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A Six-order Modification of Newton’s Method For
Solving Nonlinear Equations

Manoj Kumar Singh and S. R. Singh

Abstract— A new six order variant of Newton’s method has
been developed by extending a third order method of Ozban [14]
and its convergence properties have been discussed. The order
of convergence of the proposed method is six. Starting with a
suitably chosen x0, the method generates a sequence of iterates
converging to the root. The convergence analysis is provided to
establish its sixth order of convergence. In terms of computational
cost, it requires evaluations of only two functions and two first
order derivatives per iteration. This implies that efficiency index
of our method is 1.5651. Proposed method is comparable with
the methods of Parhi, and Gupta [15] and that of Kou and Li [7].
It does not require the evaluation of the second order derivative
of the given function as required in the family of Chebyshev–
Halley type methods. The efficiency of the method is tested on a
number of numerical examples. It is observed that our method
takes less number of iterations than Newton’s method and the
other third order variants of Newton’s method. On comparison
with the sixth order methods, it behaves either similarly or better
for the examples considered. Copyright c⃝ 2011 Yang’s Scientific
Research Institute, LLC. All rights reserved.

Index Terms— Newton’s method, Iteration function, Order of
convergence, Function evaluations, Efficiency index.

I. INTRODUCTION

IN Science and Engineering, many of the nonlinear and
transcendental problems of the form f(x) = 0, are complex

in nature. Since it is not always possible to obtain its exact
solution by usual algebraic process, therefore numerical itera-
tive methods such as Newton, secant methods are often used
to obtain the approximate solution of such problems. Though
these methods are very effective, but there are some limitations
that they do not give the result as fast as one want, and take
several iterations. These methods can also be used to find local
maxima http://en.wikipedia.org/wiki/Maxima and minima and
local minima of functions, as these extrema are the roots of the
derivative function. There are many methods developed on the
improvement of quadratically convergent Newton’s method, so
as to get a superior convergence order than Newton. This paper
is concerned with the iterative methods for finding a simple
root α, i.e. f(α) = 0, and f ′(α) ̸= 0 of f(x) = 0, where
f : R → R, be the continuously differentiable real function.
Here Symbols used have their usual meanings.

We consider the problem of finding a real zero of a function
f : I ⊂ R → R. This zero can be determined as a fixed point
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of some iteration function g by means of the one-point iteration
method

xn+1 = g(xn), n = 0, 1, . . .

where x0 is the starting value. The best known and the most
widely used example of these types of methods is the classical
Newton’s method given by

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, . . . (1)

It converges quadratically to simple zeros and linearly to
multiple zeros. In the literature, some of its modifications have
been introduced in order to accelerate it or to get a method with
a higher order of convergence. If we consider the definition of
efficiency index as p1/m, where p is the order of the method
and m is the number of functions evaluation required by the
method (units of work per iteration) then the efficiency index
of this method is 1.414. A number of ways are considered by
many researchers to improve the local order of convergence of
Newton’s method at the expense of additional evaluations of
functions, derivatives and changes in the points of iterations.

All these modifications are in the direction of increasing
the local order of convergence with the view of increasing
their efficiency indices. For example, the method developed by
Weerakoon [18], called as trapezoidal Newton’s or arithmetic
mean Newton’s method, suggests for some other variants
of Newton’s method. Frontini and Sormani [3] developed
new modifications of Newton’s method to produce iterative
method with order of convergence of three and efficiency index
of 1.442. With the same efficiency index, Ozban [14] also
gave some new variants of Newton’s method, and Chen [1]
described some new iterative formulae having third order
convergence.

