. The expressions that assign values to variables Derivelb,
Derive2b, and Diff2 are the heart of the Ostrowski modification to Halley’s
method.
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Excel VBA Code

| present Excel VBA code that calculates roots using the methods of Newton,
Halley, Ostrowski, and the new Ostrowski-Halley algorithm. Figure 1 shows a
sample worksheet. You can download the Excel file that contains all the VBA code
and the worksheets for the various tested functions.

A B C D E F G H | J
1 X Newton Halley Ostrowksi Ostrowski-Halley
2 1 0.915001 -0.0149 0.9103 -0.000870597 0.90997263 0.000104 0.9103 0.910002 1.53E-05
3 IToler 0.910077 -0.00021 0.910008 4.41757E-08 0.910007577 -1.3E-08 0.910008 0.910008 -3.6E-14
4 1.00E-09 0.910008 -2.3E-06 0.910008 -2.24043E-12 0.910007572 1.65E-12
5 [Fx 0.910008 -2.6E-08 0.910008 0 0.910007572 0 Fx Calls= 8
6 lexp(x)-3%xA2 0.910008 -2.8E-10
7 0.910008 -3.2E-12 FxCalls= 12 Fx Calls= 12
8
9 Fx Calls= 12

el el
W N = O

Figure 1. Sample Worksheet.
Note the following cells and columns in Figure 1:

e Cell A2 has the initial guess for the root.

o Cell A4 has the tolerance value.

e Cell A6 has the expression for f(x).

e Columns B and C show the output for the refined root values and their
function values for Newton’s method. The bottommost items in these two
columns display the number of function calls for Newton’s method.

e Columns D and E show the output for the refined root values and their
function values for Halley’s method. The bottommost items in these two the
number of function calls for Halley’s method.

e Columns F and G show the output for the refined root values and their
function values for Ostrowski’s method. The bottommost items in these two
columns display the number of function calls for Ostrowski’s method.

e Columns H, I, and J show the output for intermediate refined root values, the
refined root values, and their function values for the new Ostrowski-Halley
method. The bottommost items in these two columns display the number of
function calls for the Ostrowski-Halley method.

Here is the VBA code listing for version A:
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Option Explicit

Function Fx(ByVal sFx As String,

sFx = Replace(sFx, "EXP(", "!")
sFx = Replace(sFx, "X", "(" & X &
sFx = Replace(sFx, "!", "EXP(")
Fx = Evaluate (sFx)

End Function

Sub Go ()

Dim R As Long, C As Double

ByVal X As Double)

") ")

Dim
Dim
Dim
Dim

X As Double,

FO As Double,
Deriv2 As Dou
Fp As Double,

h As Double,

Diff As Double

Derivl As Double,
ble,
Fm As Double

Dim
Dim
Dim

Z As Double, Fz As Double,
Toler As Double
sFx As String

X = [A2] .Value

Toler = [A4] .Value

sFx = [A6].Value

sFx UCase (Replace(sFx, " ",

""))
Range ("B2:z1000") .Clear

' Newton's method

R =2

cC =2

Do
h = 0.01 * (1 + Abs (X))
FO = Fx(sFx, X)
Diff = h * FO /
X = X - Diff
Cells (R, C) = X
Cells (R, C + 1)
R=R+1

Loop Until Abs(Diff)

(Fx(sFx, X + h) -

= Fx(sFx, X)

< Toler Or R >

Cells(R + 1, C) = "Fx Calls="
Cells(R + 1, C + 1) =2 * (R - 2)
' Halley
R =2
C=¢C+ 2
X [A2] .Value
Do
h = 0.01 * (1 + Abs (X))
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Derivlb As Double

Deriv2b As Double

LastX As Double

FO)

1000
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X (sFx, X)
Fp = Fx(sFx, X + h)
X (sFx, X - h)
= (Fp - Fm) / 2 / h
Deriv2 = (Fp - 2 * FO + Fm) / h / h
Diff = FO / Derivl / (1 - FO * Deriv?2 / Derivl / 2 / Derivl)
X = X - Diff
Cells (R, C) = X
Cells (R, C + 1)
R=R+1
Loop Until Abs(Diff) < Toler
Cells(R + 1, C) = "Fx Calls="
Cells(R + 1, C + 1) =3 * (R - 2)

