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Abstract In this paper we construct a new third-order iterative method for solving nonlinear equations for simple roots
by using inverse function theorem. After that a class of optimal fourth-order methods by using one function and two first
derivative evaluations per full cycle is given which is obtained by improving the existing third-order method with help of
weight function. Some physical examples are given to illustrate the efficiency and performance of our methods.
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1 Introduction
Nonlinear equations plays an important role in science and engineering. Finding an analytic solution is not always

possible. Therefore, numerical methods are used in such situations. The classical Newton’s method is the best known
iterative method for solving nonlinear equations. To improve the local order of convergence and efficiency index, many
modified third-order methods have been presented in literature. For detail we refer [[16], [9], [1], [15], [5]] and references
therein.

Recently Ardelean [3] established Bisectrix Newton’s Method (BN), which is given by

xn+1 = xn − (f ′(xn) + f ′(yn))f(xn)

f ′(xn)f ′(yn) +
√

(1 + f ′(xn)2)(1 + f ′(yn)2)− 1
, n ≥ 0, (1.1)

where yn = xn − f(xn)
f ′(xn)

. The method is third-order convergent for simple roots and its efficiency index is 31/3 = 1.4422.
Weerakoon et al. [16] used Newton’s theorem

f(x) = f(xn) +

∫ x

xn

f ′(t)dt (1.2)

and approximated the integral by trapezoidal rule, i.e.∫ x

xn

f ′(t)dt =
(x− xn)

2
[f ′(xn) + f ′(x)], (1.3)

obtained the following variant of the Newton method

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(yn)
, (1.4)

where yn = xn − f(xn)
f ′(xn)

. It is shown that this is third-order. Many authors used this idea to approximate the integral∫ x

xn
f ′(t)dt by different rule. For more detail, one can see [ [12], [13], [14], [8], [9], [15], [5] ] and the references there in.
If we approximated the integral in (1.2) by∫ x

xn

f ′(t)dt = (x− xn)

[
f ′(xn)f

′(x) +
√
(1 + f ′(xn)2)(1 + f ′(x)2)− 1

(f ′(xn) + f ′(x))

]
, (1.5)
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we get the same formula (1.1).
Next Homeier [9] used Newton’s theorem (1.2) for the inverse function x = f−1(y) = g(y) instead of y = f(x), that is

g(y) = g(yn) +

∫ y

yn

g′(s)ds. (1.6)

Then the method (1.4) takes the form

xn+1 = xn − f(xn)

2

[
1

f ′(xn)
+

1

f ′(yn)

]
, (1.7)

where yn = xn − f(xn)
f ′(xn)

. This method is again third-order.
Here we state following definitions:

Definition 1.1. Let f(x) be a real function with a simple root α and let xn be a sequence of real numbers that converge
towards α. The order of convergence m is given by

lim
n→∞

xn+1 − α

(xn − α)m
= ζ ̸= 0, (1.8)

where ζ is the asymptotic error constant and m ∈ R+.

Definition 1.2. Let β be the number of function evaluations of the new method. The efficiency of the new method is measured
by the concept of efficiency index [17, 11] and defined as

µ1/β , (1.9)

where µ is the order of the method.

Kung and Traub [10] presented a hypothesis on the optimality of roots by giving 2n−1 as the optimal order. This means
that the Newton iteration by two evaluations per iterations is optimal with 1.414 as the efficiency index. By taking into
account the optimality concept many authors have tried to build iterative methods of optimal higher order of convergence.

This paper is organized as follows: in section 2, we describe the new third-order iterative method by using the concept of
inverse function theorem. In the next section we optimize the method of Chun et. al [4] with help of weight function. Finally
in the last section we give some physical example and our new methods are compared in the performance with some well
known methods.

