
1 

 

Very Brief Comments on the Results 
By 

Namir Shammas 

 

On April 3, 2017, I started a thread on www.hpmuseum.com discussing new root-

seeking algorithms (see http://www.hpmuseum.org/forum/thread-8092.html). The 

discussion brought several external links, shared by others, for several modified 

Newton’s methods. I visited these links and similar ones to obtain a current survey 

for modified Newton’s methods. The ZIP file in which you found this file has an 

Excel file and several PDF files for the source articles that I collected. 

The Excel file Newton Modifications April 2017.xlsm contains several spreadsheets 

that compares Newton’s method with 58 other modifications of Newton’s method. 

The VBA code (in the ThisWorkbook module) has a subroutine Go() which contains 

code and comments that site the reference articles and equations used and the method 

applied. Please note the following: 

• Some articles site other methods, which I also included in the tests. 

• Some articles present families of root-seeking algorithms. In this case, I have 

presented several examples of these algorithm instances. 

• Each method sites the reference article’s author, full title, and publication 

name and date. 

• I include PDF files associated with the sited reference in the VBA comments. 

The names of these PDF files are made up of: 

o The last name of the lead author. 

o A leading part of the article’s full title. I use part of the full title to keep 

the filename relatively short. 

The Excel workbook contains several worksheets. Each worksheet test for a specific 

nonlinear function with a given initial guess and tolerance value. The output for each 

algorithm tested comprises of two columns—the current guess value and its related 

function value. At the end of the values appears the number of function calls. The 

macro SUB doAll() allows you to quickly recalculate the roots for all the examples 

using all of the root-seeking methods. If you examine the VBA code in subroutine 

Go() (in the ThisWorkbook module) you see that the code for each algorithm has its 

own error handler. Such error handlers allow the code execution to resume to the 

http://www.hpmuseum.com/
http://www.hpmuseum.org/forum/thread-8092.html


2 

 

next algorithm if a run-time error occurs in the current algorithm. When a runtime 

error occurs, you will see that the tabulated results of the offending algorithm, in a 

worksheet, has NO function calls count! Displaying the current number of function 

calls as a regular result under runtime error would be misleading! 

The Summary worksheet displays a summary for all the algorithms and for all the 

worksheets (except CustomRoots1 which is very difficult to solve). The Summary 

worksheet tabulates the number of iterations and function calls for each algorithm. 

If an algorithm experiences a runtime error, the VBA code inserts the value of 1 

million as the number of function calls  

Rows 39 and 40 contain the mean number of iterations and the mean function calls 

for each algorithm based on the examples. Row 41 calculates special weight factors 

that combine the number of iterations and the function calls using: 

Wt = wt*iterations + fx_Calls 

The value of wt appears in cell B42 (current set to 0.65). The above formula shows 

that I put more weight to the number of function calls than the number of iterations. 

The weight factor makes it easier to rank values that combine both the number of 

iterations and function calls. You can alter the value for the weight in cell B42 value. 

This change allows you to see how the results of the ranks in rows 44, 45, and 46 

change. 

The VBA code associated with the Summary worksheet contains SUB 

GetSummary() that will populate rows 2 to 36 in the worksheet Summary, using the 

results in all of the other worksheets, except CustomRoots. Use this subroutine to 

update the data in rows 2 to 36. This allows you to update the entries for different 

initial guess, tolerance values, and even test different equations. If you add more 

worksheets to test additional functions, you need to insert blank rows (using Excel’s 

Insert command) to push down rows 39 and below. You may also need to update the 

cells ranges used in the average-calculating formulas in rows 39 and 40 to cover the 

additional rows. I strongly suggest that you make a copy of the Excel file and 

experiment with that copy. 

Rows 44, 45, and 46 rank the values of the mean iterations, mean function calls, and 

weight factors. I will focus on the results of the weight factors next. 

The best weight factor (which combines the best values for the number of iterations 

and function calls) belongs to the Grau algorithm. 



3 

 

The second-best weight factor belongs to the Potra-Ptak algorithm. The third best 

weight factor belongs to Rahimi 1 algorithm. 

In general, the various modified Newton algorithms reach their solutions in fewer 

iterations that Newton’s method. However, this advantage comes usually at a price 

of high number of function calls. You will find several algorithms that do better that 

Newton in both the number of iterations AND function calls. 

Another interesting aspect is that most of the modified Newton algorithms use one 

or more intermediate refined guesses for the root per iteration. This approach is 

inspired by Ostrowski’s modification for Newton’s method. 


