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method being 1+ V2x~24 compared with 2 for the standard Newton method. Numerical
examples demonstrate the faster convergence achieved with this modification of Newton’s

f\(leengj'z.method method. This modified Newton-Raphson method is relatively simple and is robust; it is
Non-linear equations more likely to converge to a solution than are either the higher order (4th order and 6th
Root-finding order) schemes or Newton’s method itself.

Iterative methods © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license

1. Introduction

Newton’s method for determining a root of a nonlinear equation f (x) = 0 has long been favored for its simplicity and
fast rate of convergence. Using only the function and its first derivative, Newton’s method iteratively produces a sequence of
approximations that converge quadratically to a simple root. While a number of rules with higher order convergence have
long been known [1], these have the disadvantage of requiring higher order derivatives.

Recently, a number of authors including [2-6] have derived multistep, predictor-corrector methods that offer higher
order convergence but require only the function and its first derivative. These methods all require more function or deriva-
tive evaluations per iteration than Newton’s method, but this additional cost is offset by the higher rate of convergence.
Ref. [7] presents a similar predictor-corrector method that was subsequently employed in [8], and is now also used in
several functions of the Gibbs Seawater (GSW) Oceanographic Toolbox of the International Thermodynamic Equation of
Seawater (TEOS-10); see [9,10]. The method presented in [7] was motivated by an unusual application in which not only
was there a good initial estimate of the root from which to start the iteration, but there was also a good estimate of the first
derivative at that point. This extra derivative information, combined with the observation that if f (x) is quadratic with root r
then
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[® f(x) is evaluated at x, and x,

(® f(x) is evaluated at x;, (=x,) and m% (x+x7)
Fig. 1. Sketch of the modified Newton-Raphson method of this paper. The initial iteration to find x; is the standard Newton-Raphson scheme. But to
find x, the function’s derivative is not evaluated at x;. Rather, the existing estimate of the derivative is re-used to find an intermediate value, x}, and the

derivative is evaluated at %(xl =+ x7). We call the step to find the intermediate value, x7, the “predictor step”, while the step to find the next value of x, x,,
(using the derivative evaluated at %(X] + 7)) is called “the corrector” step.

suggests a predictor—corrector rule of the form
X5 = %o — f(x0) /fy (2a)
 f)
(3o +x])°
where f] represents the estimate of the derivative at xo. The initial predictor step is just a Newton step based on the esti-
mated derivative, while the corrector step is motivated by the implicit relation (1). Subsequent iterations of the [7] method

are similar, except that in the predictor step the estimated derivative is replaced by the derivative computed in the previous
iteration, that is (starting at k = 1),

X1 =Xp (2b)

Fx0)
“ 3
X, = X f/(% [Xk_1+X}§,1]) (3a)
Xes1 = 2 — —-3 %0 (3b)

(3 [xe+xc])
It is this re-use in Eq. (3a) of the derivative calculated in the previous iteration that makes the rule particularly efficient —
each full predictor-corrector step requires only one function and one derivative evaluation.

Here, the [7] method is extended to a more general context and it is shown that the rule converges at a rate of 1 + V2
at a cost of one function and one derivative evaluation per full step, making this rule more efficient than the standard
Newton-Raphson rule for the same cost.

2. The modified Newton-Raphson method

Once the iteration is established, our general iteration takes the form (3a) and (3b) above. As already noted, this is a
predictor-corrector rule in which the predictor step is based on the derivative calculated in the previous iteration, and the
corrector step is motivated by the implicit relation (1). The unusual feature of this scheme is the interleaving of function and
derivative evaluations, that is, the function and its derivative are evaluated at different values of x (see Fig. 1).

Initializing the iteration essentially requires two starting values, xo and x§. The iteration then proceeds with the corrector
step (2b). Given an initial estimate xo of the root, two obvious methods for obtaining the second starting value xj are to

e derive xj by Newton’s method x§ = xo — f (xo) /f’ (o), or
e simply set xj; = Xo in which case the corrector step (2b) for x; reduces to Newton’s method.
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In practice these two options are found to be equally effective, and henceforth only the x§ = xo case will be considered.
In summary, our general modification of Newton’s method that we examine herein is given by

Xg = Xo (4a)
f(%0) f (o)

=X— ——F——————— =X — —, 4b

X1 = Xo F (% [Xo +X3]) Xo F/(x0) (4b)
followed by (for k > 1)
* f(Xk)

= k - 5
T e ) oY
A ) (5b)

PG +x])
These steps in our modified Newton-Raphson procedure are illustrated in Fig. 1, where the steps are shown up to finding
X3. The key features of our modified Newton-Raphson method can be seen in Fig. 1, namely

1. the value x, is calculated from x; using f (x;) and the value of the derivative evaluated at % (x1 + x’{) (which is a more
appropriate value of the derivative to use than the one evaluated at x;), and
2. this same value of the derivative is re-used in the next predictor step (not illustrated in Fig. 1) to obtain x3.