2 Development of the method and convergence analysis
In this section we use the concept of inverse function to derive variants of Bisectrix Newton’s Method. In the formula

(1.1), function y = f(x) has been used. Here we use inverse function x = f−1(y) = g(y) instead of y = f(x). Then we
have

g(y) = g(yn) +

∫ y

yn

g′(s)ds

= g(yn) + (y − yn)

[
g′(yn)g

′(y) +
√

(1 + g′(yn)2)(1 + g′(y)2)− 1

(g′(yn) + g′(y))

]
,

(2.1)

where yn = f(xn). Now using the fact that g′(y) = (f−1)
′
(y) = [f ′(x)]−1 and that y = f(x) = 0, we obtain the following

method:

xn+1 = xn − f(xn)

[
1 +

√
(1 + f ′(xn)2)(1 + f ′(yn)2)− f ′(xn)f

′(yn)

f ′(xn) + f ′(yn)

]
. (2.2)

where

yn = xn − f(xn)

f ′(xn)
. (2.3)

Now we prove that order of convergence of this method is also three.

Theorem 2.1. Let the function f have sufficient number of continuous derivatives in a neighborhood of α which is a simple
root of f, then the method (2.2) has third-order convergence.
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Proof. Let en = xn−α be the error in the nth iterate and ch = f(h)(α)
h! , h = 1, 2, 3.... We provide the Taylor series expansion

of each term involved in (2.2). By Taylor expansion around the simple root in the nth iteration, we have

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c55e

5
n + c6e

6
n +O(e7n)] (2.4)

and, we have

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c55e

4
n + 6c6e

5
n +O(e6n)]. (2.5)

Further more it can be easily find

f(xn

f ′(xn)
= en − c2e

2
n + (2c22 − 2c3)e

3
n + ........+O(e6n). (2.6)

By considering this relation, we obtain

yn = α+ c2e
2
n + 2(c3 − c22)e

3
n + ......+O(e6n). (2.7)

At this time, we should expand f ′(yn) around the root by taking into consideration (2.7). Accordingly, we have

f ′(yn) = f ′(α)[1 + 2c22e
2
n + (4c2c3 − 4c32)e

3
n + ...+O(e6n)]. (2.8)

By consider the above mentioned relations (2.4), (2.5) and (2.8) in the equation (2.2), we can find

en+1 =

(
c22

1 + f ′(α)2
+

c3
2

)
e3n +O(e4n). (2.9)

This confirms the result.

3 Optimal fourth-order iterative method
By using circle of curvature concept Chun et. al. [4] constructed a third-order iterative methods defined by

yn = xn − f(xn)

f ′(xn)
,

xn+1 = xn − 1

2

[
3− f ′(yn)

f ′(xn)

]
f(xn)

f ′(xn)
. (3.1)

The order of this method three is with three (one derivative and two function) evaluations per full iteration. Clearly its
efficiency index (31/3 ≈ 1.4422) is not high (optimal= (41/3 ≈ 1.5844). We now make use of weight function approach to
build our optimal class based on (3.1) by a simple change in its first step. Thus we consider

yn = xn − a
f(xn)

f ′(xn)
,

xn+1 = xn − 1

2

[
3− f ′(yn)

f ′(xn)

]
f(xn)

f ′(xn)
×G(t). (3.2)

where G(t) is a real-valued weight function with t = f ′(yn)
f ′(xn)

and a is a real constant. The weight function should be chosen
such that order of convergence arrives at optimal level four without using more function evaluations. The following theorem
indicates under what conditions on the weight functions and constant a in (3.2), the order of convergence will arrive at the
optimal level four:

Theorem 3.1. Let the function f have sufficient number of continuous derivatives in a neighborhood of α which is a simple
root of f, then the method (3.2) has fourth-order convergence, when a = 2/3 and the weight function G(t) satisfies the
following conditions

G(1) = 1, G
′
(1) =

−1

4
, G

′′
(1) = 2,

∣∣∣G(3)(1)
∣∣∣ ≤ +∞, (3.3)

and the error equation is given by (3.8).