= Fx(sFx, X)

' Ostrowski
= 2
=C + 2
[A2] .Value

o xX QX

o)

LastX = X

h = 0.01 * (1 + Abs (X))

FO = Fx(sFx, X)

Fp = Fx(sFx, X + h)

Derivl = (Fp - FO) / h

Z = X - FO / Derivl

Fz = Fx(sFx, 7)

X =2 -Fz * (X -172) / (FO - 2 * Fz)

Cells (R, C) = X

Cells(R, C + 1) = Fx(sFx, X)

R=R+1
Loop Until Abs (X - LastX) < Toler Or R > 1000
Cells(R + 1, C) = "Fx Calls="
Cells(R+ 1, C + 1) =3 * (R - 2)

' Ostrowski-Halley
=2
=C + 2

[A2] .Value

Oox Qwx

o)
h = 0.01 * (1 + Abs (X))
FO = Fx (sFx, )

X
Fp = Fx(sFx, X + h)
Fm = Fx(sFx, X - h)
Derivl = (Fp - Fm) / 2 / h
Deriv2 = (Fp - 2 * FO + Fm) / h / h
Diff = FO / Derivl / (1 - FO * Deriv?2 / Derivl / 2 / Derivl)
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Zz = X - Diff
Fz = Fx(sFx, 2)
If Abs(X - Z2) < h Then h = X - Z
Derivlb = (FO - 2 * Fz) / (X - Z)
Deriv2b = (Fp - 2 * Fz + Fm) / h / h
Diff = Fz / Derivlb / (1 - Fz * Deriv2b / _
Derivlb / 2 / Derivlb)
X =7 - Diff
Cells (R, C) = Z
Cells(R, C + 1)
Cells (R, C + 2)
R=R+1
Loop Until Abs(Diff) < Toler Or R > 1000
Cells(R + 1, C + 1) "Fx Calls="
Cells(R + 1, C + 2) 4 * (R - 2)
End Sub

X
Fx (sFx, X)

Testing and Comparing the Algorithms

Table 1 shows the list of test functions. The first two functions are ones that I have
chosen. The remaining functions come from the Table 11 in the article by Galdino,
Sérgio (2011). "A family of regula falsi root-finding methods". Proceedings of
2011 World Congress on Engineering and Technology. 1. Retrieved 9 September
2016. 1 am using the same function numbers in Table 1 as in Table Il in the article
by Seérgio. | skipped functions 16 and 17 in Table I1. I would like to point out that
Table II, in the article by Sérgio, erroneously replicates function number 16 and 17
as function number 19 and 20, respectively. Table 1 shows the corrected form of
function number 19 and 20, which are variants of function number 18.

Function Number F(x)=

Custom 1 sin(x-1)/(x-1)-1

Custom 2 exp(x)-3*x"2
2 XA2*(x"2/3+sqrt(2)*sin(x))-sqrt(3/18)
3 11*x"11-1
4 x"3+1
5 x"3-3*x-5
6 2*x*exp(-5)+1-2*exp(-5*x)
7 2*x*exp(-10)+1-2*exp(-10*x)
8 2*x*exp(-20)+1-2*exp(-20*x)
9 (1+(1-5)72)*x"2-(1-5*x)"2
10 (1+(1-10)7A2)*x"2-(1-10*x)*2
11 (14+(1-20)72)*xA2-(1-20*x)"2
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12 x"2-(1-x)A5

13 x"2-(1-x)A10

14 x"2-(1-x)"20

15 (1+(1-5)A4)*x-(1-5*x) 4
18 exp(-5*x)*(x-1)+x"5

19 exp(-10*x)*(x-1)+x"10
20 exp(-20*x)*(x-1)+x"20
21 x"2+sin(x/5)-0.25

22 x"2+sin(x/10)-0.25

23 x"2+sin(x/20)-0.25

Table 1. List of test functions.

