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Abstract

In this paper, we present a class of new iterative methods, in which

f ′(x) = 0 in some points is permitted. Analysis of convergence shows

that the new methods are cubically convergent. Per iteration the new

methods require one evaluation of the function and two of its first deriva-

tive, but no evaluations of its second derivative. Thus, the new methods

have definite practical utility, which is demonstrated by numerical ex-

amples.
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1. Introduction

Solving non-linear equations is one of the most important problems in numeri-

cal analysis. In this paper, we consider iterative methods to find a simple root

of a non-linear equation f(x) = 0, where f : D ⊂ R → R for an open interval

D is a scalar function. Newton method is an important and basic method

[1], which converges quadratically. Recently, a class of new modified Newton

methods with cubic convergence has been developed [2-8]. These methods are

very important and interesting because they do not require the second deriva-

tive of f(x), different from the methods that involve second derivatives (for a

recent review of the latter methods, see [9]).

However, we know that Newton method require initial approximations suf-

ficiently close to the required root. Especially the condition f ′(x) �= 0 in a

neighborhood of the required root is severe indeed for convergence of Newton

method and its applications is restricted. Similar to Newton method, these

modified Newton methods have also such problem which restricts their appli-

cations.

For resolving the above problem of Newton method, Wu proposes a class

of Newton-like methods [10]

xn+1 = xn − f(xn)

f ′(xn) + λnf(xn)
, (1)

where λn ∈ R, 0 <| λn |< +∞ and λn is chosen such that the corresponding

function values λnf(xn) and f ′(xn) have the same signs. This class of meth-

ods converges quadratically under the condition λnf(xn) + f ′(xn) �= 0, while

f ′(xn) = 0 in some points is permitted. However, it is to be expected resolv-

ing such problem of the above modified Newton methods. As these modified

Newton methods are preferable to Newton method in many cases [3, 5], for ex-

panding their applications, it is very necessary to remove the severe condition

f ′(x) �= 0 in a neighborhood of the required root.

The main aim of this paper is to extend the results in [10] to the above

modified Newton methods with cubic convergence. We firstly present a new

third-order iterative method with second derivative, which permits f ′(x) = 0

in some points. Then, by replacing the second derivative with a finite differ-
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ence quotient between the first derivatives, we obtain a class of new iterative

methods with cubic convergence, in which the severe condition f ′(x) �= 0 is

removed. As particular cases, we introduce two methods of this class of meth-

ods, which may be viewed as variants of the above modified Newton methods.

Numerical experiments show that these new methods are efficient alternatives

in many cases where some modified Newton methods are not successful.

2. Third-order method with second derivative

To derive the proposed methods, we firstly consider a new iterative method

with second derivative

xn+1 = xn − (Lf (xn) + f ′(xn) + μnf(xn)) f(xn)(
Lf (xn) + f ′(xn) + 1

2
μnf(xn)

)2 , (2)

where

Lf (xn) = −1

2

f ′′(xn)f(xn)

f ′(xn) + λnf(xn)

and λn ∈ R, 0 < |λn| < +∞ and μn ∈ R, 0 < |μn| < +∞ with n = 0, 1, 2, · · ·
are parameters. These parameters are chosen such that sign(λnf(xn)) =

sign(f ′(xn)) and sign(μnf(xn)) = sign(Lf (xn) + f ′(xn)) , where

sign(x) =

{
1 if x ≥ 0

−1 if x < 0

is the sign function. The scheme (2) may be viewed as a new variant of well

known Halley’s method [11] with cubic convergence, but different from Halley’s

method, f ′(x) = 0 in some points is permitted. For (2), we have

Theorem 1 Assume that the function f : D ⊂ R → R for an open interval

D has a simple root x∗ ∈ D. If f(x) has first, second and third derivatives in

the interval D, then the method defined by (2) converges cubically to x∗ in a

neighborhood of x∗.

Proof. Let en = xn − x∗. Using Taylor expansion, we have

f(x∗) = f(xn) − f ′(xn)en +
1

2
f ′′(xn)e2

n − 1

6
f (3)(xn)e3

n + O(e4
n).
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Taking into account f(x∗) = 0, we have

f(xn) = f ′(xn)en − 1

2
f ′′(xn)e2

n +
1

6
f (3)(xn)e3

n + O(e4
n). (3)

Furthermore, we have

Lf (xn) = −1

2

f ′′(xn)
(
f ′(xn)en − 1

2
f ′′(xn)e2

n + O(e3
n)

)
f ′(xn) + λnf(xn)

. (4)

From the relation

f ′(xn)

f ′(xn) + λnf(xn)
= 1 − λnf(xn)

f ′(xn) + λnf(xn)
= 1 − λnf ′(xn)en + O(e2

n)

f ′(xn) + λnf(xn)
,

the equation (4) becomes

Lf (xn) = −1

2
f ′′(xn)en +

1

2

f ′′(xn)
(
λnf ′(xn)e2

n + 1
2
f ′′(xn)e2

n + O(e3
n)

)
f ′(xn) + λnf(xn)

.

