Enhancing Basic Iterative Solutions for Linear Equations 1

Enhancing Basic Iterative Solutions for

Linear Equations
By
Namir C. Shammas

This article presents new algorithms that enhance classical methods for basic
iterative solutions for linear equations. They are also classified as stationary
methods. Such classical algorithms are simpler than their optimization-based
counterparts that are based on conjugate gradient methods. The latter methods are
classified as non-stationary methods. They use more elaborate optimization-based
method and generally perform better. This article focuses mainly on the stationary
methods, and how to enhance them. I also include a comparison with an
implementation of the Conjugate Gradient method—the simplest non-stationary
method. The article contains MATLAB code used to obtain the results.

Basics of Iterative Solutions of Linear Equations

There are two popular basic algorithms for basic iterative solutions for linear
equations, and a popular enhancement for one of these algorithms. They are:

e The Jacobi method.
e The Gauss-Seidel method.
e The Successive Over Relaxation (SOR) enhancement for Gauss-Seidel.

Jacobi Method

The Jacobi method solves a set of n linear equations by systematically going
through each equation, one at a time, to update the variable x; using the current
values for all the other variables. The algorithm then finalizes updating all the
variables after it has done updating each variable. The method stores the updates in
temporary variables until it reaches the end of one pass that updates all n variables.

The Jacobi method uses the following equation:
k+1

_ 1 k .
i - E [bl - 7:1’]';&1- Cli’ij] for 1—1, 2, 3, ..., 1 (13)

X

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 2

Equation (1a) shows that the right-hand side uses only the old values of the
variables (at iteration k) to calculate the values at iteration k+1. The matrix form of
equation lais:

x**1 = D71 (b — R x*) (1b)
Where D is the diagonal elements matrix and R = A - D.

The Jacobi method is not very efficient, since it delays using updated variables X;.
The good news with the Jacobi method is that it is very suitable for parallel
computing. Using such approach speeds up the implementation of the Jacobi
method.

The pseudo code for equation (1a) is:

Given an n by n matrix A and n-sized vector b, to solve Ax=b.
For k=1 to maxIters
Vector xx = vector x
For j=1 to n
x(3)=b(J)
For j=1 to n
If i<>j Then

x(3) = x(J) + a(j,1)*xx(1)
End If
End For
x(j) = x(3)/a(3,3)
End For

r=norm (A*x-b) /n
If r<=tolerance Then Exit For
End For

Gauss-Seidel Method

The Gauss-Seidel method is like the Jacobi method, with one exception. The
algorithm uses x; when calculating subsequent variables x;+;. The algorithm uses
the following equation:

k+1 — 1 i-1 k+1 n k -
X T b — j=1 Qi X T T Aj=iy1 QX | fori=1,2,3,...,n (2a)

Notice that equation 2a has variable x**1 appear on both sides of the equation.
This confirms that the method uses the updated values as soon as they become
available. The matrix form for equation 2a is:

xk¥*1 = (L+ D)~! (b— U x¥) (2b)

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 3

Where D, U, L are the diagonal elements matrix, strictly upper matrix, and strictly
lower matrix, respectively.

The pseudo code for equation (2a) is:

Successive Over Relation Method

The Successive Over Relaxation (SOR) method accelerates the Gauss-Seidel
method by using a factor ® (with values between 0 and 2). The algorithm uses the
following equation:

X = (1 - w)xf + ai” [b; — Xt aixf ™ — X a;xf]

fori=1,2,3,...,n (3a)
The matrix form of equation 3a is:
x**1 = (D + wL)™! (wb — [wU + (w — 1)D]x*) (3b)

The pseudo code for equation (3a) is:

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 4

Enhancing the Classical Algorithms

The basic approach for enhancing the Jacobi, Gauss-Seidel, and SOR methods is
rather simple. Instead of updating one variable x; at a time, we update m variables
at a time. This multi-variable update requires the calculations of a submatrix A' and
solution vector b' based on the matrix A, solution vector b, and subset vector of
variables x. The algorithm then solves A'x'=b" for vector x' and replaces x; with x;'
(either later or immediately). Increasing the size of subset of m linear equations
tends to reduce the number of iterations needed to reach a specified tolerance for
the average norm of residuals calculated as r=||Ax-bll/n. The relationship between
the value of m and the number of iterations is not linear.

| will call the method for enhancing the class algorithms as multi-variable subset
updates or MVSE for short.

