
1/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

The New Ostrowski-Halley Root Seeking
Algorithm

By

Namir Shammas

Introduction
Ostrowski was a Russian mathematician who taught for many years at the

University of Basil, Switzerland. He proposed an enhancement to Newton’s root

seeking algorithm. Ostrowski suggested a new twist such that each iteration offers

two refinements for the root—one of them being intermediate. The Ostrowski

algorithm matches Halley’s root seeking algorithm in its third order rate of

convergence. Recently, the Ostrowski algorithm inspired many mathematicians to

device root-seeking algorithms with two or more refinements to the root per

iteration.

I recently applied Ostrowski’s approach to the Illinois algorithm (an improved

version of the False Position algorithm) and obtained better rates of convergence

better than those of the Illinois algorithm. I was a little baffled as to why Ostrowski

improved only the Newton’s method and did not become more ambitious to

enhance Halley’s superior method! Moreover, there has been many articles on

further improving Ostrowski’s work, but none to improve Halley’s method using

the Ostrowski approach.

I decided to experiment with applying Ostrowski’s approach to Halley’s algorithm.

Since the latter method is a bit more advanced than Newton’s method (requiring

the calculations of the first AND second derivatives), applying the Ostrowski

approach was NOT trivial. I decided, nevertheless, to give it a go. I started with a

simple improvement to Halley’s method, but that did not yield better calculations.

After two or three incarnations, I was able to find a satisfactory marriage between

Ostrowski and Halley. This paper reports the algorithm details and also includes a

comparison between the methods of Newton, Halley, Ostrowski, and my new

Ostrowski-Halley algorithm. The results include testing these algorithms with two

dozen functions and reporting the number of function calls AND iterations.

With the advance of computers in general and increasingly fast computers in

particular, it has become more feasible to work with new non-legacy root seeking

2/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

algorithms like Ostrowski and the new method that I propose. These algorithms

require a bit more computation effort (involving the basic mathematical

operations) that does not impose significant burden on today’s fast CPUs. This

ease of automated calculation is far cry from the days of pre-20th centuries’ manual

calculations performed by humans working for the famous mathematicians.

Manual calculations favored algorithms that required simpler calculations per

iteration. Even when electronics firms, like HP and TI, launched programmable

calculators in the seventies, the legacy algorithms were a perfect fit for these

calculators with their limited memory and CPU speed. The advent of several

generations of PCs, with their ever-increasing CPU speed and memory, made new

root-seeking algorithms possible and feasible. For example, I recently developed

smart enhancements to the Bisection method by adding more decision-making

components. These variants of Bisection succeeded in improving on the number of

iterations. The extra calculations and decision-making per iteration was, by no

means, punishing the computer’s CPU.

While the number of iterations in root-seeking is important, we must not totally

disregard the number of function calls. They are the proverbial cost of doing

business. This is very true when the target function required significant

calculations/iterations, such as series or product involving many terms. Many of

the new advanced root-seeking algorithms succeed in quickly converging to the

desired answer. This achievement comes at the cost of making a relatively large

number of function calls. There is also the issue of additional basic mathematical

operations and decision-making needed by the more sophisticated root-seeking

algorithms. Most mathematicians seem to ignore this kind of additional overhead,

pointing out to the fact that we are using CPUs that are quite fast. The gain in CPU

speed, they argue, can certainly more than make up for the additional CPU effort

needed to handle the additional overhead operations. I would not be surprised if a

few mathematicians consider the new CPU speeds as making the number of

function calls less relevant.

Legacy Root-Seeking Algorithms
In this section we briefly discuss the root seeking methods of Newton, Halley, and

Ostrowski.

The Newton Method

One of the most popular root-seeking algorithms is the Newton method (also called

the Newton-Raphson method). While Isaac Newton had little to do with the

3/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

algorithm in its current form, it was Thomas Simpson (known for Simpson’s rule

for numerical integration) who gave it its name and homage to Isaac Newton.

The equation for Newton’s method that refined a guess for the root is:

𝑥𝑖+1 = 𝑥𝑖 –
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 (1)

Equation 1 required evaluating the function f(x) and it’s derivative f’(x) which can

be approximated using the forward difference approximation:

𝑓’(𝑥) = (𝑓(𝑥 + ℎ) – 𝑓(𝑥))/ℎ (2)

Where h = 0.02(1 + |x|). Newton’s method usually converges at a second order

rate.