Ostrowski [13] developed both third and fourth order meth-
ods each requiring evaluations of two functions and one deriva-
tive per iteration. Maheshwari [11] developed a fourth order
iterative method for solving non linear equations. Recently
a number of sixth order methods are also appearing as the
extensions of above mentioned methods to solve f(x) = 0.
Sharma and Guha [16] developed a one parameter family
of sixth order methods based on Ostrowski fourth order
multipoint method. Each family required three evaluations
of the given function and one evaluation of the derivative
per iteration. Chun [2] presented a one parameter family of
variants of Jarratt’s fourth order method for solving nonlinear
equations. It show there that the order of convergence of
each family member is improved from order four to six even
though it adds one evaluation of the function at the point
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iterated by Jarratt’s method per iteration. Kou et al. [6]–
[9] presented a family of new variants of Chebyshev–Halley
methods and also an improvement of Jarratt method. These
new methods have sixth order of convergence although they
only add one evaluation of the function at the point iterated
by Chebyshev–Halley method and Jarratt method. Parhi and
Gupta [15] developed a sixth order method for nonlinear
equations, by extending a third order method of Weerakoon
and Fernando [18], requires evaluations of two functions and
two first derivative per iteration.

Our method also requires evaluations of two functions and
two first derivatives per iteration, is comparable with the
methods of Kou and Li [7] and that of Parhi and Gupta [15]. It
does not require the evaluation of the second order derivative
of the given function as required in Chebyshev–Halley type
methods [6], [9]. The efficiency of the method is tested on
a number of numerical examples. It is observed that the
proposed method takes less number of iterations than taken by
Newton’s method and the other third order variant of Newton’s
method. On comparison with the other sixth order methods, it
behaves either similarly or better for the examples considered.

II. DEFINITIONS

Definition II.1. [5], [12], [17] If the sequence {xn/n ≥ 0}
tends to a limit α in such a way that

lim
xn→α

xn+1 − α

(xn − α)p
= C. (2)

For some C ̸= 0 and p ≥ 1, then the order of convergence
of the sequence is said to be p, and is known as asymptotic
error constant.

When p = 1, the convergence is linear, and it is called first
order convergence.

While for p = 2 and p = 3 the sequence is said to converge
quadratically and cubically, respectively.

The value of p is called the order of convergence of
the method which produces the sequence {xn/n ≥ 0}. Let
en = xn − α Then the relation en+1 = Cepn + O(ep+1

n ) is
called the error equation for the method, p being the order of
convergence.

Definition II.2. [12], [17] Efficiency index is simply defined
as p1/m where p is the order of the method and m is
the number of functions evaluations required by the method
(units of work per iteration). Therefore the efficiency index
of Newton’s method is 1.414 and that of third order method
is 1.442 and efficiency index of method proposed by me is
1.5651.

III. DESCRIPTION OF METHODS

Let α be a simple zero of a sufficiently differentiable
function f and consider the numerical solution of the equation
f(x) = 0, then it can be written as

f(x) = f(xn) +

∫ x

xn

f ′(t) dt. (3)

Suppose, we interpolate f ′ on the interval [xn, x] by con-
stant f ′(xn), then (x− xn)f

′(xn) provides an approximation
for the integral in Eq. (3) and by taking x = α we obtain

0 ≈ f(xn) + (α− xn)f
′(xn).

And hence, a new approximation xn+1 to α is given by

xx+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, . . .

Which is Newton’s method for n = 0, 1, . . . On the other
hand, if we approximate the indefinite integral in Eq. (3) by
the trapezoidal rule and take x = α, we obtain

0 ≈ f(xn) + 1/2(α− xn)(f
′(xn) + f ′(α)).

And therefore, a new approximation xn+1 to α is given by

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(xn + 1)
. (4)

If the value of Newton’s method is used on the right-hand side
of the above equation to overcome the implicity problem, then

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(zn+1)
,

where zn+1 = xn − f(xn)/f
′(xn) is obtained which is,

for n = 0, 1, 2, . . ., the trapezoidal Newton’s method of
Weerakoon [18]. Let us rewrite Eq. (4) as

xn+1 = xn − f(xn)

(f ′(xn) + f ′(zn+1))/2
, n = 0, 1, 2, . . .

