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Introduction 
Euler’s constant (also known as Euler–Mascheroni constant) is approximately: 

0.57721566490153286060651209008240243104215933593992 

The following approximation for Euler’s constant is the starting point from which I 

point out better variants [1]: 

lim
𝑛→∞

 = ∑ 1/𝑘𝑛
𝑘=1  – ln(n)        (1) 

Equation 1 is simple to implement. The summation term also defines the harmonic 

series function, Hn. Equation 1 converges very slowly to Euler’s constant. This 

article discusses various approximations, including a few ones developed by the 

author, that converge to  at a higher rate. 

Table 1 lists the errors in evaluating Euler’s constant as a function of n using 

equation 1.  

 
Throughout this article I will be using the same sequence of values for n 

that appear in Table 1 for testing the various approximations. I also present 

the statistics of the approximation based on the range of 50 to 10,000 

iterations. I chose the lower limit of 50 somewhat arbitrarily ensuring that 

all of the approximations can reach a reasonable level of yielding 

acceptable results. 

 

 
Throughout this article, I present the errors and percent errors relative to 

Euler’s constant value of 0.577215664901533 that I hard code in my Excel 

VBA code. Therefore a 0 error means that a calculated approximation 

matches the hard coded value of Euler’s constant and not the true value of 

that constant. 
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n Calculated  Error 

10 0.626383161 -0.049167496 

20 0.602007384 -0.024791719 

30 0.593789749 -0.016574084 

40 0.589663585 -0.01244792 

50 0.587182333 -0.009966668 

60 0.585525851 -0.008310186 

70 0.584341516 -0.007125851 

80 0.583452644 -0.006236979 

90 0.582760933 -0.005545268 

100 0.582207332 -0.004991667 

200 0.579713582 -0.002497917 

300 0.578881406 -0.001665741 

400 0.578465144 -0.001249479 

500 0.578215332 -0.000999667 

600 0.578048767 -0.000833102 

700 0.577929781 -0.000714116 

800 0.577840535 -0.00062487 

900 0.577771118 -0.000555453 

1000 0.577715582 -0.000499917 

2000 0.577465644 -0.000249979 

3000 0.577382322 -0.000166657 

4000 0.57734066 -0.000124995 

5000 0.577315662 -9.99967E-05 

6000 0.577298996 -8.3331E-05 

7000 0.577287092 -7.14269E-05 

8000 0.577278164 -6.24987E-05 

9000 0.577271219 -5.55545E-05 

10000 0.577265664 -4.99992E-05 
Table 1. Approximated values for the Euler’s constant using equation (1).  

Slow Converging Approximations 
This section presents approximations, based on equation 1, that converge faster 

than equation 1, but do not lead to spectacular results. As such, I will present these 

approximations and offer you the summary statistics for their performance. 

The following infinite series [1] calculates an approximation for Euler’s constant: 
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 = ∑ [
1

𝑘
− ln (1 +

1

𝑘
)]

𝑘=1          (2) 

Equation 2 incorporates the logarithm term into the summation in hope of reducing 

the error in calculating . Table 3 shows the summary statistics for the errors in 

equation 2 for 50 <= n <=10000: 

 Error %Error 

Minimum 4.99958E-05 0.008661552 

Maximum 0.009835959 1.704035406 

Mean 0.002181204 0.377883658 

Std Deviation 0.002999217 0.519600831 
Table 3. The summary statistics for the errors in equation 2 for 50 ≤ n ≤10000. 

The following series, which was developed by Nielsen [1] in 1897, calculates an 

approximation for Euler’s constant using: 

 = 1 − ∑ (−1)𝑘 𝑓𝑙𝑜𝑜𝑟(
𝑙𝑜𝑔2(𝑘)

𝑘+1
)]

𝑘=2        (3) 

Where floor() is the floor function. Equation 3 stands out since it does not use the 

harmonic series in its calculations. Table 4 shows the summary statistics for the 

errors in equation 3 for 50 <= n <=10000: 

 Error %Error 

Minimum 0.000588869 0.102018818 

Maximum 0.034163835 5.918729732 

Mean 0.010011106 1.734378707 

Std Deviation 0.011352705 1.966804671 
Table 4. The summary statistics for the errors in equation 3 for 50 ≤ n ≤10000. 

A similar series, which was developed by Vacca [1] in 1910, calculates an 

approximation for Euler’s constant using: 

 = ∑ (−1)𝑘 𝑓𝑙𝑜𝑜𝑟(
𝑙𝑜𝑔2(𝑘)

𝑘
)]

𝑘=2         (4) 

Table 5 shows the summary statistics for the errors in equation 4 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 0.000588931 0.102029646 

Maximum 0.034718207 6.014772153 

Mean 0.010137984 1.756359762 
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Std Deviation 0.011564218 2.003448468 
Table 5. The summary statistics for the errors in equation 4 for 50 ≤ n ≤10000. 

DeTemple [2] developed the following approximation for Euler’s constant: 

 = Hn – ln(n+1/2)          (5) 

Equation 5 presents a slight variation on equation 1. Table 6 shows the summary 

statistics for the errors in equation 5 for 50 <= n <=10000: 

 Error %Error 

Minimum 4.16587E-10 7.21717E-08 

Maximum 1.63371E-05 0.002830337 

Mean 2.25211E-06 0.000390167 

Std Deviation 4.32722E-06 0.000749671 
Table 6. The summary statistics for the errors in equation 5 for 50 ≤ n ≤10000. 