Proof. Using (2.4) and (2.5) and a = 2/3 in the first step of (3.2), we have

yn = α+
en
3

+
2c2e

2
n

3
+

4(c3 − c22)e
3
n

3
+ ...+O(e6n). (3.4)
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Now we should expand f ′(yn) around the root by taking into consideration (3.4).Thus, we have

f ′(yn) = f ′(α)

[
1 +

2c2en
3

+
(4c22 + c3)e

2
n

3
+ ...+O(e6n)

]
. (3.5)

Furthermore, we have

f ′(yn)

f ′(xn)
= 1− 2c2

3
en +

(
4c22 −

8c3
3

)
e2n + ...+O(e6n). (3.6)

By virtue of (3.6) and (3.3), we attain

1

2

[
3− f ′(yn)

f ′(xn)

]
f(xn)

f ′(xn)
×G(t)

= en +

[
c2c3 −

c4
9

+− 1

81
{309 + 32H(3)(1)}c32

]
e4n +O(e5n). (3.7)

Finally using (3.7) in (3.2), we can have the following general equation, which reveals the fourth-order convergence

en+1 = xn+1 − α

= xn − 1

2

[
3− f ′(yn)

f ′(xn)

]
f(xn)

f ′(xn)
×G(t)− α

=

[
−c2c3 +

c4
9

+
1

81
{309 + 32G(3)(1)}c32

]
e4n +O(e5n). (3.8)

This proves the theorem.

It is obvious that our novel class of iterations requires three evaluations per iteration, i.e. two first derivative and one
function evaluations. Thus our new methods are optimal. Now by choosing appropriate weight functions as presented in
(3.2), we can give number of optimal two-step iterative methods. Here we are giving one of them as follows:

yn = xn − 2

3

f(xn)

f ′(xn)
,

xn+1 = xn − 1

2

[
3− f ′(yn)

f ′(xn)

] [
9

4
− 9

4

f ′(yn)

f ′(xn)
+

(
f ′(yn)

f ′(xn)

)2
]

f(xn)

f ′(xn)
. (3.9)

where its error equation is

en+1 =

[
−c2c3 +

c4
9

+
309

81
c32

]
e4n +O(e5n). (3.10)

4 Examples
In this section we give some physical examples and compare our methods with other some well known methods. Here all

the computations have been done by using Mathematica 8. We consider the number of decimal places as follows: 200 digits
floating point (SetAccuracy = 200) with SetAccuracy command. The test of examples from (4.1) to (4.3) are listed in the
Table 1 to 3 respectively. We compare the performance of our third-order method (M1) (2.2) and fouth-order (M2) (3.10)
method with Newton method (NM), Weerakkon method (WKM) (1.4), Hommeier method (HMM) (1.7), Bisectrix Newton
method (BNM) (1.1), Chun method (CHM) (3.1), method (6) (KHM) of [18] and method (17) (SNM) of [7] respectively.

Example 4.1[2] Consider Plank’s radiation law

ϕ(λ) =
8πchλ−5

ech/λkT − 1
,

where λ is the wavelength of the radiation, t is the absolute temperature of the blackbody, k is Boltzmann’s constant, h is the
Planck’s constant and c is the speed of light. This formula calculate the energy density within an isothermal blackbody. Now
we want to find wavelength λ which maximize energy density ϕ(λ). For maximum of ϕ(λ), it can easily seen that

(ch/λkT )ech/λkT

ech/λkT − 1
= 5.

Let x = ch/λkT , then it becomes

e−x = 1− x/5. (4.1)
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Table 1. Errors Occurring in the estimates of the root of function f1 by the methods described below with initial guess x0 = 5.

