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a b s t r a c t

In this paper, we construct some modifications of Newton’s method for solving nonlinear
equations, which is based on the method of undetermined coefficients. It is shown
by way of illustration that the method of undetermined coefficients is a promising
tool for developing new methods, and reveals its wide applicability by obtaining some
existingmethods as special cases. Two new sixth-ordermethods are developed. Numerical
examples are given to support that the methods thus obtained can compete with other
iterative methods.

Published by Elsevier Ltd

1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve nonlinear equations,
iterative methods such as Newton’s method are usually used. Throughout this paper we consider iterative methods to find
a simple root ξ , i.e., f (ξ) = 0 and f ′(ξ) 6= 0, of a nonlinear equation f (x) = 0 that uses no higher than the second derivative
of f .

Newton’s method for the calculation of ξ is probably the most widely used iterative method defined by

xn+1 = xn −
f (xn)
f ′(xn)

. (1)

It is well known (see e.g. Traub [1]) that this method is quadratically convergent.
Several third-order methods based on quadratures are given in the literature. A third-order variant of Newton’s method

appeared in Weerakoon and Fernando [2] where rectangular and trapezoidal approximations to the integral in Newton’s
theorem

f (x) = f (xn) +

∫ x

xn
f ′(t)dt (2)

were considered to rederive Newton’s method and to obtain the cubically convergent method

xn+1 = xn −
2f (xn)

f ′(xn) + f ′(yn)
, (3)
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respectively, where from here on

yn = xn −
f (xn)
f ′(xn)

. (4)

Frontini and Sormani [3] considered the midpoint rule for the integral of (2) to obtain the third-order method

xn+1 = xn −
f (xn)

f ′
( xn+yn

2

) . (5)

It should be mentioned that the method (5) has been derived by Homeier [4] independently

xn+1 = xn −
f (xn)

f ′

(
xn −

f (xn)
2f ′(xn)

) . (6)

In [5], Homeier derived the following cubically convergent iteration scheme

xn+1 = xn −
f (xn)
2

(
1

f ′(xn)
+

1
f ′(yn)

)
(7)

by applying Newton’s theorem to the inverse function x = f (y) instead of y = f (x). It should be pointed out that thismethod
has also been derived in [6] independently and it is now known as the harmonic mean Newton method.

In [7], Kou et al. observed that the midpoint method (5) can be obtained by using the midpoint value f ′( 1
2 (xn + yn))

instead of the arithmetic mean of f ′(xn) and f ′(yn) in the method of Weerakoon and Fernando (3). That is, they applied the
approximation

f ′

(
1
2
(xn + yn)

)
≈

f ′(xn) + f ′(yn)
2

, (8)

or

f ′(yn) ≈ 2f ′

(
1
2
(xn + yn)

)
− f ′(xn), (9)

to Homeier’s method (7) to obtain a modification of Newton’s method.
Note, if one takes Simpson’s rule to approximate the integral in (2), the resulting method is only quadratic. A modified

method based on Simpson’s rule will be

xn+1 = xn −
bf (xn)

f ′(xn) + (b − 2)f ′((xn + yn)/2) + f ′(yn)
(10)

where b is a free parameter. This method requires more function-evaluations for the same order and thus it is not efficient.
Similarly, methods based on Gaussian quadratures are not efficient.

Recently, Neta [8] used the method of undetermined coefficients to obtain a new efficient modification of Popovski’s
methods [9] by considering an idea of removing the second derivative. In this paper, we further investigate the use of the
undetermined coefficients in developing methods. We rederive the existing methods from this point of view and propose
newmethods. For example, the approximation (8) can be easily obtained by using themethod of undetermined coefficients.
To see that, we let

f ′

(
1
2
(xn + yn)

)
= Af ′(xn) + Bf ′(yn) (11)

and expand the second term f ′(yn) about the point xn. By comparing the coefficients of the derivatives of f at xn up to second
derivatives, we can easily obtain

A = B =
1
2
, (12)

this yielding (8).
In [10], Kou and Li considered an iteration scheme consisting of Jarratt’s iterate zn defined by

zn = xn − Jf (xn)
f (xn)
f ′(xn)

(13)

and followed by a Newton iterate, and use of the linear approximation

f ′(zn) ≈
zn − xn
vn − xn

f ′(vn) +
zn − vn

xn − vn
f ′(xn), (14)
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where vn = xn −
2
3 f (xn)/f

′(xn), and Jf (xn) =
3f ′(vn)+f ′(xn)
6f ′(vn)−2f ′(xn)

to obtain an improvement of Jarratt’s method [11]. The method
is given by

vn = xn −
2
3

f (xn)
f ′(xn)

zn = xn − Jf (xn)
f (xn)
f ′(xn)

xn+1 = zn −
f (zn)

3
2 Jf (xn)f

′(vn) + (1 −
3
2 Jf (xn))f

′(xn)
.