The Halley Method

Halley devised a method for calculating roots that has a third order convergence

rate. The root-refining equation for this algorithm is:

𝑥𝑖+1 = 𝑥𝑖 –
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
[1 −

𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)

2𝑓′(𝑥𝑖)
]

−1

 (3)

Or,

𝑥𝑖+1 = 𝑥𝑖 −
2 𝑓(𝑥𝑖) 𝑓′(𝑥𝑖)

2[𝑓′(𝑥𝑖)]2− 𝑓(𝑥𝑖) 𝑓′′(𝑥𝑖)
 (3b)

The first and second derivatives are calculated using the following central

difference approximations:

𝑓’(𝑥) = (𝑓(𝑥 + ℎ)– 𝑓(𝑥 − ℎ))/2ℎ (4)

𝑓’’(𝑥) = (𝑓(𝑥 + ℎ) – 2𝑓(𝑥) + 𝑓(𝑥 − ℎ))/ℎ2 (5)

The Ostrowski Method

While relatively newer than the previous algorithms, I am including the Ostrowski

method in this section, since it is a few decades old. The Ostrowski method

generates two refinements for the root in each iteration, the first refinement is an

intermediate one. The method uses the following two equations:

𝑦𝑖 = 𝑥𝑖 –
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 (6)

4/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

𝑥𝑖+1 = 𝑦𝑖 –
𝑓(𝑦𝑖)(𝑥𝑖− 𝑦𝑖)

𝑓(𝑥𝑖)−2𝑓(𝑦𝑖)
 (7)

The Ostrowski method has a convergence rate resembling that of Halley’s method.

Both the Halley and Ostrowski methods require three function calls per iteration.

This number is compared to two function calls (when using the forward or

backward difference approximation to the first derivative) for the Newton method.

If you us the central difference approximation for the first derivative (which is a bit

more accurate than the forward or backward difference) then each iteration in

Newton’s method makes three function calls. In this case, you already have the

basic information that makes it easy to calculate the second derivative and graduate

to using Halley’s method with a small extra computational effort.

The New Ostrowski-Halley Algorithm
Let me present the pseudo-code for the new Ostrowski-Halley method. Given the

function f(x)=0, an initial guess, x, and a tolerance Toler for the guess:

Do

 h = 0.01 * (1 + |x|)

 F0 = f(x)

 Fp = f(x + h)

 Fm = f(x - h)

 Deriv1 = (Fp - Fm) / 2 / h

 Deriv2 = (Fp - 2 * F0 + Fm) / h / h

 Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1)

 z = x - Diff

 Fz = f(z)

 If |x – z| < h Then h = x - z

 Deriv1b = (F0 - 2 * Fz) / (x - z)

 Deriv2b = (Fp - 2 * Fz + Fm) / h / h

 Diff2 = Fz / Deriv1b / (1 - Fz * Deriv2b /

 Deriv1b / 2 / Deriv1b)

 x = z – Diff2

Loop Until |Diff2| < Toler

Return X as the refined guess for the root.

The above pseudo-code shows how the method calculates an intermediate

refinement for the root, z, then recalculates new versions of the first and second

derivatives using z and f(z), and then obtains a second value for the refined root

that is stored in x. The expressions that assign values to variables Derive1b,

Derive2b, and Diff2 are the heart of the Ostrowski modification to Halley’s

method.

5/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

Excel VBA Code
I present Excel VBA code that calculates roots using the methods of Newton,

Halley, Ostrowski, and the new Ostrowski-Halley algorithm. Figure 1 shows a

sample worksheet. You can download the Excel file that contains all the VBA code

and the worksheets for the various tested functions.

Figure 1. Sample Worksheet.

Note the following cells and columns in Figure 1:

 Cell A2 has the initial guess for the root.

 Cell A4 has the tolerance value.

 Cell A6 has the expression for f(x).

 Columns B and C show the output for the refined root values and their

function values for Newton’s method. The bottommost items in these two

columns display the number of function calls for Newton’s method.

 Columns D and E show the output for the refined root values and their

function values for Halley’s method. The bottommost items in these two the

number of function calls for Halley’s method.

 Columns F and G show the output for the refined root values and their

function values for Ostrowski’s method. The bottommost items in these two

columns display the number of function calls for Ostrowski’s method.

 Columns H, I, and J show the output for intermediate refined root values, the

refined root values, and their function values for the new Ostrowski-Halley

method. The bottommost items in these two columns display the number of

function calls for the Ostrowski-Halley method.

Here is the VBA code listing for version A:

6/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

Option Explicit

Function Fx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = Replace(sFx, "EXP(", "!")

 sFx = Replace(sFx, "X", "(" & X & ")")

 sFx = Replace(sFx, "!", "EXP(")

 Fx = Evaluate(sFx)

End Function

Sub Go()

 Dim R As Long, C As Double

 Dim X As Double, h As Double, Diff As Double

 Dim F0 As Double, Deriv1 As Double, Deriv1b As Double

 Dim Deriv2 As Double, Deriv2b As Double

 Dim Fp As Double, Fm As Double

 Dim Z As Double, Fz As Double, LastX As Double

 Dim Toler As Double

 Dim sFx As String

 X = [A2].Value

 Toler = [A4].Value

 sFx = [A6].Value

 sFx = UCase(Replace(sFx, " ", ""))

