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Abstract

In this paper, we present a new iterative method for solving nonlinear algebric equations by using modified homotopy
perturbation method. We also discuss the convergence criteria of the present method. To assess its validity and accuracy,
the method is applied to solve several test problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The development of numerical techniques for solving nonlinear algebraic equations is a subject of consid-
erable interest. There are many papers that deal with nonlinear algebraic equations, e.g., Golbabai and Javidi
[1], Chun [2], Noor and Noor [3,4], Basto et al. [5], Abbasbandy [6], Babolian and Biazar [7], Jafari and Gejji
[8], He [9]. A more extensive list of references as well as a survey on progress made on this class of problems
may be found in Noor [10].

In the recent paper, a numerical method based on modified homotopy perturbation method is proposed for
solving nonlinear equation f(x) = 0. The proposed method is applied to solve test problems in order to assess
its validity and accuracy.
2. Modified homotopy perturbation method

The application of homotopy perturbation method in linear and nonlinear problems has been devoted by
scientists and engineers, because this method is to continuously deform a simple problem which is easy to solve
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into the under study problem which is difficult to solve. This method was proposed first by He in 1997 and
systematical description in 2000 which is, in fact, a coupling of the traditional perturbation method and
homotopy in topology [11]. This method was further developed and improved by He and applied to nonlinear
oscillators with discontinuities [12], nonlinear wave equations [13], asymptotology [14], boundary value
problem [15], limit cycle and bifurcation of nonlinear problems [16] and many other subjects. Thus He’s
method is a universal one which can solve various kinds of nonlinear equations. After that many researchers
applied the method to various linear and nonlinear problems: Abbasbandy [17], Ariel et al. [18], Ganji and
Sadighi [19], Rafei and Ganji [20], Siddiqui et al. [21], Ghasemi et al. [22], El-Shahed [23], Javidi and Golbabai
[24].

Consider the nonlinear algebraic equation
f ðxÞ ¼ 0; x 2 R: ð1Þ

We assume that r is a simple zero of Eq. (1) and k is an initial guess sufficiently close to r.
Using the Taylor’s series around k for Eq. (1), we have
f ðkÞ þ ðx� kÞf 0ðkÞ þ 1

2
ðx� kÞ2f 00ðkÞ ¼ 0: ð2Þ
We can rewrite Eq. (2) in the following form
x ¼ cþ NðxÞ; ð3Þ

where
c ¼ k� f ðkÞ
f 0ðkÞ ð4Þ
and
NðxÞ ¼ � 1

2
ðx� kÞ2 f 00ðkÞ

f 0ðkÞ : ð5Þ
To illustrate basic ideas of modified homotopy perturbation method, we construct a homotopy
H : ðR� ½0; 1�Þ � R! R for Eq. (3), which satisfies
Hð-; b; hÞ ¼ -� c� bNð-Þ þ bð1� bÞh ¼ 0; h;- 2 R; b 2 ½0; 1�; ð6Þ

where h is an unknown real number and b is embedding parameter.

It is obvious that
Hð-; 0; hÞ ¼ -� c ¼ 0; ð7Þ
Hð-; 1; hÞ ¼ -� c� Nð-Þ ¼ 0: ð8Þ
The embedding parameter b monotonically increases from zero to unit as trivial problem
Hð-; 0; hÞ ¼ -� c ¼ 0 is continuously deformed to original problem Hð-; 1; hÞ ¼ -� c� Nð-Þ ¼ 0: The
modified HPM uses the homotopy parameter b as an expanding parameter to obtain [10–20]:
- ¼ x0 þ bx1 þ b2x2 þ � � � ð9Þ

The approximate solution of Eq. (1), therefore, can be readily obtained:
r ¼ lim
b!1

- ¼ x0 þ x1 þ x2 þ � � � ð10Þ
The convergence of the series (10) has been proved by He in this paper [25].
For the application of modified HPM to (1) we can write (3) as follows by expanding N(-) into a Taylor

series around x0:
-� c� b Nðx0Þ þ ð-� x0Þ
N 0ðx0Þ

1!
þ ð-� x0Þ2

N 00ðx0Þ
2!
þ � � �

� �
þ bð1� bÞh ¼ 0: ð11Þ
Substitution of (9) into (11) yields
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x0 þ bx1 þ b2x2 þ � � � � c� b Nðx0Þ þ x0 þ bx1 þ b2x2 þ � � � � x0

� �N 0ðx0Þ
1!