Here is a simple example for applying the MVSE method to the Jacobi method
using sets of two equations. This scheme yields the following set of sub-systems of
linear equations:

. !
a;; X + Q41 Xi41 = by (4a)
N
Ait1i X T Aip1i41 Xiv1 = biq (4b)

Where b; and b, , are:

bll = [bl - ;l=1,j¢i,j¢i+1 ai’jx]k] for i::l., 3, 5, cees n-1 (4C)
bivi = [biv1 = Xien juijwivt Qiea, x| fori=1,3,5, ..., n-1 (4c)

The MSVE method calculates the coefficients b; and b;,; and then solves the sub-
system of linear equations in 4a and 4b. The algorithm repeat this step for every set
of two equations. The number of linear equations must be a multiple of 2. If they

are not, then you apply the Jacobi method to the last equation.

In the case of using sets of three equations, we have:

N

Ap; X+ Qg1 Xig1 + Qg2 Xig2 = by (5a)
N

Aip1i X+ Ajpgi+1 Xit1 + Qigri2 Xigz = biyq (5b)
— !

Ait2,i Xi + A1 Xig1 T Qig2i42 Xig2 = Djgr (5¢)

Where b}, b/, ,, and b; ., are:

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 5

_ k -
b{ - [bl - :’]1:1,];tl,]¢l+1,]¢l+2 al']x]] for I—l, 4, 7, ceey 1’1'2 (5d)
— k .
biiq = [bi+1 - ?:1,j¢i,j¢i+1,j¢i+2 Ajt+1,jXj] fori=1,4,7,...,n-2 (5e)
! - k P—
bivy = |bivs = Xloq jwijeivs jeivz Qivz, ;% | fOri=1,4,7, ..., n-2 (5)

Again, the MSVE method calculates the coefficients b;, b/, ,, and b;,, and then
solves the sub-system of linear equations in 5a, 5b, and 5c. The algorithm repeats
this step for every set of three equations. The number of linear equations must be a
multiple of 3. If they are not, then you apply the Jacobi method to the last two
equations.

As you increase the number of equations in MVSE you increase the number of
sub-linear equations shown in equations 4a and 4b, and in equations 5a, 5b, and 5c.
The equations for applying MV SE to the Gauss-Seidel and SOR method are
similar, albeit a bit more elaborate, since these methods use the updated values of
x; as soon as they become available. Like the basic Jacobi method, its MVSE-
enhanced version is suitable for parallel computations.

| will apply the MVSE to the following categories of matrix coefficients:

1. All the matrix coefficients have random positive values that are uniformly
distributed. The diagonal coefficients have positive and dominant values.

2. The non-diagonal matrix coefficients have normally distributed values with
random positive and negative values. The diagonal coefficients have positive
and dominant values.

3. All the matrix coefficients have random negative values that are uniformly
distributed. The diagonal coefficients have negative and dominant values.

4. All the matrix coefficients have random negative values that are uniformly
distributed. The diagonal coefficients have positive and dominant values.

The solution seeks vectors with value from 1 to n, the number of linear equations.
The constant coefficients in vector b are calculated as Ax.

Enhanced Jacobi Method

The Jacobi method benefits greatly from the MVSE method. Listing 1 has
MATLAB code for the basic Jacobi method. Listing 2 has MATLAB code for the
MVSE using 2 variables. Listing 3 has MATLAB code for the MVSE using 5
variables. Listing 4 has MATLAB code for the MVSE using N variables. | did use

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 6

additional versions of the MATLAB code for using subsets of three variables. | am
not including them because they are like the other versions.

The MATLAB listings in this article assign the number of equations to variable n.
You can change the assigned value directly or by adjusting the assigned value to
variable nvars when that variable is used in some listings. The code generates
random matrix A with positive values and with diagonally-dominant matrix
elements. The solution vectors x are sequentially set to be in the range of (1, n).
The coefficient vector b is calculated as Ax. Thus, the vector b and matrix A are
both random.

Listing 1. The MATLAB code for the basic Jacobi method.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 7

Listing 2. MATLAB code for the MVSE for Jacobi using 2 variables.

Listing 2 shows a typical and simple implementation of the MVSE method. Notice
that the for i loop calculates values for a 2 by 2 matrix AA, and 2-element vectors
xx and bb. These variables make up the data for solving sets of two linear
equations using the statement xx=AA\bb. The solutions are temporarily copied into
vector x2. When the for i loop terminates, the code copies the values of vector x2
back into vector x. This assignment implements the differed-assignment scheme
which is a feature of the Jacobi method.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 9

Listing 3. MATLAB code for the MVSE for Jacobi using 5 variables.