And further to re-write as

zn = xn − f(xn)

(f ′(xn) + f ′(yn))/2
, n = 0, 1, 2, . . . (5)

So this variant of Newton’s method can be viewed as obtained
by using arithmetic mean of f ′(xn) and f ′(yn) instead of
f ′(xn) in Newton’s method defined by Eq. (1), which was
called as arithmetic mean Newton’s method.
New Variant of Newton’s Method

In Eq. (5) if we use the harmonic mean instead of arithmetic
mean we get

yn = xn − f(xn)

f ′(xn)
, (6)

zn = xn − f(xn)

2

(
1

f ′(xn)
+

1

f ′(yn)

)
. (7)

Again

xn+1 = zn − f(zn)

f ′(zn)
, n = 0, 1, . . . (8)

Now using the linear interpolation on two points (xn, f
′(xn))

and we get (yn, f ′(yn)) We get

f ′(x) ≈ x− xn

yn − xn
f ′(yn) +

x− yn
xn − yn

f ′(xn). (9)

Thus an approximation to f ′(zn) is given by

f ′(zn) ≈
zn − xn

yn − xn
f ′(yn) +

zn − yn
xn − yn

f ′(xn).

f ′(zn) ≈
2f ′(xn)f

′(yn)− f ′(xn)
2 + f ′(yn)

2

2f ′(yn)
. (10)
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From Eqs. (9)(11) our proposed method can be written as
follows

yn =xn − f(xn)

f ′(xn)
,

zn =xn − f(xn)

2

(
1

f ′(xn)
+

1

f ′(yn)

)
xn+1 =zn − f(zn)[2f

′(yn)]

[2f ′(xn)f ′(yn)− f ′(xn)2 + f ′(yn)2]
.

(11)

Clearly this method requires evaluations of two functions f
and two derivative f ′ and no second order derivative f ′′ of f .

IV. CONVERGENCE ANALYSIS

Theorem IV.1. Let α ∈ I be a simple zero of a sufficiently
differentiable function f : I ⊂ R → R for an open interval
I . If x0 is sufficiently close to α, then the methods defined by
Eq. (11) has six order convergence.

Proof. Let α ∈ I be a simple zero of f . Since f is sufficiently
differentiable, by expanding f(xn) and f ′(xn) about α we get

f(xn)

=f(α+ en) = f ′(α)en + f ′′(α)
e2n
!2

+ f ′′′(α)
e3n
!3

+O(e4n)

=f ′(α)[en + C2e
2
n + C3e

3
n +O(e4n)]

(12)
where Cj = (1/!k)fk(α)/f ′(α).

f ′(xn)

=f ′(α+ en) = f ′(α) + f ′′(α)en + f ′′′(α)
e2n
!3

+O(e4n)

=f ′(α)[1 + 2C2en + 3C3e
2
n + 4C4e

3
n +O(e4n)]

(13)
f(xn)

f ′(xn)
=[en + C2e

2
n + C3e

3
n +O(e4n)][1 + 2C2en + 3C3e

2
n

+ 4C4e
3
n +O(e4n)]

−1

=[en − C2e
2
n + (2C2

2 − 2C3)e
3
n +O(e4n)].

Newton method is

yn =xn − f(xn)

f ′(xn)
,

yn =α+ C2e
2
n + (2C3 − 2C2

2 )e
3
n +O(e4n).

That is Newton’s method converges quadratically.
Again we have

yn =α+ C2e
2
n + (2C3 − 2C2

2 )e
3
n +O(e4n), (14)

f ′(yn) =f ′(α)[1 + {2C2e
2
n + 4C2(C3 − C2

2 )e
3
n +O(e4n)].

(15)

Harmonic mean Newton’s method

zn = xn − f(xn)

2

(
1

f ′(xn)
+

1

f ′(yn)

)
We have

en+1 =
1

2
C3e

3
n +O(e4n). (16)

Again

f ′(xn)f
′(yn) =f ′(α)2[1 + 2C2en + (2C2

2 + 3C3)e
2
n+

4(C2C3 + C4)e
3
n +O(e4n)]

f ′(xn)
2 =f ′(α)2

[
1 + 4C2en + (4C2

2 + 6C3)e
2
n+

(8C4 + 12C2C3)e
3
n +O(e4n)

]
(17)

f ′(yn)
2 =f ′(α)2[1 + 4C2

2e
2
n + (8C2C3 − 8C3

2 )e
3
n +O(e4n)]