(15)

The approximation (14) can also be easily obtained by applying the method of undetermined coefficients with

f ′(zn) = Af ′(vn) + Bf ′(xn), (16)

as in the above. The method (15) is of order six. Another sixth-order improved Jarratt’s method is given by the first author
in [12].

Many other iterative methods in the literature can also be derived from each other through themethod of undetermined
coefficients. For example, Nedzhibov’s third-order method (see [14] or [13]) defined by1

xn+1 = xn −
f (xn)

1
4

(
f ′(yn) + 2f ′(

xn+yn
2 ) + f ′(xn)

) (17)

Hasanov’s third-order method (see [15] or [13])2

xn+1 = xn −
f (xn)

1
6

(
f ′(yn) + 4f ′(

xn+yn
2 ) + f ′(xn)

) (18)

and the Newton-secant method (see [16] or [13])

xn+1 = xn −
f (xn)

f ′(xn)(f (xn)−f (yn))
f (xn)

(19)

can all be derived from (5). To show this in the case of (17), we apply the method of undetermined coefficients a little
differently, that is, we search for the expression dn satisfying

f ′(dn) =
1
4

[
f ′(yn) + 2f ′

(
xn + yn

2

)
+ f ′(xn)

]
. (20)

Expanding the terms f ′(dn), f ′(yn) and f ′(
xn+yn

2 ) of (20) about the point xn up to second derivatives, using (4), and then
comparing the coefficients of the derivatives of f at xn, we easily obtain the equation after simplifications

dn − xn = −
1
2

f (xn)
f ′(xn)

, (21)

or

dn = xn −
1
2

f (xn)
f ′(xn)

=
1
2
(xn + yn). (22)

We, therefore, derived (5) from Nedzhibov’s method, and the other way around. Similarly we can show the equivalence of
(5) and Hasanov’s method (18).

This can also be done in the case of the Newton-secant method, we seek to find dn in the equation

f ′(dn) =
f ′(xn)(f (xn) − f (yn))

f (xn)
, (23)

or, equivalently

f ′(dn)f (xn) = f ′(xn)[f (xn) − f (yn)]. (24)

1 This is a special case of (10) with b = 4.
2 This is a special case of (10) with b = 6.
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If we expand the terms f ′(dn) and f (yn) of (24) about the point xn up to second derivatives, and then compare the coefficients
of the derivatives of f at xn, we can obtain the same equation as in (22)

dn =
1
2
(xn + yn). (25)

We thus showed that (5) is equivalent to the Newton-secant method.
We can continue to derive new or existing methods from methods available. If we consider (7) in our application with

the form

f ′(dn) =
2f ′(xn)f ′(yn)
f ′(xn) + f ′(yn)

, (26)

we can obtain the approximating expression

dn = xn −
f (xn)f ′(xn)

2f ′(xn)2 − f (xn)f ′′(xn)
. (27)

This suggests a new third-order method defined by

yn = xn −
1
2

f (xn)
f ′(xn)

1

1 −
f (xn)f ′′(xn)
2f ′(xn)2

xn+1 = xn −
f (xn)
f ′(yn)

.

(28)

The order was found using Maple software. This method is inefficient since it requires one function- and three derivative-
evaluation. The efficiency of this method is the same as the schemes by Hasanov (18) and by Nedzhibov (17), which are
special cases of (10).