Listing 3 resembles Listing 2, except it handles solving batches of 5 equations
instead of 2. Notice that the for i loop calculates values for a 5 by 5 matrix AA, and
5-element vectors xx and bb. These variables make up the data for solving sets of 5
linear equations using the statement xx=AA\bb. The solutions are temporarily
copied into vector x2. When the for i loop terminates the code copies the values of
vector x2 back into vector x. This assignment implements the late-assignment
which is a feature of the Jacobi method.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 10

Listing 4. MATLAB code for the MVSE for Jacobi using N variables.

Enhanced Gauss-Seidel Method

The Gauss-Seidel method also benefits from the MVVSE method. Listing 5 has
MATLAB code for the basic Gauss-Seidel method. Listing 6 has MATLAB code
for the MVSE using 2 variables. Listing 7 has MATLAB code for the MVSE
using 5 variables. Listing 8 has MATLAB code for the MVSE using N variables.
These listings resemble those for the Jacobi method, except that the values for
vector x are updated right after solving each subset number of linear equations.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 5. MATLAB code for the Gauss-Seidel method.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 6. MATLAB code for the MVSE for Gauss-Seidel using 2 variables.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 7. MATLAB code for the MVSE for Gauss-Seidel using 5 variables.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 8. MATLAB code for the MVSE for Gauss-Seidel using N variables.

Enhanced SOR Method

The SOR method also benefits from the MVSE method, especially when using
larger subsets of linear equations. Listing 9 has MATLAB code for the basic SOR

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

method. Listing 10 has MATLAB code for the MV SE using 2 variables. Listing
11 has MATLAB code for the MVSE using 5 variables. Listing 12 has MATLAB
code for the MVSE using N variables. These listings use variable w to represent
the over-relaxation factor o. | set the value for w to be 0.95 which seems to be
optimum for the kind of random matrices A.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 9. MATLAB code for the SOR method.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 10. MATLAB code for the MVSE for SOR using 2 variables.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Listing 11. MATLAB code for the MVSE for SOR using 5 variables.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 19

Listing 12. MATLAB code for the MVSE for SOR using N variables.

Comparison with basic Conjugate Gradient Method

I would like to compare the above versions of the MVSE method with the basic
Conjugate Gradient method. The pseudo-code for this method is:

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 20

Listing 13 contains the MATLAB code for the program that implements a basic
Conjugate Gradient method.

Listing 13. MATLAB code for the Conjugate Gradient method.

Matrices with Positive Coefficients

The next sections discuss the results for running various MATLAB programs.
Keep in mind that the values of the norm, r, are not reproducible since the code
uses random values for the matrix A. We start with matrices with coefficients that
have uniformly distributed values in the range of (1, n).

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Testing 100 Linear Equations

Method Iters r=[|Ax-b[|/n NumEqgns
Jacobi 2364 | 9.9747300E-06 1
Jacobi 701 | 9.8640440E-06 2
Jacobi 446 | 9.7903420E-06 3
Jacobi 240 | 9.7973820E-06 5
Jacobi 27 | 9.0120710E-06 10
Jacobi 15| 2.7967990E-06 50
Gauss-Seidel 15| 5.4688380E-06 1
Gauss-Seidel 15| 3.8962180E-06 2
Gauss-Seidel 15| 3.6859340E-06 3
Gauss-Seidel 15| 3.1127700E-06 5
Gauss-Seidel 10| 4.8007050E-06 10
Gauss-Seidel 8 | 2.3085020E-06 50
SOR 13| 8.3507450E-06 1
SOR 14 | 4.0413700E-06 2
SOR 14 | 3.1249080E-06 3
SOR 14 | 2.1181200E-06 5
SOR 10 | 3.3007730E-06 10
SOR 11| 5.1206290E-06 50
Conjugate Grad. 18 or 19 7.170738e-06

Table 1. Results for 100 linear equations.

Table 1 shows that the Jacobi method benefits greatly from using the MVSE
enhancement. The Gauss-Seidel and SOR methods benefit from the MVSE
enhancement when using higher batches of linear equations. Using 50 sets of

Copyright © 2016 by Namir Clement Shammas

21

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

22

equations puts the Gauss-Seidel at a better advantage that SOR! Both the Gauss-
Seidel and SOR methods do slightly better than the Conjugate Gradient method.