(18)

f ′(zn) ≈
2f ′(xn)f

′(yn)− f ′(xn)
2 + f ′(yn)

2

2f ′(yn)

f ′(zn) ≈f ′(α)[1− (2C2C3)e
3
n +O(e4n)]. (19)

Hence from

xn+1 = zn − f(zn)

f ′(zn)
. (20)

We get Eq. (21) in the next page.
On solving we have

xn+1 = α− (
3

4
C2C

2
3 )e

6
n +O(e7n),

en+1 = −(
3

4
C2C

2
3 )e

6
n +O(e7n). (22)

Hence the proposed method defined by Eq. (12) has six order
convergence and when second order derivative or third order
derivative will be zero then the order of convergence increase
up to seven or eight.
Example - 1 Consider the equation f(x) = x3 + 4x2 − 10.

We start with xn = 2. The results obtained by Newton
iteration, Maheshwari iteration and present iteration method
is shown in Table I.
Example - 2 Consider the equation, f(x) = x3 − e−x.

We start with xn = 1.The results obtained by Newton
iteration, Maheshwari iteration and present iteration method
is shown in Table I and Fig. 1.
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Fig. 1: B: Newton method, C: Maheshwari method, D: Proposed method.

Example - 3 Consider the equation f(x) = sin(x).
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xn+1 =α+
1

2
C3e

3
n +O(e4n)−

f(α+ 1
2C3e

3
n +O(e4n))

f ′(α)[1− (2C2C3)e3n +O(e4n)]

=α+
1

2
C3e

3
n +O(e4n)−

f(α) + { 1
2C3e

3
n +O(e4n)}f ′(α) + { 1

2C3e
3
n +O(e4n)}2

f ′′(α)
!2

f ′(α)[1− (2C2C3)e3n +O(e4n)]

=α+
1

2
C3e

3
n +O(e4n)−

[
f ′(α) · { 1

2C3e
3
n +O(e4n)}+ { 1

2C3e
3
n +O(e4n)}2C2

]
f ′(α)[1− (2C2C3)e3n +O(e4n)]

.

(21)

We start with xn = 1.5. The results obtained by Newton
iteration, Maheshwari iteration and present iteration method is
shown in Table I.
Example - 4 Consider the equation f(x) = sin(x)− 0.5x.

We start with xn = 1.6. The results obtained by Newton
iteration, Maheshwari iteration and present iteration method is
shown in Table I.

TABLE I: COMPARISON WITH NEWTON AND MAHESHWARI METHOD

Example 1

Newton iteration for solving f(x) = x3 + 4x2 − 10

n xn f(xn)

1 1.500000000000000 2.375000000000000
2 1.373333333333333 0.134345481481482
3 1.365262014874627 5.284611795151051e-004
4 1.365230013916147 8.290548692002631e-009
5 1.365230013414097 0.000000000000000

Maheshwari iteration for solving f(x) = x3 + 4x2 − 10

n xn f(xn)

1 1.383460112875796 0.303737459638828
2 1.365230059872621 7.671881707693729e-007
3 1.365230013414097 0.000000000000000

Proposed iteration for solving f(x) = x3 + 4x2 − 10

n xn f(xn)

1 1.365293603219183 0.001050116565054
2 1.365230013414097 0.000000000000000

Example 2

Newton iteration for solving f(x) = x3 − e−x

n xn f(xn)

1 0.812309030097381 0.092166771534313
2 0.774276548985500 0.003144824978613
3 0.772884756209622 4.050085547491200e-006
4 0.772882959152202 6.742550962002269e-012
5 0.772882959149210 0.000000000000000

Maheshwari iteration for solving f(x) = x3 − e−x

n xn f(xn)

1 0.776281164264182 0.007682769461876
2 0.772882959509889 8.128708817167762e-010
3 0.772882959149210 0.000000000000000

Proposed iteration for solving f(x) = x3 − e−x

n xn f(xn)

1 0.772890464773999 1.691572695283750e-005
2 0.772882959149210 0.000000000000000

Example 3

Newton iteration for solving, f(x) = sin(x)

n xn f(xn)

