Applied
Mathematics
Letters

PERGAMON Applied Mathematics Letters 13 {2000) 87-93

www.elsevier.nl/locate/aml

A Variant of
Newton’s Method with
Accelerated Third-Order Convergence

S. WEERAKOON AND T. G. I. FERNANDO
Department of Mathematics, University of Sri Jayewardenepura
Gangodawila, Nugegoda, Sri Lanka
sweera@sjp.ac.lk

(Received July 1998; revised and accepted November 1998)

Abstract——In the given method, we suggest an improvement to the iteration of Newton’s method.
Derivation of Newton’s method involves an indefinite integral of the derivative of the function, and the
relevant area is approximated by a rectangle. In the proposed scheme, we approximate this indefinite
integral by a trapezoid instead of a rectangle, thereby reducing the error in the approximation. It
is shown that the order of convergence of the new method is three, and computed results support
this theory. Even though we have shown that the order of convergence is three, in several cases,
computational order of convergence is even higher. For most of the functions we tested, the order of
convergence in Newton’s method was less than two and for our method, it was always close to three.
© 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Newton’s method that approximates the root of a nonlinear equation in one variable using the
value of the function and its derivative, in an iterative fashion, is probably the best known and
most widely used algorithm, and it converges to the root quadratically. In other words, after
some iterations, the process doubles the number of correct decimal places or significant digits at
each iteration.

In this study, we suggest an improvement to the iteration of Newton’s method at the expense
of one additional first derivative evaluation. Derivation of Newton’s method involves an indefinite
integral of the derivative of the function, and the relevant area is approximated by a rectangle.
Here, we approximate this indefinite integral by a trapezoid instead of a rectangle, and the result
is a method with third-order convergence.

It is shown that the suggested method converges to the root, and the order of convergence is at
least three in a neighbourhood of the root, whenever the first and higher order derivatives of the
function exist in a neighbourhood of the root; i.e., our method approximately triples the number
of significant digits after some iterations. Computed results overwhelmingly support this theory,
and the computational order of convergence is even more than three for certain functions.
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2. PRELIMINARY RESULTS

DEFINITION 2.1. (See [1].) Let « € R, z, € R, n = 0,1,2,.... Then, the sequence {z,} is said
to converge to « if

lim |z, —a| =0.

n—00

If, in addition, there exists a constant ¢ > 0, an integer ny > 0, and p > 0 such that for all
n > ng,
[Znt1 — al < clzn —al?, (2.1)

then {z,} is said to converge to a with g-order at least p. If p = 2 or 3, the convergence is said
to be g-quadratic or q-cubic, respectively.

th

When e,, = z,, — « is the error in the n*" iterate, the relation

ent1 = cel + O (elth) (2.2)

is called the error equation. By substituting e, = z, — « for all n in any iterative method and
simplifying, we obtain the error equation for that method. The value of p thus obtained is called
the order of this method.

DEFINITION 2.2. Let a be a root of the function f(x) and suppose that x, 1, Tn, and x,_1 are
three consecutive iterations closer to the root a.. Then, the computational order of convergence p
can be approximated using the formula

Y ln|(:cn+1 *a)/(xn - a)|
In|(zn — @)/ (Tn-1 ~ )|’

STOPPING CRITERIA. We have to accept an approximate solution rather than the exact root,
depending on the precision (¢) of the computer. So, we use the following stopping criteria for
computer programs:

(1) [#nt1 —2n] < Ve

(i) |f(zns1)] < V2.
3. NUMERICAL SCHEMES

3.1. Newton’s Method (NM)

Newton’s algorithm to approximate the root a of the nonlinear equation f(z) = 0 is to start
with an initial approximation zj sufficiently close to o and to use the one point iteration scheme

. )
n (e

Tnp1 =7 (3.1)

where z7, is the n'! iterate. It is well known that Newton’s method as given above is quadratically
convergent.

It is important to understand how Newton’s method is constructed. At each iterative step we
construct a local linear model of our function f(x) at the point x;, and solve for the root (z},, )
of the local model. In Newton’s method (Figure 1), this local linear model is the tangent drawn
to the function f(z) at the current point ;.