Methods |x1 − α| |x2 − α| |x3 − α|
NM 0.21464e-4 0.83264e-11 0.12530e-23
WKM 0.11208e-6 0.37810e-23 0.14517e-72
HMM 0.12544e-6 0.59456e-23 0.63310e-72
BNM 0.11256e-6 0.38466e-23 0.15352e-72
CHM 0.98734e-7 0.22705e-23 0.27611e-73
M1 0.11256e-6 0.38466e-23 0.15352e-72
SNM 0.14780e-5 0.47702e-23 0.51761e-93
KHM 0.47426e-9 0.16796e-40 0.26148e-166
M2 0.42864e-9 0.10085e-40 0.30899e-167

Now the above equation can be rewritten as

f1(x) = e−x − 1 + x/5. (4.2)

Our aim to find the root of the equation f1(x) = 0. Clearly zero is its one root, which is not of our interest. If we take x = 5,
then R.H.S. of (4.2) becomes zero and L.H.S. is e−5 ≈ 6.74× 10−3. This implies one root of the equation f1(x) = 0 is near
to 5. So that here we compare some well known methods to our methods with initial guess 5, which are given in table 1.

Example 4.2 [6] The depth of embedment x of a sheet-pile wall is governed by the equation:

x =
x3 + 2.87x2 − 10.28

4.62
.

It can be rewritten as

f2(x) =
x3 + 2.87x2 − 10.28

4.62
− x.

An engineer has estimated the depth to be x = 2.5. Here we find the root of the equation f2(x) = 0 with initial guess 2.5 and
compare some well known methods to our methods, which are given in table 2.

Table 2. Errors Occurring in the estimates of the root of function f2 by the methods described below with initial guess x0 = 2.5.

Methods |x1 − α| |x2 − α| |x3 − α|
NM 0.85925e-1 0.32675e-2 0.50032e-5
WKM 0.18271e-1 0.14770e-5 0.79610e-18
HMM 0.49772e-2 0.33027e-8 0.95318e-27
BNM 0.54594e-2 0.63617e-8 0.10016e-25
CHM 0.27815e-1 0.95903e-5 0.41254e-15
M1 0.54594e-2 0.63617e-8 0.10016e-25
SNM 0.26594e-1 0.32982e-6 0.76311e-26
KHM 0.14965e-1 0.45484e-7 0.40826e-29
M2 0.80338e-2 0.15138e-8 0.19455e-35

Example 4.3 [6] The vertical stress σz generated at point in an elastic continuum under the edge of a strip footing sup-
porting a uniform pressure q is given by Boussinesq’s formula to be:

σz =
q

π
{x+ Cosx Sinx}

A scientist is interested to estimate the value of x at which the vertical stress σz will be 25 percent of the footing stress q.
Initially it is estimated that x = 0.4. The above can be rewritten as for σz is equal to 25 percent of the footing stress q:

f3(x) =
x+ Cosx Sinx

π
− 1

4
.

Now we find the root of the equation f3(x) = 0 with initial guess 0.4 and compare some well known methods to our
methods, which are given in table 3.



288 A Class of Iterative Methods for Solving Nonlinear Equations with Optimal Fourth-order Convergence

Table 3. Errors Occurring in the estimates of the root of function f3 by the methods described below with initial guess x0 = 0.4.

Methods |x1 − α| |x2 − α| |x3 − α|
NM 0.10737e-3 0.50901e-8 0.11442e-16
WKM 0.20631e-6 0.53436e-21 0.92858e-65
HMM 0.52795e-6 0.19743e-19 0.10325e-59
CHM 0.93064e-6 0.20624e-18 0.22446e-56
M1 0.42239e-7 0.13373e-23 0.42435e-73
SNM 0.86290e-7 0.78612e-28 0.54150e-112
KHM 0.52074e-7 0.67319e-29 0.18803e-116
M2 0.25102e-8 0.17099e-30 0.36814e-123

5 Conclusion
In this present paper we have given a new third-order and a class of the optimal fourth-order iterative methods for simple

roots for solving nonlinear equations. The third-order method is obtained by using inverse function theorem and the class op-
timal fourth-order method is obtained with help of weight function using in the existing third-order method without using any
function evaluations. Three physical examples are given to illustrate the superior performance of our methods by comparing
them with some well existing third and fourth-order iterative methods.
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