This re-use of the derivative means that the evaluations of the starred values of x in Eq. (5a) essentially come for free, which
then enables the more appropriate value of the derivative to be used in the corrector step Eq. (5b).

3. Convergence

Writing x; = + ¢; and x{' =r + ¢, repeated substitution and Taylor expansion in Eq. (5) shows that to leading order

g5 = €0
e =agp ef = 2a%e]
& = 20e; e = 2a°]
3= 22aTel  &f = 230"l (6)
£g = 5022 g = 27N

&5 = 2120[69830

where o = % f"” (r) /f' (r). It is convenient to form the non-dimensional error measures (using over-tildes) as
&0 = agy, g =ag and & =aef, )
so that Egs. (6) become

5 = o
B=8 8 =28
=28 & =2
By= 2% & = 2% (®)
By =250 e =25

s = 21280
Examining the sequence of powers over pairs of successive steps shows the approximation converges faster than quadratic.
This is most easily seen by noting that the powers of &, (and of 2) in these expressions for &; progress in the series

2, 5, 12, 29, 70, 169, 408, 985, 2378, ... (9)
and the successive ratios of these powers are
2.5, 2.4, 2.4167, 2.4138, 2.4143, 2.4142, 2.4142, 2.4142, .... (10)

The ratio R of consecutive numbers in this sequence is seen to rapidly approach a fixed number of approximately 2.4142.
The Taylor series calculations above show that the numbers N; in the sequence (9) are related by

N; =2N;_1 + Ni_», (11)
and dividing (11) by N;_; and setting (in the limit) N;/N;_; = N;_;/N;_, = R, we see that R is the solution of R = 2 + R™!
namely R = 1+ /2 ~ 2.4142. The same asymptotic ratio R of consecutive terms is found from the sequence of powers

1, 3, 7, 17, 41, 99, 239, 577, 1393, ... (12)
that appears in the right-hand side of Eq. (8), namely the “starred” expressions of (8).
Hence we conclude that our modified Newton-Raphson method of solving f (x) = 0 converges at the power R =

14 /2 ~ 2.4142. That is, &; converges to &;_; raised to the power 1+ V2, and &; also converges to &/ ; raised to the power
1+ 2. By comparison, the standard Newton method converges quadratically, that is, at the power 2. For example, after
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Table 1

Numerical efficiencies of various numerical schemes.
Method Number of function or derivative evaluations Efficiency index — convergence order per function evaluation
Newton, quadratic 2 212 ~ 1.4142

3173 ~ 1.4422
51/4 ~ 1.4953
1/2
(ﬁ+ 1) ~ 15538
614 ~ 1.5651
43 ~ 15874
0.5 (1 + fs) ~ 1.6180

Cubic methods
Kou’s 5th order
The present paper

Kou’s 6th order
Jarratt’s 4th order

Secant

A S N S I N Ot ]

four full iterations of the standard Newton-Raphson method, the error is 536 whereas the error remaining in our modified
method is &4 = 2° 5(2,9. Both cases require four function evaluations and four derivative evaluations at this stage.

4. Comparison with “cubic”, “4th order”, “6th order” and “secant” methods

Refs. [2,5,3,11] have presented numerical schemes having cubic convergence. In each iteration of these numerical
schemes three evaluations are required of either the function or its derivative. The best way of comparing these numerical
schemes is to express the rate of convergence per function or derivative evaluation, the so-called “efficiency” of the numeri-
cal scheme. On this basis, the standard Newton-Raphson scheme has an efficiency of 2'/? & 1.4142, the modified Newton-

1/2
Raphson method of the present paper has an efficiency of (ﬁ + l) ~ 1.5538, while the cubic convergence methods
have an efficiency of 3'/3 ~ 1.4422.

These efficiencies can be compared with the secant method which has an efficiency of 0.5 (1 ++/5) ~ 1.6180. This

is larger than the efficiency of our modified Newton-Raphson method, however the secant method has the drawback that,
very close to the root, least-significant-bit (LSB) noise will affect the denominator and the stopping criterion will not always
be able to avoid this unwanted behavior.