Thus, we have

Lf (xn)en + f ′(xn)en − f(xn) =
1

2

f ′′(xn)
(
λnf ′(xn) + 1

2
f ′′(xn)

)
f ′(xn) + λnf(xn)

e3
n

−1

6
f (3)(xn)e3

n + O(e4
n). (5)

Since we have(
Lf(xn) + f ′(xn) + 1

2
μnf(xn)

)2

Lf (xn) + f ′(xn) + μnf(xn)
=

Lf (xn) + f ′(xn) +
1

4

μ2
nf(xn)2

Lf (xn) + f ′(xn) + μnf(xn)
,

the equation (2) can be expressed as

xn+1 = xn − f(xn)

Lf (xn) + f ′(xn) + 1
4

μ2
nf(xn)2

Lf (xn)+f ′(xn)+μnf(xn)

,

en+1 = en − f(xn)

Lf(xn) + f ′(xn) + 1
4

μ2
nf(xn)2

Lf (xn)+f ′(xn)+μnf(xn)

,

en+1 =
Lf(xn)en + f ′(xn)en − f(xn) + 1

4
μ2

nf(xn)2en

Lf (xn)+f ′(xn)+μnf(xn)

Lf (xn) + f ′(xn) + 1
4

μ2
nf(xn)2

Lf (xn)+f ′(xn)+μnf(xn)

. (6)
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Substituting (5) into (6) and using f(xn)2en = f ′(xn)2e3
n, we have

en+1 =

[
f ′′(xn)(λnf ′(xn)+ 1

2
f ′′(xn))

2(f ′(xn)+λnf(xn)) − 1
6f (3)(xn) + 1

4
μ2

nf ′(xn)2

Lf (xn)+f ′(xn)+μnf(xn)

]
e3
n + O(e4

n)

Lf (xn) + f ′(xn) + 1
4

μ2
nf(xn)2

Lf (xn)+f ′(xn)+μnf(xn)

.

Therefore, we have

lim
n→+∞

en+1

e3
n

=
1

4
μ2 +

1

2
λ

f ′′(x∗)
f ′(x∗)

+
1

4

f ′′(x∗)2

f ′(x∗)2
− 1

6

f (3)(x∗)
f ′(x∗)

.

This means that the method defined by (2) is cubically convergent. �

3. Second-derivative-free methods

In (2), the severe condition f ′(x) �= 0 in some neighborhood of the root x∗ is

removed, but the second derivative f ′′(x) is yet required and the required meth-

ods are not derived. So we will present a class of new second-derivative-free

iterative methods, based on iterative formula (2) in which the second derivative

is replaced with a finite difference quotient between the first derivatives.

Now, we consider a finite difference quotient

f ′′(xn) � f ′(yn) − f ′(xn)

yn − xn
,

where

yn = xn − α
f(xn)

f ′(xn) + λnf(xn)
, α ∈ R, α �= 0. (7)

Then, from (2) we obtain a class of new iterative methods free from second

derivatives

xn+1 = xn − (H(α, xn) + μnf(xn)) f(xn)(
H(α, xn) + 1

2
μnf(xn)

)2 , (8)

where H(α, xn) = 1
2α

f ′(yn) + (1 − 1
2α

)f ′(xn) and yn is defined by (7). The

parameters λn and μn are chosen such that sign(λnf(xn)) = sign(f ′(xn)) and

sign(μnf(xn)) = sign(H(α, xn)) respectively.

If considering the different values of the parameter α in (8), we can obtain a

class of new iterative methods that includes, as particular cases, the following
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ones:

1. As a limit case, when α → 0, the method defined by (2) is obtained.

2. For α = 1, we obtain a new third-order method

xn+1 = xn − (H(1, xn) + μnf(xn)) f(xn)(
H(1, xn) + 1

2
μnf(xn)

)2 , (9)

where H(1, xn) = (f ′(yn)+ f ′(xn))/2 and yn = xn − f(xn)/(f ′(xn)+λnf(xn)).

This method is the required variant of the method presented in [2]

xn+1 = xn − 2f(xn)

f ′
(
xn − f(xn)

f ′(xn)

)
+ f ′(xn)

. (10)

3. For α = 1
2
, we obtain another new third-order method

xn+1 = xn − (f ′(yn) + μnf(xn)) f(xn)(
f ′(yn) + 1

2
μnf(xn)

)2 , (11)

where yn = xn − 1
2
f(xn)/(f ′(xn) + λnf(xn)). This method is the required

variant of the method presented in [3-5]

xn+1 = xn − f(xn)

f ′
(
xn − 1

2
f(xn)
f ′(xn)

) . (12)

We can see that iterative formulae (9) and (11) can remove the severe con-

dition f ′(x) �= 0 which is necessary to iterative formulae (10) and (12) . Per

iteration the new methods defined by (8) , including iterative formulae (9) and

(11) , also require one evaluation of the function and two of its first derivative,

but no evaluations of its second derivative. Thus, the new methods may be

preferable in more cases, especially where sufficiently good initial approxima-

tions to the required root is not provided or the first derivative f ′(x) is small

or even equal to zero in a neighborhood of the required root. For (8), we have

Theorem 2 Under the conditions of Theorem 1, the methods defined by (8)

converge cubically to x∗ in a neighborhood of x∗.