Table 2 shows the results that compare the efficiency of the various algorithms.
The comma-delimited results report the number of iterations and the number of
function calls. Remember that the Newton, Halley, Ostrowski, and the new
algorithm use 2, 3, 3, and 4 function calls, per iterations, respectively. The table
shows one, two, and three different guesses for various test functions. The
tolerance value for all the calculations is 1E-9.

Function Initial Newton Halley | Ostrowski | Ostrowski-
Number Guess

Custom 1 0 Failed | 16, 48 | Failed 10, 40
Custom 2 3 13,26 |6,18 |6,18 5,20
Custom 2 5 10,20 |6,18 |6,18 4,16
Custom 2 -1 7,14 4,12 |4,12 3,12
Custom 2 1 6, 12 4,12 4,12 2,8
2 1 8,16 515 |5,15 3,12
3 1 12,24 7,21 |7,21 4,16
4 -1.8 8, 16 5,15 |5,15 4,16
5 3 8, 16 5,15 |5,15 3,12
6 0 8, 16 515 |5,15 3,12
6 1 59,118 (6,18 |18,54 6, 24
7 0 8, 16 515 |5,15 4,16
8 0 8, 16 515 |5,15 3,12
9 0 6, 12 3,9 4,12 3,12
9 1 7,14 4,12 |4,12 3,12
10 0 6, 12 3,9 4,12 2,8
10 1 6, 12 3,9 4,12 2,8
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Function Initial Newton Halley Ostrowski | Ostrowski-
Number Guess Halley
11 0 5,10 3,9 3,9 2,8
11 1 6, 12 3,9 4,12 2,8
12 0 8, 16 515 4,12 3,12
12 1 6, 12 515 |5,15 3,12
13 0 9, 18 515 |5,15 4,16
13 1 9, 18 6,18 |5, 15 4,16
14 0 11,22 7,21 |6,18 5, 20
14 1 11,22 7,21 |6,18 5, 20
15 0 4,8 3,9 3,9 2,8
15 1 6, 12 3,9 4,12 2,8
18 0 9, 18 6,18 |5,15 5, 20
18 1 9,18 515 |5,15 4,16
19 0 12,24 18,24 7,21 6, 24
19 1 14,28 7,21 |7,21 6, 24
20 0 19,38 |12,36 |11, 33 9, 36
20 1 24,48 13,39 | 8,24 10, 40
21 0 9,18 515 |5,15 4,16
21 1 8, 16 4,12 |5,15 3,12
22 0 10,20 6,18 |6,18 5, 20
22 1 8, 16 4,12 |5,15 3,12
23 0 11,22 16,18 |6,18 6, 24
23 1 8, 16 4,12 |5,15 3,12

Table 2. Test functions for different algorithms showing the initial guesses, and the
number of iterations and total function calls for each algorithm.

Looking at Table 2, you can see that the new Ostrowski-Halley algorithm does
very well. | use red fonts to indicate the minimum number of function calls and the
minimum number of iterations. The competition between Halley’s method,
Ostrowski’s method and the new algorithm is stiff. The Ostrowski method seems
to be in second place, followed by Halley’s method, and ending with Newton’s
method. The new algorithm does very well in having less function calls and/or less
iterations.

Note

If you download the ZIP file containing the Excel that contains the test functions,
you can use either Excel file in the following ways:
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1. Single-sheet mode. Select (or even create a copy of) a worksheet for a
function you want to test. Optionally update all or some of the input
parameters in cells A2, A4, and/or A6. Execute the macro Go() to perform
the calculations on the tested root-seeking algorithms.

2. Multiple-sheets mode. You can optionally update all or some the input
parameters in cells A2, A4, and/or A6, in all or some of the worksheets. To
recalculate the roots in ALL of the worksheets execute macro doAll(). This
macro will display a prompt message asking you to verify if you wish to
recalculate the roots in ALL of the worksheets. Click the Yes button to
proceed or click the No button to exit. The macro will quickly visit each
worksheet containing the word “Roots” in its tab name and perform the
calculations. If there are no runtime errors, this macro will perform its task
very quickly.
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