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Abstract. In this paper, we present a third-order family of Newton-like iteration methods for
solving nonlinear equations. Methods that avoid computation of second-order derivatives and
turn out to require, per iteration, one evaluation of the function and two evaluations involving
its first derivative only. Analysis of this family of methods demonstrates that its iterative
solution is cubically convergent. Numerical examples are given to illustrate the efficiency and
good performance of these rather novel methods.
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1. Introduction

Quite often in scientific and engineering practices a need arises to solve nonlinear equations
of the form,
fx  0, 1
where f : D ⊂ R → R is a scalar function and D is an open interval. In this paper, we consider
iterative methods for finding a simple root, , for this equation, i.e. f  0, while f ′ ≠ 0,
that may use f and f ′ but not the higher-order derivatives of f.

Equation (1) is well-known to be solvable iteratively by Newton’s method and a range of
its variants [13] as well as by other techniques. The solution by Newton’s method, defined by
xn1  xn −

fxn

f ′xn
, n  0, 2

—————————————
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happens to converge quadratically in some neighborhood of  [11].
Some Newton-type methods with third-order convergence that do not require the

computation of second-order derivatives have been developed in [2, 3, 7, 9, 12, 14]. Other
classes of those iterative methods invoke the Adomian decomposition method as in [1], He’s
homotopy perturbation method [5] or Liao’s homotopy analysis method [2]. One class of those
methods have been derived based on quadrature formulas for the computation of the integral

fx  fxn  
xn

x
f ′tdt, 3

arising from Newton’s theorem. Weerakoon and Fernando rederived in [14] a Newton’s
method by the rectangular rule to compute the integral of (3) and advanced, based on the
trapezoidal rule, the following modified Newton’s iteration

xn1  xn −
2 fxn

f ′xn  f ′xn − fxn/f ′xn
. 4

exhibiting a third-order convergence.
The midpoint rule for the integral of (3) was shown in [3, 12] to yield

xn1  xn −
fxn

f ′xn − fxn/2 f ′xn
. 5

The method (5) has also been independently derived by Homeier in [7] . A further multivariate
version of this method has been discussed in [4, 6].
By applying Newton’s theorem to the inverse function x  fy instead y  fx, Homeier

derived in [7]the following cubically convergent iteration scheme:

xn1  xn −
fxn
2

1
f ′xn

 1
f ′xn − fxn/f ′xn

. 6

The method leading to (6) has also been independently derived by Özban in [12].
Finally, Kou, Li and Wang considered in [9] Newton’s theorem on a new interval of

integration and arrived at the following cubically convergent iterative scheme

xn1  xn −
fxn  fxn/f ′xn

f ′xn
. 7

Any of the aforementioned methods happens to require three functional evaluations of the
given function and for its first-order derivative, but no evaluations of the second- or
higher-order derivatives. Iterative methods with a third-order convergence rate, not requiring
the computation of second-order derivatives, is both important and interesting from the
practical point of view and is an area of current active research.

In this paper, we present a rather novel family of these Newton-like third-ordr methods and
prove that their pertaining iterative solution to be cubically convergent. Their efficiency is
demonstrated by numerical examples.
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2. The Family of Iterative Methods

Let us consider the one point Newton-Cotes formula [8]


xn

x f ′tdt ≃ x − xn f ′ xn  x
2 .

Applying this formula with

x  xn −
fxn

f ′xn
,

to (3), leads obviously to the midpoint rule (5).
In this way, by using the following rule


xn

x f ′tdt ≃ x − xn1 − f ′xn   f ′xn − fxn/2 f ′xn,

to approximate the right integral of (3) and looking for fx  0, we obtain a family of new
iterative methods

xn1  xn −
fxn

1 − f ′xn   f ′xn − fxn/2 f ′xn
, 8

where  ≠ 0. A similar approximation can be found in [10].

Remark 2.1. Obviously, when   1, formula (8) becomes the midpoint rule (5). Moreover, it
becomes the trapezoidal rule (4) when   1/2. Otherwise, the family (8) is more general.

3. Convergence Analysis

In this section, we study the convergence of the family (8) of Newton-like methods.

Theorem 3.1. Let  ∈ D,an open interval, be a simple zero of sufficiently differentiable
function f : D ⊂ R → R, and let en  xn −  with ck  fk/k!. If x0 is sufficiently close to ,
then (i) the order of convergence of the solution by the methods defined in (8) is three, and (ii)
this solution satisfies the error equation
en1  − 2

c13
3  3

4 c1
2c3  6c1c22  2c22 en

3  Oen
4.

Proof. Let  be a simple zero of f. Consider the iteration function F defined by
Fx  x − fx

1− f ′x f ′x−fx/2 f ′x
,

where  ≠ 0.
From the Taylor expansion of Fxn around x  , we obtain

xn1  Fxn  F  C1en  C2en
2  C3en

3  Oen
4, 9

where en  xn −  and Ck  Fk/k!.
Taking into consideration that f  0, we have
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F  , F ′2  0 10

and

F3  − 1  1
4

f3
f ′

− 3 f22
f ′2

− f22
f ′3

. 11

Substituting (10) and (11) into (9), on the assumption that ck  fk/k! , leads to
xn1   − 1

c13
6 1  1

4 c1
2c3  12 c1c22  4 c22 en

3  Oen
4.

Therefore, we have
en1  − 2

c13
3  3

4 c1
2c3  6 c1c22  2 c22 en

3  Oen
4 ;

implying an explicit third-order convergence. Here the proof completes. 