Proof. Let en = xn −x∗ and dn = yn −xn, where yn is defined by (7). Similar

to the proof of Theorem 1, we have the equation (3) and then we have

dn = −α
f(xn)

f ′(xn) + λnf(xn)
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= −α
f ′(xn)en − 1

2
f ′′(xn)e2

n

f ′(xn) + λnf(xn)
+ O(e3

n)

= −αen + α
λnf ′(xn) + 1

2
f ′′(xn)

f ′(xn) + λnf(xn)
e2

n + O(e3
n). (13)

Expanding f ′(yn) about xn , we have

f ′(yn) = f ′(xn) + f ′′(xn)dn +
1

2
f (3)(xn)d2

n + O(d3
n),

and then from (13), we have

f ′(yn) = f ′(xn) − αf ′′(xn)en + α
λnf

′(xn)f ′′(xn) + 1
2
f ′′(xn)2

f ′(xn) + λnf(xn)
e2

n

+
1

2
α2f (3)(xn)e2

n + O(e3
n). (14)

Thus, we have

H(α, xn) = f ′(xn) − 1

2
f ′′(xn)en +

1

2

λnf ′(xn)f ′′(xn) + 1
2
f ′′(xn)2

f ′(xn) + λnf(xn)
e2

n

+
1

4
αf (3)(xn)e2

n + O(e3
n). (15)

Since from (8) we have

en+1 = en − f(xn)

H(α, xn) + 1
4

μ2
nf(xn)2

H(α,xn)+μnf(xn)

=
H(α, xn)en + 1

4
μ2

nf(xn)2

H(α,xn)+μnf(xn)
en − f(xn)

H(α, xn) + 1
4

μ2
nf(xn)2

H(α,xn)+μnf(xn)

,

using f(xn)2en = f ′(xn)2e3
n and from (3) and (15), we have

en+1 =

[
f ′′(xn)(λnf ′(xn)+ 1

2
f ′′(xn))

2(f ′(xn)+λnf(xn)) + (α
4 − 1

6)f (3)(xn) + 1
4

μ2
nf ′(xn)2

H(α,xn)+μnf(xn)

]
e3
n + O(e4

n)

H(α, xn) + 1
4

μ2
nf(xn)2

H(α,xn)+μnf(xn)

.

Therefore, we have

lim
n→+∞

en+1

e3
n

=
1

4
μ2 +

1

2
λ

f ′′(x∗)
f ′(x∗)

+
1

4

f ′′(x∗)2

f ′(x∗)2
+ (

α

4
− 1

6
)
f (3)(x∗)
f ′(x∗)

.

This means that the methods defined by (8) are cubically convergent. �
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4. Numerical examples

Now we employ new iterative methods (9) and (11) with |λn| = |μn| = 1

to solve some non-linear equations and compare these methods with iterative

formulae (10) and (12). The computational results are displayed in Tables 1

and 2 respectively. From examples 1-3, we can see that iterative formulae (9)

and (11) can remove the severe condition f ′(x) �= 0. From examples 4-5, we

can see that iterative formulae (9) and (11) are possible in global convergence.

Therefore, the new methods may succeed in convergence in case the initial

approximation is far from the required root or the derivative is small or even

equal to zero in a neighborhood of the required root.

Example 1. f(x) = x3 − 3x + 1, x0 = 1.

Example 2. f(x) = x sin(x) + cos(x) − 1.5, x0 = 0.

Example 3. f(x) = e−x + 2 sin(x) − x + 3, x0 = 0.

Example 4. f(x) = ln(x − 1), x0 = 16.

Example 5. f(x) = arctan(x), x0 = 8.

Table 1. Comparison of iterative formulae (9) and (10)
Example Iterative method (9) Iterative method

(10)

n xn |f(xn)|
1 3 0.3472963553338606 2.22e-16 divergence

2 4 -1.2460765069513031 2.22e-16 failure

3 4 3.1092692039941778 8.88e-15 failure

4 8 1.9999999999999645 3.55e-14 divergence

5 5 -8.27181e-25 8.27e-25 divergence

Table 2. Comparison of iterative formulae (11) and (12)
Example Iterative method (11) Iterative method

(12)

n xn |f(xn)|
1 4 0.3472963553338607 2.22e-16 divergence

2 4 -1.2460765069513000 1.11e-15 failure

3 4 3.1092692039941796 3.55e-15 failure

4 7 1.9999999999999998 2.22e-16 divergence

5 5 1.48866e-19 1.49e-19 divergence
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5. Conclusions

We have obtained a class of new third-order methods free from second deriva-

tive for solving the problem mentioned in Section 1. This class of new methods

removes the severe condition f ′(x) �= 0 in a neighborhood of the root. Thus,

these new methods may succeed in convergence in case sufficiently good initial

approximations to the required root is not provided or the derivative is small

or even equal to zero in a neighborhood of the required root. From a practical

point of view, the new methods have the definite practical utility.
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