The local linear model at z} is

Mn(z) = f(z7) + f' (z3,) (z — 27) - (3.2)
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Figure 1. Newton’s iterative step.
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Figure 3. Approximating the area by the trapezoid ABED.
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This local linear model can be interpreted [1] in another way. From Newton’s theorem,
x
f@ =1 @)+ [ Fovan (3.3)
z,

In Newton’s method, the indefinite integral involved in (3.3) is approximated by the rectangle
ABCD (Figure 2), i.e.,

T
fA) A~ f'(z}) (2 - 27) (34
x5
which will result in the model given in (3.2).

3.2. A Variant of Newton’s Method (VNM)
From Newton’s theorem,

f@) = fen)+ [ " FOydn (3.5)

In the proposed scheme, we approximate the indefinite integral involved in (3.5) by the trapez-
ium ABED (Figure 3), i.e.,

/ FO A= (3) @ = 2 (@) + £ (3:6)

Thus, the local model equivalent to (3.2) is

(@) = fan) + (5 ) @ = 20l o) + F0) (3.7)

Note that not only the model and the derivative of the model agree with the function f(z) and
the derivative of the function f'(x), respectively, but also the second derivative of the model and
the second derivative of the function agree at the current iterate x = z,,. Even though the model
for Newton’s method matches with the values of the slope f'(z,) of the function, it does not
match with its curvature in terms of f”(zy).

We take the next iterative point as the root of the local model (3.7)

My (Zpny1) =0,  ie,

S flon) + (1) (Ener ~ 20) [ (0n) + I (@ny1)] = 0

2
2f(xn)
[f'(zn) + f(Tns1)]
Obviously, this is an implicit scheme, which requires having the derivative of the function at the
(n 4 1)t iterative step to calculate the (n + 1)th iterate itself. We could overcome this difficulty
by making use of Newton’s iterative step to compute the (n + 1)t! iterate on the right-hand side.
Thus, the resulting new scheme is

2f(zn)
f(zn) + ' (zh41)]
4. ANALYSIS OF CONVERGENCE
THEOREM 4.1. Let f : D — R for an open interval D. Assume that f has first, second, and

third derivatives in the interval D. If f(x) has a simple root at & € D and =z is sufficiently close
to «, then the new method defined by (3.8) satisfies the following error equation:

= Tp4l = Tp —

_ f(zn)
Fian) (3.8)

$n+1=$n—[ n=0,12,..., where z;, | = z,

1
ent1 = (C% + §C3> el +0(ep), (4.1)

where e, = z, — a and C; = (1/5)fD(a)/fP (), j =1,2,3,....
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PROOF. The suggested variant of Newton’s method (VNM) is

Zf(xn)
Flan) + ' (z541)

Tn4+l = Tn — n=2012,...,

where %, = &n — f(zn)/f'(zn). Let a be a simple root of f(z) (ie., f(a) =0 and f'(«) # 0)
and 7, = a + e,. We use the following Taylor expansions:

Flow) = (a+ ea) = f(0) + FO(@)en + 3 D@l + 5/ @)el + 0 (¢h)
1P 1P ()
2 fW() 31 fW(a)
= fD() [en + Coel + Csel + O (en)],

= fW(a) e, + + 0 (e}) (4.2)

where C; = (1/i)f9(a)/fP(a). Furthermore, we have

FO () = 1V @+ ea) = F0(0) + fP(a)en + 51/ Ola)el + O (e1)
FO@en 1 fP ()6
(@) 2 )
= fW(a) [1 + 2Cae, + 3Cael + O ()] -

= W) |1+

n

Dividing (4.2) by {4.3),

}%%)5 = [en + Cae? + Cael + O ()] [1+2C2en + 3C3e2 + O (e2)] !

= [en + Cael + Csed + 0 (e})]
x {1 — [2Cse, +3C3el + O (€3)] + [2C2en + 3C3e2 + O (ef’l)]2 — }
= [en+Cae? +C3ed + O (eh)] {1 —RCaen+3Cse} +0 ()| +4C3es, + -+ (44)
= [en + Cael + O3l + O (e4)] [1 = 2Cae, + (4C3 = 3Cs) €, + O (e7)]
= en — 2022 + (4C3 — 3C3) €% + Cae? — 2C3¢5 + Ce), + O (ey)
= e, — Coe? + (202 — 2C3) €3 + O (ey) ,
O s

=a+en - [en— Cael + (203 —2C3) €5 + O (e)],  (by (4.4) (4.5)

= a+ Chel + (203 —2C3) 3 + O (e})] -
Again by (4.5) and the Taylor’s expansion,
PO (a5a) = FV (@) + [Cac? + (203 —203) b + 0 (¢)] £ P (@) + O (eh)
= fD(a) {1 + [2C2e2 +4(C5 — C3) €5 + O (e7)] [ /o) ] } (4.6)

270 (o)
= F(a) [1+2C262 +4Cy (C3 — CB) e} + O (eh)] .