Remark 3.1. When   −1/4 and f2  0, the method (8) provides an iterative solution
with a quartic convergence.

It is worth noting finally that the family of methods (8) includes, as a particular case, when

  3/4, the new third-order iterative solution procedure

xn1  xn −
4 fxn

f ′xn  3 f ′xn − 2 fxn/3 f ′xn
. 12

4. Numerical Examples

Computational tests for the reported family of methods were done by means of MAPLE
using 64 digit floating point arithmetics (Digits : 64). The level of approximation of the
solution (root) is directly tied to the precision  of the computer, where. This has been set at
  10−27 for all the present computations. The adopted stopping criteria for the computer
programs were: (i) |xn1 − xn|  , and (ii) |fxn1| . So, when the stopping criteria are
satisfied, computations are terminated and the emerging xn is the corresponding approximate
root . The test nonlinear functions used are the same functions previously entertained by
Weerakoon and Fernando [14], and by Chun [2]. These are namely:

f1x  sin2x − x2  1,
f2x  x2 − ex − 3 x  2,
f3x  x ex2 − sin2x  3 cos x  5,
f4x  ex2  7x −30 −1.

The numerical test results for various cubically convergent iterative schemes are
summarized in Table 1. In addition to results of the method (12), (WM), advanced in this
paper, the table reports on comparative results by the Newton method (NM), the method of
Weerakoon and Fernando (4) (WF), the method derived from midpoint rule (5) (MP), the
method of Homeier (6) (HM), the method of Kou et al. (7) (KLW), the Abbasbandy method [1]
(AM), defined by
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Table 1. Comparison of solutions by various iterative methods
Method IT NFE xn |fxn1|

f1 ; x0  1
NM 7 14 ⌉
WF 5 15
MP 5 15
AM 5 15 ∣
HM 4 12  1.4044916482153412260350868178 ; − 3.26e − 29
KLW 5 15 ∣
CM1 5 20
CM2 5 15
WM 4 12 

f2 ; x0  2
NM 6 12 ⌉
WF 5 15 ∣
MP 4 12  0.25753028543986076045536730494 ; − 1.04e − 29
AM 5 15 ∣
HM 5 15 
KLW 4 12 0.25753028543986076045536730499 ; − 1.99e − 29
CM1 4 16 ⌉
CM2 4 12  0.25753028543986076045536730494 ; − 1.04e − 29
WM 4 12 

f3 ; x0  −2
NM 9 18 ⌉
WF 7 21
MP 6 18
AM 6 18 ∣
HM 6 18  − 1.2076478271309189270094167584 ; − 8.92e − 28
KLW 4 12 ∣
CM1 6 24
CM2 6 18
WM 4 12 

f4 ; x0  3.5
NM 13 26 ⌉
WF 9 27
MP 8 24
AM 7 21 ∣
HM 8 24  3.0000000000000000000000000000 ; 0.00e − 01
KLW 8 24 ∣
CM1 9 36
CM2 9 27
WM 8 24 
_________________________________________________________________
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xn1  xn −
fxn

f ′xn
−

fxn
2 f2xn

2 f ′xn
3
−

fxn
5 f2xn

2

2 f ′xn
5

,

and Chun method [2] (CM1), defined by

xn1  xn −
fxn

f ′xn
 h 2 fxn1

∗ 

f ′xn  f ′xn1
∗ 
,

where xn1
∗  xn − fxn/f ′xn and h  −1. The results exhibited in Table 1 relate also to

another Chun method [2], (CM2), defined viz

xn1  xn −
fxn

f ′xn
 h fxn fxn1

∗ 

fxn  fxn1
∗  f ′xn

.

For each of the test functions listed above we sought an approximation xn of the root  of
equation fx  0 after n iterations. Table 1 reports moreover on the absolute values, |fxn|, for
the corresponding functions. Also displayed are the number of iterations,(IT), to approximate
the zero and the number of function evaluations (NFE). This is counted as the sum of the
number of evaluations of the function itself plus the number of evaluations of the first
derivative. The computational results show that the cubically convergent methods in general,
and the new method pertaining to(12) in particular, can be quite competitive with the standard
Newton method.

5. Conclusions

In this paper, we presented a new family of modified Newton-like methods which includes,
as two particular cases, the midpoint rule and the trapezoidal rule. The methods require, per
iteration, one evaluation of the function and two evaluations of its first-order derivative. We
have demonstrated that each family member yields a cubically convergent solution, and
observed from numerical examples that the proposed methods show at least the same
performance as that of other known methods of the same order.
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