Testing 1000 Linear Equations

Method Iters r=[|Ax-b[|/n | NumEqgns
Jacobi 28101 | 9.9900970E-06 1
Jacobi 9503 | 9.9997700E-06 2
Jacobi 5665 | 9.9623800E-06 3
Jacobi 3113 | 9.9236900E-06 5
Jacobi 41| 5.9364300E-06 10
Jacobi 38| 4.8753830E-06 50
Gauss-Seidel 19 | 5.4991510E-06 1
Gauss-Seidel 19 | 5.0482230E-06 2
Gauss-Seidel 19 | 4.9085950E-06 3
Gauss-Seidel 19 | 4.4350880E-06 5
Gauss-Seidel 14 | 9.6146900E-07 10
Gauss-Seidel 13 | 3.1047390E-06 50
SOR 17| 3.0215750E-06 1
SOR 17 | 5.8738710E-06 2
SOR 17 | 5.8776450E-06 3
SOR 17 | 5.2698450E-06 5
SOR 12 | 5.5567790E-06 10
SOR 12 | 3.5951050E-06 50
Conjugate Grad. 14 5.135925e-06

Table 2. Results for 1000 linear equations.

Copyright © 2016 by Namir Clement Shammas

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 23

Table 2 shows that the Jacobi method benefits greatly from using the MVSE
enhancement. The Gauss-Seidel and SOR methods benefit from the MVSE
enhancement when using higher batches of linear equations. The SOR method
maintains a lead over the Gauss-Seidel method. Both the Gauss-Seidel and SOR
methods do slightly better than the Conjugate Gradient method.

Testing 5000 Linear Equations

Method Iters r=|[|Ax-b[|/n NumEgqns
Jacobi 19904 | 9.9990070E-06 5
Jacobi 47 | 8.2809030E-06 10
Jacobi 46 | 9.5265400E-06 50
Jacobi 45| 9.8166110E-06 100
Jacobi 39| 6.1525860E-06 500
Gauss-Seidel 22| 2.7090660E-06 1
Gauss-Seidel 22 | 2.2113710E-06 2
Gauss-Seidel 22| 2.2295160E-06 3
Gauss-Seidel 22| 2.1843970E-06 5
Gauss-Seidel 16| 9.2737010E-07 10
Gauss-Seidel 15| 8.3735430E-06 50
Gauss-Seidel 15| 6.3182670E-06 100
Gauss-Seidel 14| 5.1037130E-06 500
SOR 19| 6.4757720E-06 1
SOR 20| 2.9925280E-06 2
SOR 20| 2.9902730E-06 3
SOR 20| 2.9317730E-06 5
SOR 14 2.0755470E-06 10
SOR 14 | 1.9425890E-06 50

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 24

Method Iters r=||Ax-b[|/n NumEqns

SOR 14 1.6515960E-06 100
SOR 14| 2.4018240E-06 500
Conjugate Grad. 13 1.165085e-06

Table 3. Results for 5000 linear equations.

Table 3 shows that the Jacobi method benefits greatly from using the MVSE
enhancement. The Gauss-Seidel and SOR methods benefit from the MVSE
enhancement when using higher batches of linear equations. The SOR method
maintains a lead over the Gauss-Seidel method, except for when using 500
equations. Both the Gauss-Seidel and OR methods fail to outperform the
Conjugate Gradient method.

Testing 10000 Linear Equations

Method Iters r=[|Ax-b[|/n NumEgns
Jacobi 50| 6.7694330E-06 3
Jacobi 50| 6.7711940E-06 5
Jacobi 50| 6.6063720E-06 10
Jacobi 49 | 9.8291580E-06 50
Jacobi 49 | 7.6078470E-06 100
Jacobi 46 | 9.1749530E-06 500
Gauss-Seidel 23| 1.3113640E-05 1
Gauss-Seidel 23| 4.1369770E-06 2
Gauss-Seidel 23| 4.1809690E-06 3
Gauss-Seidel 23| 4.1250800E-06 5
Gauss-Seidel 15| 1.7849650E-06 10
Gauss-Seidel 15| 3.0312840E-06 50
Gauss-Seidel 16 | 5.3179950E-06 100

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 25

Method Iters r=||Ax-b[|/n NumEqns

Gauss-Seidel 16| 8.6212090E-06 500
SOR 21| 1.5416330E-05 1
SOR 21| 2.4661790E-06 2
SOR 21| 2.4908430E-06 3
SOR 21| 2.4804840E-06 5
SOR 15| 1.7185190E-06 10
SOR 15| 2.9382770E-06 50
SOR 15| 4.0885080E-06 100
SOR 15| 8.7813930E-06 500
Conjugate Grad. 13 6.891991e-07

Table 4. Results for 10000 linear equations.