Traub–Ostrowski’s fourth-order method (see [1]) is given by

xn+1 = xn −
f (yn) − f (xn)
2f (yn) − f (xn)

f (xn)
f ′(xn)

. (29)

If we look for dn through the equation

f ′(dn) =
f ′(xn)[2f (yn) − f (xn)]

f (yn) − f (xn)
(30)

or, equivalently

f ′(dn)[f (yn) − f (xn)] = f ′(xn)[2f (yn) − f (xn)] (31)

then after expanding the terms f ′(dn) and f (yn) of (31) about the point xn up to second derivatives, and then comparing the
coefficients of the derivatives of f at xn, we can obtain exactly the same expression as in (27), thereby again obtaining the
same method as (28). This shows that Homeier’s method (7) and Traub–Ostrowski’s method are closely connected through
the method of undetermined coefficients.

Chebyshev–Halley methods [17] are a family of third-order methods defined by

xn+1 = xn −

(
1 +

1
2

Lf (xn)
1 − αLf (xn)

)
f (xn)
f ′(xn)

, (32)

where Lf (xn) =
f (xn)f ′′(xn)

f ′(xn)2
. This family includes Chebyshev’s method (α = 0), Halley’s method (α = 1/2) and the super-

Halley method (α = 1). With this family, let us consider seeking the approximating expression dn such that

f ′(dn) = f ′(xn)
2[1 − αLf (xn)]

2 + (1 − 2α)Lf (xn)
(33)

or

f ′(dn)[2f ′(xn)2 + (1 − 2α)f (xn)f ′′(xn)] = 2f ′(xn)[f ′(xn)2 − αf (xn)f ′′(xn)]. (34)

If we expand the term f ′(dn) of (34) about the point xn up to second derivative, and then compare the coefficients of the
derivatives of f at xn, we can easily obtain

dn = xn −
f (xn)f ′(xn)

2f ′(xn)2 + (1 − 2α)f (xn)f ′′(xn)
. (35)



2532 C. Chun, B. Neta / Computers and Mathematics with Applications 56 (2008) 2528–2538

When α = 1/2, (35) reduces to (22), thus showing that (5) is also equivalent to the Halley method. When α = 1, (35)
reduces to (27), thus implying that Homeier’s method (7) is equivalent to the super-Halley method. When α = 0, (35)
reduces to

dn = xn −
f (xn)f ′(xn)

2f ′(xn)2 + f (xn)f ′′(xn)
. (36)

It should be remarked that different values of α would result in different new third-order methods.
Before proceeding on, it should be emphasized that many approximations that were used in deriving existing iterative

methods can be considered as results of appropriately applying the method of undetermined coefficients as illustrated
above. In this contribution, it is noteworthy that almost all of known third-order methods in the literature are equivalent
to each other in the context of the method of undetermined coefficients. This also reveals the potential of the method of
undetermined coefficients as a powerful means of developing iterative methods for solving nonlinear equations.

2. Development of methods and convergence analysis

For the sake of simplicity and illustration, let us consider the iteration scheme of the form

xn+1 = un+1 −
f (un+1)

f ′(un+1)
, (37)

where un+1 = g3(xn) stands for any third-order modification of Newton’s method. We would like to mention that in [18],
Kou et al. considered a variant of (37)

yn = xn −
f (xn)
f ′(xn)

xn+1 = un+1 −
f (un+1)

f ′(yn)
,

(38)

with un+1 given by one of (3), (5) or (7) to obtain three different fifth-order methods. Using the approximation (9) one can
obtain other less efficient fifth-order methods.

To derive the new method, we consider the expression

f ′(un+1) = Af ′(xn) + Bf ′(yn) + Cf (un+1) + Df (xn), (39)

for application of the method of undetermined coefficients.
Expand the terms f ′(un+1), f ′(yn) and f (un+1) about the point xn up to third derivatives and collect terms. Upon comparing
the coefficients of the derivatives of f at xn, we have the following system of equations for the unknowns A, . . . ,D

C + D = 0 (40)
A + B + αC = 1 (41)

βB +
1
2
α2C = α (42)

1
2
β2B +

1
6
α3C =

1
2
α2 (43)

where α = un+1 − xn, and β = yn − xn. Solving the equations (42) and (43), we get

B =
α2

β(3β − 2α)
(44)

C =
6(β − α)

α(3β − 2α)
. (45)

Substituting in Eqs. (40) and (41), we get

A =
−α2

+ 4αβ − 3β2

β(3β − 2α)
(46)

D = −
6(β − α)