Adding (4.3) and (4.6),
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3
FO (@) + FO (k) = 2fV(a) [1 + Caepn + <C§ + §C3> e 40 (ef;)] : (4.7)

From equations (4.2) and {4.7),

2f(zn) 2 3 4
= C c 0
[f(l)(:L‘n)—i-f(l) (x:t+1)] [e"+ 2€, + Csen + (en)]
-1
x [1 + Chen + (C% + :-;—C3> e+ 0 (ei)]
=len+Cae2 + C3e3+0 ()] {1 - [C’gen + (022 + %ng) e2+0 (ei)]
3 2
+ [Czen + <C22 + 503) ei +0 (ei)} -
= [en + C2€2 + Csep + O (e)] [1 ~ Che, — gcgeﬁ +0 (ef;)}

3
=€, — Cgefl - 5036?1 -+ Czei - 02262 + Cgei +0 (63)

1
=e, — (C% + §C3> ei + 0 (e‘;) .
(4.8)
Table 1.
Function o i CcOC NOFE Root
fl=z) NM|{VNM |NM |VNM |NM | VNM
1) 3 + 422 - 10 ~0.5 {109| 6 |1.98(2.96 | 218 18 1.36523001341448
5{ 3 [1.98| ND | 10 9 -Do-
5] 3 |1.99| ND | 10 9 -Do-
~0.3 | 113| 6 |1.99]3.05 | 226 18 -Do-
(2) sin?(x) — z% +1 1 4 ]1.98[3.04| 10 12 1.40449164821621
3 6] 3 [198| ND | 12 9 -Do-
(3) 22 —e* -3z +2 2 4] 4 (156]3.01 8 12 0.257530285439771
3 6] 4 |166]3.04| 12 12 -Do-
(4) cos(z) — 1 4 2 |199] ND 8 6 0.739085133214758
1.7 4| 3 l1.99| ND 8 9 -Do-
-0.3 5[ 3 [198 ND | 10 9 -Do-
5) (z—1)3 -1 3.5 71 4 l198|2.67| 14 12 2
2.5 5( 4 [1.99]2.99( 10 12 -Do-
(6) z3 - 10 1.5 5] 4 {199]3.01] 10 12 2.15443469003367
(7)  zexp(z?) —sin?(z) + 3cos(z) +5 | -2 8l 5 [1.99]2.92]| 16 15 -1.20764782713013
(8) zZsin?(x) + exp [x? cos(z) sin(z)] ~ 28| 5 9] 5 1.99|2.87| 18 15 4.82458931731526
(9) exp (x? + 7Tz — 30) — 1 35 | 11| 8 [1.99]2.96| 22 24 3
3.25] 8| 5 199]|2.81] 16 15 -Do-
NM - Newton’s method COC - Computational order of convergence
VNM - Variant of Newton’s method NOFE - Number of function evaluations

ND - Not defined i — Number of iterations to approximate the root to 15 decimal places
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Thus,

_ 2f(xn)
O (zq) + fFO (:1:;H) ’

Tyl = ITn

1 )
Enel +Q =€, +a— [en — (C’QQ + EC;;) e;i + O ((,41)} , {by (14.8)).

. 1 )
Ent+l = (CZZ + —2‘03) ei + O ((’,i/) .

Equation (4.9) establishes the third-order convergence of the VNM.

5. CONCLUSIONS

(4.9)

We have shown that VNM is at least third-order convergent provided the first, second, and
third derivatives of the function exist. Computed results (Table 1) overwhelmingly support the
third-order convergence, and for some functions the Computational Order of Convergence (COC)
is even more than three. The most important characteristic of the VNM is that unlike all other

third-order or higher order methods, it is not required to compute second or higher derivatives

of the function to carry out iterations.

Apparently, the VNM needs one more function evaluation at cach iteration, when compared
to Newton’s method. However, it is evident by the computed results (Table 1) that the total
number of function evaluations required is less than that of Newton’s method.
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