Table 4 shows that the Jacobi method benefits greatly from using the MVSE
enhancement. The Gauss-Seidel and SOR methods benefit from the MVSE
enhancement when using higher batches of linear equations. The SOR method
maintains a lead over the Gauss-Seidel method. Both the Gauss-Seidel and OR
methods fail to outperform the Conjugate Gradient method.

| studied the relationship between the number of iterations needed to reach an
average norm of residuals (calculated as ||Ax-b||/n) of 1.00e-5. The following

exponential decay equation describes the relation between iteration, k, and the
average norm of residuals r:

In(r) =ao— a; K (6)

The regression coefficients ap and a; depend on the number of equations,
configuration of the coefficients of matrix A, number of sublinear systems used by
the MSVE method, and the tolerance value for the average norm of residuals.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 26

| have used the exponential decay equation to estimate the value for k
in difficult cases. In such cases, convergence for a solution (where r
reaches values below 1.00e-5) is painfully slow. The number of
iterations is then tens of thousands if not more. Obtaining such results
often required a PC to run for over a day, and perhaps two days! The
method | use to estimate the number of iterations needed for r to fall
below le-5 is:

1. Within a loop that solves the system of linear equations (for
whatever algorithm), iterate for, say, 5000 times. Store the
values of r and the iteration number k in arrays, call them rdata
and kdata, respectively.

. Perform a curve fit (using the Matlab function
polyfit(kdata,log(rdata),1)) to estimate the values for the
regression coefficients ap and a;.

. Select a target value of r, slightly below 1.00e-5, such as
9.998e-6.

. Use equation 6 to calculate the value of k.

. Round up the value of k and then calculate r based on the
adjusted value of k.

. Optionally plot the array values of In(r) and k to make sure that
the plot shows a straight line. This step serves as a visual
confirmation for the validity of the estimated final value of the
K.

To obtain reliable values for the regression coefficients ap and a; you
need to use large arrays of r and k. Smaller arrays generate increasing
error in projecting the value of k for a small value of r. Such error
generates smaller projected values of k.

Matrices with Positive and Negative Values

The conclusion discussed the effect of the MSVE method with matrices having all
positive values (and relatively high condition numbers). What about matrices with

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 27

both positive and negative values? We can initialize such matrices using random
normal functions using the following code:

A = n*randn (n,n)
for i=l:n

A(i,i1) = sum(abs(A(i,:)));
end

Matrices with normally distributed coefficient values include positive and negative
values and positive-value dominant diagonal elements. These matrices are much
easier to solve with the stationary methods. In this case, the MSVE method
contributes little improvement on the number of iterations. Table 5 shows sample
results for solving 10,000 linear equations. The MSVE method has virtually no
effect on improving the stationary algorithms!

Method Iters r=[|Ax-b[|/n NumEgns Omega
Jacobi 1
Jacobi 8 6.5242510E-06 2
Jacobi 8 6.5373270E-06 3
Jacobi 8 6.6157030E-06 5
Jacobi 8 6.7353960E-06 10
Jacobi 8 6.8959890E-06 50
Jacobi 8 6.9723120E-06 100
Jacobi 8 8.6108370E-06 500
Gauss-Seidel 8 1.1109120E-05 1
Gauss-Seidel 7 3.4432740E-06 2
Gauss-Seidel 7 3.3799170E-06 3
Gauss-Seidel 7 3.4900830E-06 5
Gauss-Seidel 7 3.5005170E-06 10
Gauss-Seidel 7 3.8862110E-06 50
Gauss-Seidel 7 4.2099080E-06 100

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 28

r=[|Ax-b[|/n NumEqns Omega

Gauss-Seidel 7 6.6414060E-06 500

SOR 13 1.5823760E-05 1 0.95
SOR 12 4.9789780E-06 2 0.95
SOR 12 5.0540190E-06 3 0.95
SOR 12 4.9781920E-06 5 0.95
SOR 12 5.1099050E-06 10 0.95
SOR 12 5.4362880E-06 50 0.95
SOR 12 5.5972230E-06 100 0.95
SOR 12 7.8666610E-06 500 0.95
SOR 10 5.2505430E-06 10 0.975
SOR 10 5.5447490E-06 50 0.975
SOR 10 5.8530650E-06 100 0.975
SOR 10 7.7765090E-06 500 0.975

Table 5. Results for 10000 linear equations with normally-distributed matrix
coefficients with positive and negative values.