�

þ x0 þ bx1 þ b2x2 þ � � � � x0

� �2 N 00ðx0Þ
2!
þ � � �

�
� bð1� bÞh ¼ 0: ð12Þ
By equating the terms with identical powers of b, we have
b0 : x0 � c ¼ 0; ð13Þ
b1 : x1 � Nðx0Þ � h ¼ 0; ð14Þ
b2 : x2 � x1N 0ðx0Þ þ h ¼ 0; ð15Þ

b3 : x3 � x2N 0ðx0Þ þ
1

2
x2

1N 00ðx0Þ ¼ 0: ð16Þ
We try to find parameter h, such that
x2 ¼ 0: ð17Þ

Hence by substituting x1 ¼ Nðx0Þ þ h from (14) into (15), we have
x2 � ðNðx0Þ þ hÞN 0ðx0Þ þ h ¼ 0: ð18Þ

Setting x2 = 0 into (18) and solve it, we have
h ¼ Nðx0ÞN 0ðx0Þ
1� N 0ðx0Þ

: ð19Þ
By substituting (19) into (14), we have
x1 ¼ Nðx0Þ þ
Nðx0ÞN 0ðx0Þ
1� N 0ðx0Þ

¼ Nðx0Þ
1� N 0ðx0Þ

: ð20Þ
Now by substituting (13)–(16) into (10), we can obtain the zero of Eq. (1) as follows:
r ¼ x0 þ x1 þ x2 þ x3 þ � � � ¼ cþ Nðx0Þ
1� N 0ðx0Þ

� 1

2

Nðx0Þ
1� N 0ðx0Þ

� �2

N 00ðx0Þ þ � � �

¼ k� f ðkÞ
f 0ðkÞ �

f 2ðkÞf 00ðkÞ
2 f 03ðkÞ � f ðkÞf 0ðkÞf 00ðkÞ½ � þ

1

2

f 2ðkÞf 00ðkÞ
2½f 03ðkÞ � f ðkÞf 0ðkÞf 00ðkÞ�

� �2 f 00ðkÞ
f 0ðkÞ þ � � � ð21Þ
This formulations allows us to suggest the following iterative method for solving nonlinear Eq. (1).

Algorithm 2.1. For a given x0, calculate the approximation solution xn + 1 by the iterative scheme
xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

� f 2ðxnÞf 00ðxnÞ
2½f 03ðxnÞ � f ðxnÞf 0ðxnÞf 00ðxnÞ�

: ð22Þ
Algorithm 2.2. For a given x0, calculate the approximation solution xn + 1 by the iterative scheme
xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

� f 2ðxnÞf 00ðxnÞ
2½f 03ðxnÞ � f ðxnÞf 0ðxnÞf 00ðxnÞ�

þ 1

2

f 2ðxnÞf 00ðxnÞ
2½f 03ðxnÞ � f ðxnÞf 0ðxnÞf 00ðxnÞ�

� �2
f 00ðxnÞ
f 0ðxnÞ

:

ð23Þ

We consider the convergence of Algorithm 2.1.

Definition 1. Let en ¼ xn � r be the truncation error in the nth iterate. If there exists a number k P 1 and a
constant c 5 0 such that
lim
n!1

jenþ1j
jenjk

¼ c; ð24Þ
then k is called the order of convergence of the method.
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Theorem 2.1. Consider the nonlinear equation f(x) = 0. Suppose f is sufficiently differentiable. Then for the iter-

ative method defined by Eq. (22), the convergence is at least of order 3.

Proof 1. Let r be a simple zero of f. Since f is sufficiently differentiable, by expanding f ðxnÞ; f 0ðxnÞ and f 00ðxnÞ
around r, we get
Table
Nume

Metho

NR
ADM
BM
AM
BAM
JM
GJM
f ðxnÞ ¼ f 0ðrÞ en þ d2e2
n þ d3e3

n þ d4e4
n þ d5e5

n � � �
� 	

;

f 0ðxnÞ ¼ f 0ðrÞ 1þ 2d2en þ 3d3e2
n þ 4d4e3

n þ 5d5e4
n þ 6d6e5

n � � �
� 	

;

f 00ðxnÞ ¼ f 0ðrÞ 2d2 þ 6d3en þ 12d4e2
n þ 20d5e3

n þ 30d6e4
n þ 42d7e5

n � � �
� 	

;

ð25Þ
where dn ¼ 1
n!

f ðnÞðrÞ
f 0ðrÞ ; n ¼ 1; 2; 3; . . . and en ¼ xn � r. We can rewrite (22) as follows
enþ1 ¼ en �
f ðxnÞ
f 0ðxnÞ