 Range("B2:z1000").Clear

 ' Newton's method

 R = 2

 C = 2

 Do

 h = 0.01 * (1 + Abs(X))

 F0 = Fx(sFx, X)

 Diff = h * F0 / (Fx(sFx, X + h) - F0)

 X = X - Diff

 Cells(R, C) = X

 Cells(R, C + 1) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(Diff) < Toler Or R > 1000

 Cells(R + 1, C) = "Fx Calls="

 Cells(R + 1, C + 1) = 2 * (R - 2)

 ' Halley

 R = 2

 C = C + 2

 X = [A2].Value

 Do

 h = 0.01 * (1 + Abs(X))

7/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

 F0 = Fx(sFx, X)

 Fp = Fx(sFx, X + h)

 Fm = Fx(sFx, X - h)

 Deriv1 = (Fp - Fm) / 2 / h

 Deriv2 = (Fp - 2 * F0 + Fm) / h / h

 Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1)

 X = X - Diff

 Cells(R, C) = X

 Cells(R, C + 1) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(Diff) < Toler

 Cells(R + 1, C) = "Fx Calls="

 Cells(R + 1, C + 1) = 3 * (R - 2)

 ' Ostrowski

 R = 2

 C = C + 2

 X = [A2].Value

 Do

 LastX = X

 h = 0.01 * (1 + Abs(X))

 F0 = Fx(sFx, X)

 Fp = Fx(sFx, X + h)

 Deriv1 = (Fp - F0) / h

 Z = X - F0 / Deriv1

 Fz = Fx(sFx, Z)

 X = Z - Fz * (X - Z) / (F0 - 2 * Fz)

 Cells(R, C) = X

 Cells(R, C + 1) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(X - LastX) < Toler Or R > 1000

 Cells(R + 1, C) = "Fx Calls="

 Cells(R + 1, C + 1) = 3 * (R - 2)

 ' Ostrowski-Halley

 R = 2

 C = C + 2

 X = [A2].Value

 Do

 h = 0.01 * (1 + Abs(X))

 F0 = Fx(sFx, X)

 Fp = Fx(sFx, X + h)

 Fm = Fx(sFx, X - h)

 Deriv1 = (Fp - Fm) / 2 / h

 Deriv2 = (Fp - 2 * F0 + Fm) / h / h

 Diff = F0 / Deriv1 / (1 - F0 * Deriv2 / Deriv1 / 2 / Deriv1)

8/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

 Z = X - Diff

 Fz = Fx(sFx, Z)

 If Abs(X - Z) < h Then h = X - Z

 Deriv1b = (F0 - 2 * Fz) / (X - Z)

 Deriv2b = (Fp - 2 * Fz + Fm) / h / h

 Diff = Fz / Deriv1b / (1 - Fz * Deriv2b / _

 Deriv1b / 2 / Deriv1b)

 X = Z - Diff

 Cells(R, C) = Z

 Cells(R, C + 1) = X

 Cells(R, C + 2) = Fx(sFx, X)

 R = R + 1

 Loop Until Abs(Diff) < Toler Or R > 1000

 Cells(R + 1, C + 1) = "Fx Calls="

 Cells(R + 1, C + 2) = 4 * (R - 2)

End Sub

Testing and Comparing the Algorithms
Table 1 shows the list of test functions. The first two functions are ones that I have

chosen. The remaining functions come from the Table II in the article by Galdino,

Sérgio (2011). "A family of regula falsi root-finding methods". Proceedings of

2011 World Congress on Engineering and Technology. 1. Retrieved 9 September

2016. I am using the same function numbers in Table 1 as in Table II in the article

by Sérgio. I skipped functions 16 and 17 in Table II. I would like to point out that

Table II, in the article by Sérgio, erroneously replicates function number 16 and 17

as function number 19 and 20, respectively. Table 1 shows the corrected form of

function number 19 and 20, which are variants of function number 18.

Function Number F(x)=

Custom 1 sin(x-1)/(x-1)-1

Custom 2 exp(x)-3*x^2

2 x^2*(x^2/3+sqrt(2)*sin(x))-sqrt(3/18)

3 11*x^11-1

4 x^3+1

5 x^3-3*x-5

6 2*x*exp(-5)+1-2*exp(-5*x)

7 2*x*exp(-10)+1-2*exp(-10*x)

8 2*x*exp(-20)+1-2*exp(-20*x)
9 (1+(1-5)^2)*x^2-(1-5*x)^2

10 (1+(1-10)^2)*x^2-(1-10*x)^2
11 (1+(1-20)^2)*x^2-(1-20*x)^2

9/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

Function Number F(x)=

12 x^2-(1-x)^5
13 x^2-(1-x)^10
14 x^2-(1-x)^20
15 (1+(1-5)^4)*x-(1-5*x)^4
18 exp(-5*x)*(x-1)+x^5
19 exp(-10*x)*(x-1)+x^10
20 exp(-20*x)*(x-1)+x^20
21 x^2+sin(x/5)-0.25
22 x^2+sin(x/10)-0.25
23 x^2+sin(x/20)-0.25

Table 1. List of test functions.