The relationship between the number of iterations needed to reach an average norm
of residuals (calculated as |[Ax-b||/n) of 1.00e-5 for normally distributed matrix
coefficients also follow the empirical model in equation 6.

Matrices with Negative Values

In this section | discuss the results of applying the MV SE with matrices having
negative coefficients. | will handle two general cases:

1. All the matrix coefficients are negative. The diagonal elements have
negative and dominant values.

2. All the matrix coefficients, except the diagonal ones, are negative. The
diagonal elements have positive and dominant values.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 29

Case 1 uses the following statements to generate the values for the matrix
coefficients:

A = -l-n*rand(n,n)

for i=1:n

A(i,i) = sum(A(i,:));
end

Case 2 uses the following statements to generate the values for the matrix
coefficients:

A = -l-n*rand(n,n)
for i=1l:n

A(i,i1) = sum(abs(A(i,:)));
end

Tables 6, 7, 8, and 9 show the results for cases 1 and 2 applied to 100, 1000, 5000,
and 10000 equations, respectively.

Testing 100 Linear Equations

Table 6 shows the Results for 100 linear equations with negative matrix
coefficients for cases 1 and 2. What stands out in that table is that the matrices in
case 2 yield solutions that are much slower to converge than those of case 1. For
matrices of case 1, the MVVSE method is more effective in improving the Jacobi
method. In the case of Gauss-Seidel and SOR, the improvement is minor. The table
entries with a yellow background refer to results obtained by estimation.

Method Case 1 Case 2 NumEgqgns
Iters r Iters r

Jacobi 2095 | 9.9537500E-06 1766 | 9.9378200E-06 1
Jacobi 247 | 9.5697600E-06 1583 | 9.9536300E-06 5
Jacobi 28 | 6.4262000E-06 29 | 8.6518000E-06 10
Jacobi 15 | 2.8936900E-06 20 | 8.2948200E-06 50
Gauss-Seidel 15 | 7.9311960E-06 884 | 9.8742060E-06 1
Gauss-Seidel 15 | 3.4244100E-06 832 | 9.8897200E-06 5
Gauss-Seidel 14 | 3.6224000E-06 807 | 9.8792700E-06 10
Gauss-Seidel 11 | 4.1963600E-06 456 | 9.8235600E-06 50

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 30
SOR 13 | 6.5703400E-06 Error 1
SOR 14 | 2.4690700E-06 933 | 9.8964500E-06 5
SOR 13 | 5.9529100E-06 877 | 9.8798100E-06 10
SOR 14 | 4.4172800E-06 498 | 9.8318700E-06 50

Table 6. Results for 100 linear equations with negative matrix coefficients for
cases 1 and 2.

Testing 1000 Linear Equations

Table 7 shows the Results for 1000 linear equations with negative matrix
coefficients for cases 1 and 2. The comments on this table are similar to those of
Table 6, except the number of iterations needed to reach the solution is higher.

Method Case 1 Case 2 NumEqns
Iters r Iters r

Jacobi 28251 | 9.9916500E-06 | 20718 | 9.9927700E-06 1
Jacobi 3125 | 9.9631100E-06 40 | 6.4012000E-06 5
Jacobi 41 | 5.9590900E-06 40 | 5.7811200E-06 10
Jacobi 38 | 4.9080500E-06 39 | 5.1458700E-06 50
Gauss-Seidel 19 | 5.3157610E-06 | 10554 | 9.9900180E-06 1
Gauss-Seidel 19 | 4.5422800E-06 | 10361 | 9.9898100E-06 5
Gauss-Seidel 19 | 3.6622900E-06 | 10328 | 9.9891500E-06 10
Gauss-Seidel 18 | 5.5075300E-06 | 9972 | 9.9893800E-06 50
SOR 17 | 2.9984440E-06 | 11169 | 9.9989000E-06 1
SOR 17 | 5.3482500E-06 | 11631 | 9.9937300E-06 5
SOR 17 | 4.7380300E-06 | 11314 | 9.9936700E-06 10
SOR 17 | 3.0320000E-06 | 10973 | 9.9930400E-06 50

Table 7. Results for 1000 linear equations with negative matrix coefficients for
cases 1 and 2.

Copyright © 2016 by Namir Clement Shammas

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Testing 5000 Linear Equations

31

Table 8 shows the Results for 5000 linear equations with negative matrix
coefficients for cases 1 and 2. The comments on this table are similar to those of
Table 6, except the number of iterations needed to reach the solution is higher.