α(3β − 2α)
. (47)

The method is now

xn+1 = un+1 −
αβ(3β − 2α)f (un+1)

γ f ′(xn) + α3f ′(yn) + 6β(β − α) (f (un+1) − f (xn))
, (48)
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where γ = α(−α2
+ 4αβ − 3β2) and un+1 is computed by a third-order method such as (3), or (7) and yn is given by (4). If

we decide to use (5) then it is more efficient to expand f ′(un+1) using

f ′(un+1) = Af ′(xn) + Bf ′

(
xn + yn

2

)
+ Cf (un+1) + Df (xn). (49)

Now (40)–(43) are replaced by

C + D = 0 (50)
A + B + αC = 1 (51)
β

2
B +

1
2
α2C = α (52)

1
8
β2B +

1
6
α3C =

1
2
α2 (53)

for the same α and β above. The solution is

A =
−4α2

+ 8αβ − 3β2

β(3β − 4α)
(54)

B =
4α2

β(3β − 4α)
(55)

C =
6(β − 2α)

α(3β − 4α)
(56)

D = −
6(β − 2α)

α(3β − 4α)
. (57)

The method is now

xn+1 = un+1 −
αβ(3β − 4α)f (un+1)

δf ′(xn) + 4α3f ′
( xn+yn

2

)
+ 6β(β − 2α) (f (un+1) − f (xn))

, (58)

where δ = α(−4α2
+8αβ −3β2) and un+1 is computed by the third-order method (5) and yn is given by (4). Note that Neta

[19] has developed a sixth-ordermethod requiring three function- and one derivative-evaluation per step. The newmethods
we developed here require two function- and two derivative-evaluation per step. The efficiency of the three methods is the
same, unless the cost of function-evaluation is different from the cost of derivative-evaluation. It should also be pointed
out that the method (38) has been improved in the order from five to six by the approach of the method of undetermined
coefficients.

For the method defined by (48), we have the following analysis of convergence. A similar analysis can be done for (58).

Theorem 2.1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I → R for an open interval I. Let
un+1 = g3(xn) be any third-order method and assume that it satisfies

un+1 − ξ = Ae3n + O(e4n), (59)

for some A 6= 0, and en = xn − ξ . Then the new method defined by (48) is of sixth order.

Proof. Let ck = (1/k!)f (k)(α)/f ′(α), k = 2, 3, . . .. We assume that

un+1 − ξ = Ae3n + Be4n + O(e5n). (60)

Using the Taylor expansion and taking into account f (ξ) = 0 and by simple calculations, we easily obtain

f (un+1) = f ′(ξ)[(un+1 − ξ) + c2(un+1 − ξ)2 + O(e9n)], (61)

f (xn) = f ′(ξ)[en + c2e2n + c3e3n + O(e4n)], (62)

f ′(xn) = f ′(ξ)[1 + 2c2en + 3c3e2n + 4c4e3n + O(e4n)], (63)

yn = xn −
f (xn)
f ′(xn)

= ξ + c2e2n − 2(c22 − c3)e3n + O(e4n), (64)

f ′(yn) = f ′(ξ)[1 + 2c22e
2
n − 4c2(c22 − c3)e3n + O(e4n)], (65)

α = un+1 − xn = −en + Ae3n + Be4n + O(e5n) (66)

β = yn − xn = −en + c2e2n + 2(c3 − c22 )e
3
n + (3c4 + 4c32 − 7c2c3)e4n + O(e5n). (67)
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Hence we have

3β − 2α = −en + 3c2e2n + 2(3c3 − 3c22 − A)e3n + (9c4 + 12c32 − 21c2c3 − 2B)e4n + O(e5n) (68)

αβ = e2n − c2e3n + (−2c3 + 2c22 − A)e4n + (−3c4 − 4c32 + 7c2c3 + Ac2 − B)e5n + O(e6n) (69)

αβ(3β − 2α) = −e3n + 4c2e4n + (8c3 − 11c22 − A)e5n + (12c4 + 28c32 − 40c2c3 − 2Ac2 − B)e6n + O(e7n). (70)

We then obtain

αβ(3β − 2α)f (un+1) = f ′(ξ)[−(un+1 − ξ)e3n + 4c2(un+1 − ξ)e4n + (8c3 − 11c22 − A)(un+1 − ξ)e5n