� f 2ðxnÞf 00ðxnÞ
2½f 03ðxnÞ � f ðxnÞf 0ðxnÞf 00ðxnÞ�

: ð26Þ
Now from (25) and (26), we have
en �
f ðxnÞ
f 0ðxnÞ

¼ e2
n

d2 þ 2d3en þ 3d4e2
n þ 4d5e3

n þ � � �
1þ 2d2en þ 3d3e2

n þ 4d4e3
n þ � � �

ð27Þ
and
f 2ðxnÞf 00ðxnÞ
2½f 03ðxnÞ � f ðxnÞf 0ðxnÞf 00ðxnÞ�

¼ e2
n

2d2 þ ð6d3 þ 4d2
2Þen þ ð12d4 þ 12d2d4Þe2

n þ ð20d5 þ 24d2d4Þe3
n þ � � �

2þ d2en þ ð12d2
2 þ 6d3Þe2

n þ ð16d4 þ 24d2d3 � 4d3 þ 8d2
2Þe3

n þ � � �
ð28Þ
Combining all the above terms, we have
lim
n!1

jenþ1j
jenj3

¼ d3 ¼
1

6

f 000ðrÞ
f 0ðrÞ ; ð29Þ
which shows that Algorithm 2.1 is at least a third order convergent method, the required result. h
3. Test problems

We present some examples to illustrate the efficiency of the developed method in this paper. We compare
the method of Babolian (BM) [7], the method of Abbasbandy (AM) [6], the method of Basto (BAM) [5] the
method of Javidi (JM) [26] and the method of Golbabai and Javidi (GJM), introduced in this present paper by
using Algorithm 2.1. Also, Newton–Raphson method (NR) and Adomian’s method (ADM) are performed for
comparison purposes.

Example 1. x3 þ 4x2 þ 8xþ 8 ¼ 0 with x0 ¼ �1. The exact solution prospected is x = �2. In Table 1, we list
the results obtained by modified homotopy perturbation method. As we see from this table, it is clear that the
result obtained by the present method is very superior to that obtained other methods.
1
rical results for Example 1

d Number iterations Obtained solution

1 �2.000000000
– Slow convergence
– Divergence
2 �2.003987741
3 �2.000100903
4 �1.9999225382
1 �2



Table 2
Numerical results for Example 1

Method Number iterations Obtained solution

NR 3 2.120028239
ADM 6 2.120013306
BM 4 2.120016168
AM 2 2.120028239
BAM 2 2.120028239
JM 2 2.120028278
JM 3 2.120028239
GJM 2 2.12002823898764
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Example 2. x� 2� e�x ¼ 0 with x0 = 2. The exact solution prospected is x = 2.12002823898764. In Table 2,
we list the results obtained by modified homotopy perturbation method. As we see from this table, it is clear
that the result obtained by the present method is very superior to that obtained other methods.

Example 3. x2 � ð1� xÞ5 ¼ 0 with x0 = 0.2. The exact solution prospected is x = 0.34595481584824. The
numerical results given in Table 3.

Example 4. ex � 3x2 ¼ 0 with x0 = 0 for Adomian’s, Javidi’s and Babolian’s methods and x0 = 0.5 for the
remainder. The exact solution prospected is x = 0.91000757248871. With x0 = 0, the exact solution prospected
for Newton–Raphson, Abbasbandy and new iterative method (14), is x = �0.45896226753695. The numerical
results given in Table 4.
Table 3
Numerical results for Example 3

Method Number iterations Obtained solution

NR 3 0.345953774
ADM 10 0.340622225
BM 5 0.346021366
AM 2 0.345954646
BAM 2 0.345952189
JM 2 0.346930007
JM 4 0.345954816
GJM 2 0.34595218921176
GJM 3 0.34595481584824

Table 4
Numerical results for Example 4

Method Number iterations Obtained solution

NR; x0 ¼ 0:5 4 0.910007662
NR; x0 ¼ 0 5 �0.458962274
ADM; x0 ¼ 0 10 0.904938647
BM; x0 ¼ 0 6 0.9032577054
AM; x0 ¼ 0:5 4 0.910007573
AM; x0 ¼ 0 5 �0.458964191
BAM; x0 ¼ 0:5 3 0.910007573
BAM; x0 ¼ 0 2 �0.458992962
JM; x0 ¼ 0 5 �0.458938090
JM; x0 ¼ 0 6 �0.458962268
GJM; x0 ¼ 0 2 �0.45899296202335
GJM; x0 ¼ 0 3 �0.45896226753695
GJM; x0 ¼ 0:5 2 0.91001094056187
GJM; x0 ¼ 0:5 3 0.91000757248871



Table 5
Numerical results for Example 5

Method Number iterations Obtained solution

JM 3 �1.40310806911862
JM 4 �1.40449014569029
JM 5 �1.40449164821357
JM 6 �1.40449164821534
GJM 1 �1.44545149431052
GJM 2 �1.40448794117752
GJM 3 �1.40449164821534
GJM 4 �1.40449164821534
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Example 5. sin2ðxÞ � x2 þ 1 ¼ 0 with x0 = �1. The exact solution prospected is x = �1.40449164821534. The
numerical results given in Table 5.
4. Conclusions

Modified homotopy perturbation method is applied to numerical solution for solving nonlinear algebraic
equations. Comparison of the result obtained by the present method with that obtained by different methods
[5–7,26] and Newton–Raphson method (NR) and Adomian’s method (ADM) reveals that the present method
is very effective and convenient.
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