Method Case 1 Case 2 NumEqgns
Iters r Iters r

Jacobi 162506 | 9.9970800E-06 | 114783 | 9.9978900E-06 1
Jacobi 47 | 8.8241900E-06 46 | 6.1411900E-06 5
Jacobi 47 | 8.2599400E-06 46 | 5.9909100E-06 10
Jacobi 46 | 9.5494200E-06 46 | 7.0016100E-06 50
Jacobi 45 | 9.8070500E-06 45| 7.9671900E-06 100
Jacobi 39 | 1.9811300E-08 43 | 5.0578600E-06 500
Gauss-Seidel 22 | 2.6834290E-06 | 57493 | 9.9964940E-06 1
Gauss-Seidel 22 | 2.1897200E-06 | 57869 | 9.9969900E-06 5
Gauss-Seidel 22 | 2.1373900E-06 | 58320 | 9.9946000E-06 10
Gauss-Seidel 21| 9.7193700E-06 | 58415 | 9.9955700E-06 50
Gauss-Seidel 21| 6.0028100E-06 | 57279 | 9.9970900E-06 100
Gauss-Seidel 20 | 2.4869600E-06 | 52806 | 9.9856400E-06 500
SOR 19 | 6.4381070E-06 | 62216 | 9.9972610E-06 1
SOR 20 | 2.9329500E-06 5
SOR 20 | 2.8546600E-06 | 63287 | 9.9949300E-06 10
SOR 19 | 9.2091600E-06 | 64003 | 9.9967100E-06 50
SOR 19 | 8.8018600E-06 | 63307 | 9.9977300E-06 100
SOR 18 | 9.4892700E-06 | 58506 | 9.9960000E-06 500

Table 8. Results for 5000 linear equations with negative matrix coefficients for

cases 1 and 2.

Copyright © 2016 by Namir Clement Shammas

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations

Testing 10000 Linear Equations

32

Table 9 shows the Results for 10000 linear equations with negative matrix
coefficients for cases 1 and 2. The comments on this table are similar to those of
Table 6, except the number of iterations needed to reach the solution is higher. The
table entries with the red background indicate that the calculations have reached a
minimum value of r, below which no values can be obtained. This effect has
manifested itself only in one case in this study. | assume that decreasing the
tolerance value much below1.00e-5 would yield more cases, since a limit will be

reached due to rounding calculation errors.

Method Case 1 Case 2 NumEgqns
Iters r Iters r

Jacobi 336658 | 9.9971700E-06 | 236635 | 9.9978500E-06 1
Jacobi 50 | 6.5686800E-06 46| 8.8447000E-06 10
Jacobi 49 | 9.9183700E-06 48| 8.2782500E-06 50
Jacobi 49 | 7.6804400E-06 48| 7.6854000E-06 100
Jacobi 46 | 9.3248700E-06 47| 8.5348900E-06 500
Gauss-Seidel 23 | 1.2937480E-05 | 119757 | 9.9969160E-06 1
Gauss-Seidel 23 | 4.1155800E-06 | 119781 | 9.9967300E-06 5
Gauss-Seidel 23 | 4.0692700E-06 | 119681 | 9.9966800E-06 10
Gauss-Seidel 23 | 3.8181700E-06 | 119777 | 9.9979000E-06 50
Gauss-Seidel 23 | 3.6590600E-06 | 118318 | 9.9969500E-06 100
Gauss-Seidel 23 | 3.6590600E-06 | 113438 | 9.9959700E-06 500
SOR 31 _ 129181 | 9.9966170E-06 1
SOR 21| 2.5028500E-06 | 131233 | 9.9961600E-06 5
SOR 21| 2.5326200E-06 | 131745 | 9.9963600E-06 10
SOR 21| 2.8574200E-06 | 132328 | 9.9967200E-06 50

Copyright © 2016 by Namir Clement Shammas

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 33
SOR 21 | 3.2280800E-06 | 131222 | 9.9970300E-06 100
SOR 20 | 7.2814800E-06 | 51762 | 9.9963000E-06 500

Table 9. Results for 10000 linear equations with negative matrix coefficients for
cases 1 and 2.