Kou [4] has developed several methods that each require two function evaluations and two derivative evaluations and
these methods achieve an order of convergence of either five or six, so having efficiencies of 5'/4 ~ 1.4953 and 6!/ ~
1.5651 respectively. The larger of these two efficiencies is larger than that of the present modified Newton-Raphson scheme
by 1%. However, in the next section we will show that these [4] methods converge to a solution less often than both the
standard Newton-Raphson method and our modified Newton-Raphson method. In these [4] methods the denominator is
a linear combination of derivatives evaluated at different values x, so that when the starting value of x is not close to the
root, this denominator may go to zero and the methods may not converge. Of the four 6th order methods suggested in [4],
if the ratio of the function’s derivatives at the two values of x differ by a factor of more than three, then the method gives
an infinite change in x. That is, the derivatives at the predictor and corrector stages can both be the same sign, but if their
magnitudes differ by more than a factor of three, the method does not converge.

Jarratt [12] developed a 4th order scheme that requires only one function evaluation and two derivative evaluations, and
similar 4th order schemes have been described by [6]. Jarratt’s scheme is similar to those of [4] in that if the ratio of the
derivatives at the predictor and corrector steps exceeds a factor of three, the method gives an infinite change in x.

The efficiencies of the schemes we have discussed are summarized in Table 1.

5. Numerical examples

Computational tests of the method were performed with the CLN multiprecision library [13], using 64-digit floating-
point arithmetic. In Table 2 we compare the performance of four methods; Newton’s method, the modified rules of [2,5],
and our modified Newton-Raphson method using the four test functions

fi(x) =sin’x — x> + 1

L) =x>—e —3x+2

fs(x) = x¢* — sin®x + 3cosx + 5
fa(x) = ex2+7x—30 1

also considered by [2,5]. The stopping criteria used for these comparisons are |x,+1 — x,| < & and |f (x,11)| < & where
6 = 1.0e —27.InTable 2 it is seen that our modified Newton-Raphson procedure generally arrives at the accurately iterated
solution with less function and derivative evaluations than the standard Newton-Raphson method and the cubic methods.
Indeed the cubic methods are generally not superior to the standard Newton method, probably because of the need to do
three function evaluations in each iteration, so that the cubic methods often need to complete such a full iteration whereas
the standard Newton-Raphson method may reach the desired accuracy after its two function or derivative evaluations of
one of its iterations.

(13)
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Table 2
Numerical comparisons of the methods of Newton, [2] (labeled WF), [5] and the present paper. The columns represent the number of iterations N and the
number of function or derivative evaluations Ny required to meet the stopping criteria, and the magnitude |f (x)| of f (x) at the final estimate x,.

Method N Ny If Gng)l Xn
fx) =sinPx—x*+ 1
X =1
Newton 8 16 3.4e—101
Wang 5 15 2.0e—93 1.40449164821534122603508681778686807718
WF 5 15 8.9e—89
Present 7 14 8.8e—113
X0 =3
Newton 8 16 2.0e—88
Wang 6 18 1.0e—202 1.40449164821534122603508681778686807718
WF 5 15 7.9e—181
Present 7 14 1.2e—129
f(x) =x* —e* —3x+ 2
Xo = 2
Newton 6 12 2.9e—55
Wang 5 15 5.1e—158 0.257530285439860760455367304937241781385
WF 5 15 5.9e—103
Present 6 12 3.5e—107
Xo=3
Newton 8 16 4.1e—104
Wang 5 15 3.1e—102 0.257530285439860760455367304937241781385
WF 6 18 5.0e—151
Present 7 14 7.4e—122
f(x) =xe¢ —sinx+3cosx+5
Xo = -2
Newton 10 20 3.8e—81
Wang 7 21 1.1e—170 —1.20764782713091892700941675835608409776
WF 7 21 2.0e—129
Present 9 18 3.6e—155
fx) = e H7x=30 _
X0 = 3.25
Newton 10 20 5.5e—66
Wang 7 21 2.0e—138 3.0
WF 7 21 1.7e—107
Present 9 18 1.2e—124
X0 = 3.5
Newton 14 28 1.2e—94
Wang 9 27 3.2e—110 3.0
WF 10 30 -
Present 12 24 7.0e—136

We performed a more extensive series of tests than is shown in Table 2, using all the nine test functions and their several
starting values of x described in [2], making a total of 18 test cases. Here we report on the relative performance of the
method of this paper compared with that of the other methods discussed above. In each of these 18 test cases, our method
outperformed the standard Newton method, and in two of the cases, the standard Newton method did not converge to a
solution within 50 iterations (100 function or derivative evaluations). Our method also outperformed the method of [3] in
every case, it outperformed the [5] method in 16 out of the 18 cases, and it outperformed the [2] method in 14 of the 18
cases. Our measure of performance here is to note the number of function or derivative evaluations needed to reduce the
error of the initial guess by 30 orders of magnitude.