1 -12.601419947171721 -0.035042157161019
2 12.566356255118672 1.435924050063516e-005
3 -12.566370614359174 -1.286498119741309e-015

Maheshwari iteration for solving, f(x) = sin(x)

n xn f(xn)

1 -12.140250122502410 0.413341334176534
2 -12.567623187401553 -0.001252572714845
3 -12.566370614359172 4.898587196589413e-016

Proposed iteration for solving f(x) = sin(x)

n xn f(xn)

1 -6.287519145437536 -0.004333824691493
2 -6.283185307179586 2.449293598294706e-016

Example 4

Newton iteration for solving f(x) = sin(x)− 0.5x

n xn f(xn)

1 1.977123551007066 -0.069983138933437
2 1.898950910895084 -0.002836729003200
3 1.895501147295299 -5.635111423818451e-006
4 1.895494267061370 -2.243205621255129e-011
5 1.895494267033981 0.000000000000000

Maheshwari iteration for solving f(x) = sin(x)− 0.5x

n xn f(xn)

1 1.925586494937329 -0.025073843759850
2 1.895494852455987 -4.794739714153451e-007
3 1.895494267033981 0.000000000000000

Proposed iteration for solving f(x) = sin(x)− 0.5x

n xn f(xn)

1 1.895869187902239 -3.071352434207419e-004
2 1.895494267033981 0.000000000000000

In Table II, we give the number of iterations (N) and the
number of function evaluations (NOFE) required to satisfy
the stopping criterion, F denotes that method fails and D
denotes for divergence. PM denotes proposed method. CN
denotes for classical Newton method, AN-Arithmetic mean
Newton method [18], HN- Harmonic mean Newton method,
GN- Geometric mean Newton method [10], MN-Mid-point
Newton method.

In Table III, we give the number of iterations (N) and the
number of function evaluations (NOFE) required satisfying the
stopping criterion, F denotes that method fails, D denotes for
divergence. PM denotes proposed method. Kou and Li is the
method [7]. An improvement of Jarratt method. Gupta denotes
for [15] Parhi and Gupta, A sixth order method for nonlinear
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TABLE II: COMPARISON WITH THIRD ORDER METHOD

F (x) x0 N NOFE
CN AN HN GN MN PM CN AN HN GN MN PM

(a) 1 5 3 3 3 3 2 10 9 9 9 9 8
2 5 3 3 3 3 2 10 9 9 9 9 8

(b) -3 6 5 3 7 3 2 12 15 9 21 9 8
-2 5 5 3 6 3 2 10 15 9 18 9 8
2 5 5 3 F 4 2 10 15 9 - 12 8

(c) -3 18 D 17 D D 12 54 - 51 - - 8
2 4 3 3 D 3 2 08 9 9 - 9 8

2.5 5 3 3 D 3 2 10 9 9 - 9 8
3 5 4 3 D 4 2 10 12 9 - 12 8

(d) 0.5 5 4 3 13 3 2 10 12 9 39 9 8
1 5 3 3 15 3 2 10 9 9 45 9 8
2 7 4 4 20 4 3 14 12 12 60 12 12

(e) 0.3 3 3 3 29 3 2 6 9 9 87 9 8
0.5 5 3 3 29 3 2 10 9 9 87 9 8
0.55 5 3 4 26 4 2 10 9 12 53 12 8

(f) 0.1 7 6 6 188 4 4 18 12 9 564 12 12
2.5 6 4 3 31 4 2 21 15 12 93 12 8
3.5 7 5 4 37 5 3 21 18 18 111 15 12

(g) 0.5 43 D 21 D D 13 86 - 63 - - 52
0.8 9 D 5 10 6 3 18 - 15 30 18 12

(h) 2 5 4 4 D 3 2 10 12 12 - 9 8
3 6 4 4 D 4 2 12 12 12 - 12 8
4 7 5 5 D 5 3 14 14 15 15 - 12

(i) 1 232 D 79 D D 57 696 - 237 - - 40
3.5 14 9 8 D 9 5 42 27 24 - 27 24
4.5 25 17 14 D 16 9 75 51 42 - 48 40

equations.
In Table II and Table III the following test functions have

been used

(a) x3 + 4x2 − 10, α = 1.365230013414097,

(b) sin2 x− x2 + 1, α = −1.404491648215341,

(c) x3 − 10, α = 2.154434690031884

(d) x3 − e−x, α = 0.772882959149210

(e) x sin(1/x)− 0.2e−x, 0.363715708657122

(f) (x− 1)3 − 1, α = 2,

(g) (x− 2)23 − 1, α = 3,

(h) x2 − ex − 3x+ 2; α = 0.257530285439861.