− c2(un+1 − ξ)2e3n + (12c4 + 28c32 − 40c2c3 − 2Ac2 − B)(un+1 − ξ)e6n + O(e10n )]. (71)

We also get

β − α = c2e2n + (2c3 − 2c22 − A)e3n + (3c4 + 4c32 − 7c2c3 − B)e4n + O(e5n) (72)

6β(β − α) = −6c2e3n + (6A − 12c3 + 18c22 )e
4
n + (−18c4 − 48c32 + 66c2c3 + 6B − 6Ac2)e5n + O(e6n), (73)

so that it follows from (61) and (62) that

6β(β − α)f (un+1) = f ′(ξ)[−6c2(un+1 − ξ)e3n + (6A − 12c3 + 18c22 )(un+1 − ξ)e4n + O(e8n)] (74)

6β(β − α)f (xn) = f ′(ξ)[−6c2e4n + (6A − 12c3 + 12c22 )e
5
n + (48c2c3 − 30c32 − 18c4 + 6B)e6n + O(e7n)]. (75)

On the other hand, we can obtain

α2
= e2n − 2Ae4n − 2Be5n + O(e6n) (76)

α3
= −e3n + 3Ae5n + 3Be6n + O(e7n) (77)

β2
= e2n − 2c2e3n + (5c22 − 4c3)e4n + (−6c4 − 12c32 + 18c2c3)e5n + O(e6n) (78)

−α2
+ 4αβ − 3β2

= 2c2e3n + (4c3 − 7c22 − 2A)e4n + (−2B + 6c4 + 20c32 − 26c2c3 + 4Ac2)e5n + O(e6n) (79)

α(−α2
+ 4αβ − 3β2) = −2c2e4n + (−4c3 + 7c22 + 2A)e5n + (2B − 6c4 − 20c32 + 26c2c3 − 2Ac2)e6n + O(e7n), (80)

so that we get from (63) and (65) that

α(−α2
+ 4αβ − 3β2)f ′(xn) = f ′(ξ)[−2c2e4n + (3c22 − 4c3 + 2A)e5n + (2B − 6c4 − 6c32 + 12c2c3 + 2Ac2)e6n

+O(e7n)] (81)

α3f ′(yn) = f ′(ξ)[−e3n + (3A − 2c22 )e
5
n + (4c32 − 4c2c3 + 3B)e6n + O(e7n)]. (82)

Thus, from (74), (75), (81) and (82), we have

α(−α2
+ 4αβ − 3β2)f ′(xn) + α3f ′(yn) + 6β(β − α)(f (un+1) − f (xn))

= f ′(ξ)[−e3n + 4c2e4n + (−11c22 + 8c3 − A)e5n + (−B + 12c4 + 28c32 − 40c2c3 − 4Ac2)e6n + O(e7n)]. (83)

Dividing (71) by (83), we get

αβ(3β − 2α)f (un+1)

α(−α2 + 4αβ − 3β2)f ′(xn) + α3f ′(yn) + 6β(β − α)(f (un+1) − f (xn))

= (un+1 − ξ) − 2Ac2(un+1 − ξ)e3n + c2(un+1 − ξ)2 + O(e7n). (84)

Thus,

en+1 = un+1 − ξ − [(un+1 − ξ) − 2Ac2(un+1 − ξ)e3n + c2(un+1 − ξ)2 + O(e7n)]

= 2Ac2(un+1 − ξ)e3n − c2(un+1 − ξ)2 + O(e7n)

= A2c2e6n + O(e7n). (85)

This means that the method defined by (48) is of sixth order. This completes the proof. �
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3. Numerical examples

We present some numerical test results for various sixth-order convergent iterative schemes in Table 1. The following
methods were compared: the Newton method (NM), the method of Neta [19] (BM) defined by

zn = yn −
f (yn)
f ′(xn)

f (xn) −
1
2 f (yn)

f (xn) −
5
2 f (yn)

, (86)

xn+1 = zn −
f (zn)
f ′(xn)

f (xn) − f (yn)
f (xn) − 3f (yn)

, (87)

the method of Kou [20] (KM) defined by

zn = xn −
2f (xn)

f ′(xn) + f ′(yn)
, (88)

xn+1 = zn −
f ′(yn) + f ′(xn)
3f ′(yn) − f ′(xn)

f (zn)
f ′(xn)