The evaluation of the derivative in our method at the mid-point between the most recent solution and a predictor value
of the solution (that is not unlike Newton’s method) is the reason why our method converges to a solution more often than
does the standard Newton method.

We also implemented the four 6th order schemes of [4] using these 18 cases, and found that in 8 of the 72 (= 4x18) cases
these did not converge to a solution even after 50 iterations (involving 200 evaluations of either the function or its derivative).
When these 6th order schemes converged they were on average superior to the present modified Newton method, with the
method of the present paper outperforming these Kuo 6th order schemes in only 24 of the 72 cases.

Similarly, we implemented two of the 4th order Jarratt-type schemes, specifically, Eqs. (17) and (19) of [6]. Our modified
Newton method outperformed these schemes in slightly more than half of the 36 cases (10 cases out of 18 for Eq. (17) and
9 cases out of 18 for Eq. (19) of [6]. Of more concern for these Jarratt-type schemes, 10 of the 36 cases of Egs. (17) and (19)
of [6] did not converge to a solution after 50 iterations (involving 150 evaluations of either the function or its derivative).

In summary, our method outperformed Newton’s method and all of the cubic methods. The relatively robust nature of
our modified Newton method is illustrated by the fact that in 2 of the 18 cases, Newton’s method did not converge. Taking
the higher order schemes of [4,6] as a whole, the method of this paper outperformed these higher order methods in 42 of
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the 108 cases, and in all cases it converged to the solution. These higher order schemes did not converge to a solution in a
total of 18 of the 108 examples.

Another advantage of our method is that the stopping criteria can be implemented half way through a complete itera-
tion, that is, after the starred stage. If the stopping criteria are satisfied at this stage, this obviates the need to evaluate the
derivative in the corrector step and so halves the cost compared with having to complete the full iteration before applying
the stopping criteria. This points to an inherent advantage of a method that has fewer function evaluations per iteration
because when the stopping criteria are very close to being met, fewer function evaluations are required to achieve the re-
maining accuracy required.

These comparisons with the standard Newton method have counted a function evaluation and a derivative evaluation as
being equally costly in a computational sense. If however the function is such that the user can supply an algorithm which
evaluates both the function and its derivative for not much more computational expense than the computation of either the
function or its derivative, then the standard Newton method would be preferred since in the standard Newton method the
function and its derivative are evaluated at the same value of x.

We note that at a double root this modified Newton-Raphson method behaves the same as the standard Newton method,
that is, it exhibits linear convergence. We have not proven mathematically that the method can be extended to multiple
dimensions, but in practice, we have found it to work in two dimensions.

6. Conclusion

The modified Newton-Raphson method presented in this paper offers an increased rate of convergence over Newton'’s
rule with no additional cost. In practice the modified method is found to offer greater efficiency in terms of total function
evaluations than other so-called cubic convergence methods. It is the re-use of previously computed values of the derivative
that gives our modified method its numerical efficiency compared with the standard Newton-Raphson method.

Our modified Newton-Raphson method is relatively simple and is robust; it is more likely to converge to a solution than
are either the higher order (4th order and 6th order) schemes or Newton’s method itself. A stopping criteria can be applied
to our modified Newton-Raphson method after each evaluation of either the function or its derivative. This feature is an
additional advantage in terms of overall computational efficiency compared with methods that require several function or
derivative evaluations in order to complete a full iteration.

The efficiency index (see Table 1) of our modified Newton method is 10% larger than that of Newton’s method itself
(1.5538/1.4142 ~ 1.099). The proportional increase in this efficiency index in adopting the Jarratt-type 4th order schemes
is an additional 2% (1.5874/1.5538 ~ 1.022). This rather small gain in efficiency afforded by the higher order schemes must
be balanced against the less robust nature of these higher order schemes, in that the starting values must be more carefully
chosen to ensure convergence to the root.
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