Copyright © 2016 by Namir Clement Shammas

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 34

Conclusion

Table 10 contains statistics for the four categories of random matrices. The table
shows the mean and standard deviation for the condition numbers of the random
matrices. The statistics are calculated based on sample sizes of 35. The matrices
with normally distributed positive and negative values have the lowest condition
number in the range of (1, 1.62)—that is, close to 1.0. As such, they are the easiest
to solve in systems of linear equations. The matrices with all-positive and all-
negative values have condition numbers in the range of (2, 2.4) and are therefore
relatively easy to solve. The matrix values with negative non-diagonals and
positive diagonals (case 2) have very high condition numbers. In fact, the condition
numbers increase with the number of equations. This category of matrix is more
difficult to solve and gets even more difficult (i.e. slow convergence) as the
number of equations increases. The variation between the matrix condition number
and the number of equations is close to linear. The condition number statistics in
Table 10 confirm the results shown in earlier tables as they relate to how easy or
difficult it is to solve linear systems with different types of random matrices.

n ‘ Mean CN ‘ Sdev CN “ Type
100 | 2.39297 | 0.056761 All positive coefficients
1000 | 2.13806 | 0.021338
5000 | 2.06533 | 0.004953
10000 2.0477 | 0.003392
100 | 2.38314 | 0.052551 | All negative coefficients: Case 1
1000 | 2.13587 | 0.014099
5000 | 2.06469 | 0.005155
10000 | 2.04762 | 0.003019
100 | 117.262 5.9837 Negative coefficients Case 2
1000 | 1063.39| 18.5218
5000 | 5157.99| 34.1682
10000 | 10233.1 56.77
100 | 1.61075| 0.038993 Negative and positive
1000 | 1.19578 | 0.011926
5000 1.0911 | 0.004295
10000 | 1.06623 | 0.002767

Copyright © 2016 by Namir Clement Shammas

Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 35

Table 10. Matrix condition number statistics.
Table 11 summaries the results. The results are based on:

1. Using diagonally dominant matrix coefficients. This is a condition when the
absolute value of a diagonal element is greater than the sum of the absolute
values of non-diagonal elements in the same matrix row.

2. In the case of the SOR, the study uses over-relaxation factor of 0.95. The
optimality of this factor is not paramount to this study. Instead, this study
seeks to examine the variation in the number of iterations as the number of
linear sub-systems varies.

3. The study uses a tolerance value of 1.00e-5 to compare with the average
norm of residuals r (=|]|Ax-bll/n) values. Remember that the values of r
decay exponentially with the number of iterations. In the case where the
desired convergence of the average norm of residuals is reached, the
difference between that value and the tolerance 1.00e-5 can serve as an
indication for convergence speed. Values of r that fall barely below 1.00e-5
indicate that the convergence is very slow, and vice versa.

The MVSE method works best when all the matrix coefficients are positive. |
tested four schemes for assigning matrix coefficients. You are welcome to modify
the MATLAB code to test more complex value distribution for the matrix
coefficients. The improvement brought by the MVSE method is not linearly
proportional to the number of linear sub-systems used. Rather, the improvement is
stepwise or threshold-wise.

| also tested the Conjugate Gradient method. It seems to perform better than the
Gauss-Seidel and SOR methods when dealing with larger number of linear
equations.

| did attempt to use a version of MVVSE where the updated values of vector x
overlap by a single element. While the number of iterations remained the same (at
a higher computational effort), the values of the norm, r, where a bit smaller than
their counterparts shown in the above tables. | did not pursue this overlapping
subset scheme since | did not see any tangible benefits.

Matrix Type Comments
All coefficients are positive MV SE method improves all three stationary
methods.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

Enhancing Basic Iterative Solutions for Linear Equations 36

Matrix Type
All coefficients are negative

Comments
MV SE method modestly improves all three
stationary methods when the number of linear
sub-systems increase to 100 and/or 500.

All non-diagonal coefficients
are negative. Diagonal elements
are positive.

Solution of this type of matrices is very slow.
The number of iterations is significantly
higher than for other matrix types. Relative
improvement of MV SE appears when the
number of linear sub-systems increase to 100
and/or 500.

Mixed positive and negative
coefficients.

MSVE method has virtually little effect on
improvising the three stationary methods.

Table 11. Results Summary.

Document History

Date | Version | Updates
November 1, 2016 1.00.00 Initial release.
November 1, 2016 1.01.00 Minor bug adjustment in
Listing 13.

November 10, 2016 1.10.00 Added Prologue section.

November 25, 2016 2.00.00 Rearranged document
sections and expanded on
the types of matrices
studied.

November 26, 2016 2.10.00 Added table of condition
numbers for various
categories of matrix A.

Copyright © 2016 by Namir Clement Shammas Version 2.10.00