, (89)

the method of Grau et al. [21] (GM) defined by

zn = yn −
f (xn)

f (xn) − 2f (yn)
f (yn)
f ′(xn)

, (90)

xn+1 = zn −
f (xn)

f (xn) − 2f (yn)
f (zn)
f ′(xn)

, (91)

and our new methods (48) with (3) (OM1) and (58) (OM2) as well as the sixth-order methods given in [12].
All computations were done using MAPLE using 128 digit floating point arithmetics (Digits := 128). We accept an

approximate solution rather than the exact root, depending on the precision (ε) of the computer. We use the following
stopping criteria for computer programs: (i) |xn+1 − xn| < ε, (ii) |f (xn+1)| < ε, and so, when the stopping criterion
is satisfied, xn+1 is taken as the exact root α computed. For numerical illustrations in this section we used the fixed
stopping criterion ε = 10−25. We used the test functions as Weerakoon and Fernando [2] and the test functions in
Neta [22]

Test Function x0 x∗

1 x3 + 4x2 − 10 1.6 1.3652300134140968457608068290
2 sin2(x) − x2 + 1 1.0 1.4044916482153412260350868178
3 x2 − ex − 3x + 2 2.0 0.25753028543986076045536730494
4 cos(x) − x 1.5 0.73908513321516064165531208767
5 (x − 1)3 − 1 3.5 2.0
6 x3 − 10 4.0 2.1544346900318837217592935665
7 xex

2
−sin2(x)+3 cos(x)+5 −1.0 −1.2076478271309189270094167584

8 ex
2
+7x−30

− 1 4.0 3.0
9 sin(x) −

x
2 2.0 1.8954942670339809471440357381

10 x5 + x − 10000 4.0 6.3087771299726890947675717718
11

√
(x) −

1
x − 3 1.0 9.6335955628326951924063127092

12 ex + x − 20 0.0 2.8424389537844470678165859402
13 ln(x) +

√
(x) − 5 1.0 8.3094326942315717953469556827

14 x3 − x2 − 1 0.5 1.4655712318767680266567312252

As convergence criterion, it was required that the distance of two consecutive approximations δ for the zero was less
than 10−25. Also displayed are the number of iterations to approximate the zero (IT), the number of functional evaluations
(NFE) counted as the sum of the number of evaluations of the function itself plus the number of evaluations of the derivative,
the approximate zero x∗, and the value f (x∗). Note that the approximate zeroes were displayed only up to the 28th decimal
places, so making all look the same though they may in fact differ.

The test results in Table 1 show that for most of the functions we tested, the methods introduced in the present
presentation for numerical tests have equal or better performance compared to the othermethods of the same order. Notice
that in some test cases we had divergence, but our methods always converged.
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Table 1
Comparison of various sixth-order convergent iterative schemes and the Newton method

IT NFE f (x∗) δ

1
NM 6 12 1.29e−61 1.26e−31
BM 3 12 −6.0e−127 3.79e−47
KM 3 12 −6.0e−127 4.71e−38
GM 3 12 −6.0e−127 1.14e−34
OM1 3 12 −6.0e−127 7.43e−35
OM2 3 12 1.0e−126 6.85e−36
[12]-1 3 12 −6.0e−127 5.65e−41
[12]-2 3 12 −6.0e−127 8.22e−39

2
NM 7 14 −1.04e−50 7.33e−26
BM 4 16 −1.0e−127 4.42e−104
KM 4 16 −1.0e−127 5.35e−95
GM 4 16 −1.0e−127 2.98e−82
OM1 4 16 −1.0e−127 5.54e−79
OM2 4 16 −1.0e−127 3.94e−86
[12]-1 4 16 −1.0e−127 5.30e−126
[12]-2 4 16 −1.0e−127 0.00e+00

3
NM 6 12 2.93e−55 9.1e−28
BM 5 20 −1.0e−127 4.16e−116
KM 4 16 0 2.89e−64
GM 4 16 1.0e−127 1.15e−63
OM1 4 16 −1.0e−127 9.74e−91
OM2 4 16 1.0e−127 3.0e−128
[12]-1 4 16 1.0e−127 3.519e−32
[12]-2 4 16 1.0e−127 3.85e−64