Table 2 shows the results that compare the efficiency of the various algorithms.

The comma-delimited results report the number of iterations and the number of

function calls. Remember that the Newton, Halley, Ostrowski, and the new

algorithm use 2, 3, 3, and 4 function calls, per iterations, respectively. The table

shows one, two, and three different guesses for various test functions. The

tolerance value for all the calculations is 1E-9.

Function

Number

Initial

Guess

Newton Halley Ostrowski Ostrowski-

Halley

Custom 1 0 Failed 16, 48 Failed 10, 40

Custom 2 3 13, 26 6, 18 6, 18 5, 20

Custom 2 5 10, 20 6, 18 6, 18 4, 16

Custom 2 -1 7, 14 4, 12 4, 12 3, 12

Custom 2 1 6, 12 4, 12 4, 12 2, 8

2 1 8 , 16 5, 15 5, 15 3, 12

3 1 12, 24 7, 21 7, 21 4, 16

4 -1.8 8, 16 5, 15 5, 15 4, 16

5 3 8, 16 5, 15 5, 15 3, 12

6 0 8, 16 5, 15 5, 15 3, 12

6 1 59, 118 6, 18 18, 54 6, 24

7 0 8, 16 5, 15 5, 15 4, 16

8 0` 8, 16 5, 15 5, 15 3, 12

9 0 6, 12 3, 9 4, 12 3, 12

9 1 7, 14 4, 12 4, 12 3, 12

10 0 6, 12 3, 9 4, 12 2, 8

10 1 6, 12 3, 9 4, 12 2, 8

10/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

Function

Number

Initial

Guess

Newton Halley Ostrowski Ostrowski-

Halley

11 0 5, 10 3, 9 3, 9 2, 8

11 1 6, 12 3, 9 4, 12 2, 8

12 0 8, 16 5, 15 4, 12 3, 12

12 1 6, 12 5, 15 5, 15 3, 12

13 0 9, 18 5, 15 5, 15 4, 16

13 1 9, 18 6, 18 5, 15 4, 16

14 0 11, 22 7, 21 6, 18 5, 20

14 1 11, 22 7, 21 6, 18 5, 20

15 0 4, 8 3, 9 3, 9 2, 8

15 1 6, 12 3, 9 4, 12 2, 8

18 0 9, 18 6, 18 5, 15 5, 20

18 1 9, 18 5, 15 5, 15 4, 16

19 0 12, 24 8, 24 7, 21 6, 24

19 1 14, 28 7, 21 7, 21 6, 24

20 0 19, 38 12, 36 11, 33 9, 36

20 1 24, 48 13, 39 8, 24 10, 40

21 0 9, 18 5, 15 5, 15 4, 16

21 1 8, 16 4, 12 5, 15 3, 12

22 0 10, 20 6, 18 6, 18 5, 20

22 1 8, 16 4, 12 5, 15 3, 12

23 0 11, 22 6, 18 6, 18 6, 24

23 1 8, 16 4, 12 5, 15 3, 12

Table 2. Test functions for different algorithms showing the initial guesses, and the

number of iterations and total function calls for each algorithm.

Looking at Table 2, you can see that the new Ostrowski-Halley algorithm does

very well. I use red fonts to indicate the minimum number of function calls and the

minimum number of iterations. The competition between Halley’s method,

Ostrowski’s method and the new algorithm is stiff. The Ostrowski method seems

to be in second place, followed by Halley’s method, and ending with Newton’s

method. The new algorithm does very well in having less function calls and/or less

iterations.

Note
If you download the ZIP file containing the Excel that contains the test functions,

you can use either Excel file in the following ways:

11/11

Copyright © 2017 by Namir Clement Shammas Version 1.1

1. Single-sheet mode. Select (or even create a copy of) a worksheet for a

function you want to test. Optionally update all or some of the input

parameters in cells A2, A4, and/or A6. Execute the macro Go() to perform

the calculations on the tested root-seeking algorithms.

2. Multiple-sheets mode. You can optionally update all or some the input

parameters in cells A2, A4, and/or A6, in all or some of the worksheets. To

recalculate the roots in ALL of the worksheets execute macro doAll(). This

macro will display a prompt message asking you to verify if you wish to

recalculate the roots in ALL of the worksheets. Click the Yes button to

proceed or click the No button to exit. The macro will quickly visit each

worksheet containing the word “Roots” in its tab name and perform the

calculations. If there are no runtime errors, this macro will perform its task

very quickly.