Hence from the Tables 1, II, III, the main observations are
as follows:

1) Present method takes lesser number of iterations than
the others.

2) Example shows that the present method requires lesser
number of functional evaluations, as compared to other
methods.

3) The results in the last column of the selected examples,
shows the absolute deviation of f(x)) in each step with
respect to its targeted value, i.e. zero. It can be observed
from these examples that the value of absolute error is
least for the present method. [Table I, example 3].

Thus, the present method is not only faster but the cost
effecting parameters obtain in examples show that it has
minimum cost among all the methods taken here.

V. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we present the results of some numerical
tests to compare the efficiencies of the proposed method. We
employed CN method, Maheshwari method, some third order
methods — AN method of Fernando et al. [2], HN, GN, MN
methods and some six order methods [7] and [15]. Numerical
computations reported here have been carried out in MATLAB
and the stopping criterion has been taken as |xn+1 − α| +
|f(xn+1)| < 10−14.

Thus the proposed, sixth order method for finding
simple real roots of nonlinear equations, is free from
second order derivative of the given function, as re-
quired in the family of Chebyshev–Halley type meth-
ods. Method can also be used to find local max-
ima http://en.wikipedia.org/wiki/Maxima and minima and lo-
cal minima of functions as these extrema are the roots of the
derivative function. Our method requires evaluations of two
functions and two first order derivatives per iteration. The con-
vergence analysis of the method is performed in much simpler
way to show that the order of convergence of the method is six.
The high order convergence is also corroborated by numerical
tests. Method has the efficiency index equal to 1.5651, which
is better to Newton’s method with efficiency index equal to
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TABLE III: COMPARISON WITH SIX ORDER METHOD

F (x) x0 N NOFE
Kou and Li Gupta PM Kou and Li Gupta PM

(a) 1 2 2 2 8 8 8
2 2 2 2 8 8 8

(b) -3 2 15 2 8 60 8
-2 2 30 2 8 120 8
2 2 2 2 8 8 8
3 2 3 2 8 12 8

(c) 2 2 2 2 8 8 8
2.5 2 2 2 8 8 8
3 2 2 2 8 8 8

(d) 0.5 2 2 2 8 8 8
1 2 2 2 8 8 8
2 3 3 3 8 12 12

(e) 0.3 2 2 2 8 8 8
0.5 2 2 2 8 8 8
0.55 2 2 2 8 8 8

(f) 0.1 5 4 3 20 16 12
2.5 2 2 2 8 8 8
3.5 3 3 3 12 12 12

(g) 0.5 12 13 13 48 52 52
0.8 3 3 3 12 12 12

(h) 2 2 2 2 8 8 8
3 2 2 2 8 8 8
4 3 3 3 12 12 12

(i) 1 180 57 57 720 228 40
3.5 5 5 5 20 20 24
4.5 8 9 9 32 36 40

1.414 and the classical third order methods (1.442), such
as Weerakoon and Fernando method, Chebyshev’s method,
Halley’s method and Super-Halley method, fifth order method
(1.495) of Kou, Li, Wang [8] and Grau, Noguera [4] and
six order method (1.565) of Parhi and Gupta [15] and Kou
and Li [7]. The method is tested on a number of numerical
examples. On comparing our results with those obtained by
Newton’s method (NM) third order methods and fourth order
methods, it is found that our method is most effective as it
converges to the root much faster. When compared with the
sixth order methods of Parhi, Gupta [15] and Kou and Li [7],
our method behaves either similarly or better on the examples
considered.
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