4
NM 6 12 −3.76e−64 3.19e−32
BM 3 12 0 3.13e−27
KM 3 12 0 3.88e−28
GM 3 12 0 3.76e−26
OM1 3 12 0 1.10e−31
OM2 3 12 0 2.49e−31
[12]-1 3 12 0 5.01e−26
[12]-2 4 16 0 0.00e+00

5
NM 9 18 1.41e−84 6.86e−43
BM 4 16 0 1.63e−68
KM 4 16 0 4.65e−48
GM 4 16 0 3.16e−34
OM1 4 16 0 4.15e−34
OM2 4 16 0 1.88e−37
[12]-1 4 16 0 1.04e−42
[12]-2 Div

6
NM 8 16 5.44e−72 9.17e−37
BM 4 16 0 2.07e−115
KM 4 16 0 6.95e−78
GM 4 16 0 4.67e−59
OM1 4 16 0 1.11e−58
OM2 4 16 0 2.18e−63
[12]-1 4 16 0 2.30e−75
[12]-2 4 16 0 7.07e−55

7
NM 7 14 −2.27e−63 8.63e−33
BM 4 16 −1.1e−126 6.65e−120
KM 4 16 −1.1e−126 1.22e−96
GM 3 12 −1.1e−126 1.05e−26
OM1 4 16 1.2e−126 3.90e−95
OM2 4 16 1.2e−126 7.07e−112
[12]-1 3 12 −1.1e−126 6.76e−29
[12]-2 3 12 1.2e−126 7.97e−29

8
NM 21 42 9.09e−78 3.26e−40
BM 6 24 0 1.08e−71
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Table 1 (continued)

IT NFE f (x∗) δ

KM 7 28 0 0
GM 9 36 0 7.76e−121
OM1 11 44 0 4.68e−72
OM2 9 36 0 7.06e−42
[12]-1 10 40 0 5.56e−72
[12]-2 10 40 0 5.97e−72

9
NM 6 12 −1.5e−80 1.80e−40
BM 3 12 −2.0e−128 3.70e−52
KM 3 12 −2.0e−128 1.55e−44
GM 3 12 −2.0e−128 1.98e−42
OM1 3 12 −2.0e−128 2.67e−46
OM2 3 12 −2.0e−128 3.39e−45
[12]-1 3 12 −2.0e−128 2.68e−44
[12]-2 3 12 −2.0e−128 3.26e−43

10
NM 10 20 1.74e−62 2.63e−33
BM 7 28 0 1.22e−59
KM 4 16 0 1.01e−45
GM Div
OM1 5 20 0 2.35e−39
OM2 5 20 0 1.56e−78
[12]-1 4 16 0 3.81e−30
[12]-2 4 16 0 3.91e−30

11
NM 8 16 −5.0e−67 9.75e−33
BM Div
KM Div
GM Div
OM1 5 20 0 5.59e−78
OM2 4 16 0 1.07e−35
[12]-1 6 24 0 6.20e−104
[12]-2 6 24 0 1.81e−103

12
NM 14 28 6.1e−54 8.42e−28
BM Div
KM 4 16 0 1.34e−30
GM 5 20 0 8.54e−50
OM1 8 32 0 1.76e−74
OM2 7 28 0 2.92e−86
[12]-1 5 20 0 5.40e−29
[12]-2 5 20 0 1.97e−30

13
NM 8 16 −2.5e−79 4.46e−39
BM Div
KM 5 20 −1.0e−127 4.44e−47
GM 4 16 0 1.25e−35
OM1 5 20 1.0e−127 0
OM2 4 16 1.0e−127 2.54e−48
[12]-1 5 20 −1.0e−127 0
[12]-2 5 20 1.0e−127 0

14
NM 13 26 1.7e−51 2.23e−26
BM 15 60 −1.0e−127 0
KM 9 36 2.0e−127 7.27e−35
GM 10 40 −1.0e−127 1.15e−115
OM1 13 52 −1.0e−127 3.26e−44
OM2 9 36 −1.0e−127 5.63e−29
[12]-1 10 40 −1.0e−127 1.92e−96
[12]-2 16 64 −1.0e−127 5.35e−47
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