Mortici [3] has derived several formulas to calculate Euler’s constant. This section 

present the following three equations that are less accurate than the other Mortici 

equations that I present in the next section. 

Mortici’s first series is: 

 = Hn-1 + 1/[(6 – 2√6)n] – ln(n + 1/√6)      (6) 

Table 7 shows the summary statistics for the errors in equation 6 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 5.93969E-14 1.02902E-11 

Maximum 1.79007E-07 3.10121E-05 

Mean 1.87553E-08 3.24927E-06 

Std Deviation 4.27679E-08 7.40935E-06 
Table 7. The summary statistics for the errors in equation 6 for 50 ≤ n ≤10000. 

Mortici’s second series is: 

 = Hn-1 + 1/[(6 + 2√6)n] – ln(n – 1/√6)      (7) 

Table 8 shows the summary statistics for the errors in equation 7 for 50 <= n 

<=10000: 
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 Error %Error 

Minimum 8.88178E-15 1.53873E-12 

Maximum 1.83895E-07 3.1859E-05 

Mean 1.91745E-08 3.32189E-06 

Std Deviation 4.38545E-08 7.5976E-06 
Table 8. The summary statistics for the errors in equation 7 for 50 ≤ n ≤10000. 

Mortici’s third series is: 

 = Hn – ln(n) + ln((n – 1/12)/(n + 5/12))      (8) 

The second logarithm in equation 8 represents a correction term to equation 1. The 

algorithm calculates the value of first order rational polynomials. Table 9 shows 

the summary statistics for the errors in equation 8 for 50 <= n <=10000: 

 Error %Error 

Minimum 6.28386E-14 1.08865E-11 

Maximum 1.91916E-07 3.32485E-05 

Mean 2.01062E-08 3.48331E-06 

Std Deviation 4.58507E-08 7.94343E-06 
Table 9. The summary statistics for the errors in equation 8 for 50 ≤ n ≤10000. 

The Mortici formulas in equations 6, 7, and 8 show an improvement in results over 

the previous equations in this section. 

Chen[5] discusses several approximations by Negoi. The first approximation is: 

 = Hn – ln(n + ½ + 1/(24n))        (9) 

Equation 9 presents an enhancement on the logarithm appearing in equation 1. 

Table 10 shows the summary statistics for the errors in equation 9 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 5.79536E-14 1.00402E-11 

Maximum 1.64367E-07 2.84759E-05 

Mean 1.72226E-08 2.98374E-06 

Std Deviation 3.92714E-08 6.80358E-06 
Table 10. The summary statistics for the errors in equation 9 for 50 ≤ n ≤10000. 

The second Negoi [5] approximation is: 
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 = Hn – ln(n + ½ + 1/(24n)) – (p + q)/2      (10) 

Where p = 1/[48(n+1)3] and q = 1/(48n3). 

Table 11 shows the summary statistics for the errors in equation 10 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 7.88258E-14 1.36562E-11 

Maximum 3.26228E-07 5.65175E-05 

Mean 3.4228E-08 5.92985E-06 

Std Deviation 7.79833E-08 1.35103E-05 
Table 11. The summary statistics for the errors in equation 10 for 50 ≤ n ≤10000. 

The third Negoi approximation which provides more accurate results appears in the 

next section. 

Fast Converging Approximations 
This section presents approximations that converge faster to Euler’s constant. 

Many of the approximations in this section are better versions of ones presented in 

the last section. Therefore, the names of these approximation should be familiar by 

now. 

Mortici’s fourth equation to calculate Euler’s constant is: 

 = Hn-1 + 1/(2n) – ln(n2 – 1/6)/2       (11) 

Table 12 shows the summary statistics for the errors in equation 11 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 1.22125E-15 2.11575E-13 

Maximum 2.44424E-09 4.23453E-07 

Mean 2.09611E-10 3.63142E-08 

Std Deviation 5.48949E-10 9.51029E-08 
Table 12. The summary statistics for the errors in equation 11 for 50 ≤ n ≤10000. 

Mortici’s fifth series that calculates Euler’s constant is: 

 = Hn – ln(n) + ln(p/q)         (12) 

Where, 

p = n2 + 33/(140 n) + 37/1680        (12a) 
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and, 

q = n2 + 103/(140 n) + 61/336        (12b) 

Equation 12 presents a correction to equation 1 using quadratic rational 

polynomials. Table 13 shows the summary statistics for the errors in equation 12 

for 50 <= n <=10000: 
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 Error %Error 

Minimum 7.77156E-16 1.34639E-13 

Maximum 1.53277E-11 2.65546E-09 

Mean 1.14316E-12 1.98048E-10 

Std Deviation 3.31761E-12 5.74761E-10 
Table 13. The summary statistics for the errors in equation 12 for 50 ≤ n ≤10000. 

Batir and Chen [4] suggested two approximations to calculate Euler’s constant. The 

first Batir-Chen approximation is: 

 = Hn –ln(n + ½ + 1/(24 n) – 1/(48 n2) + 23/(5760 n3) +  

17/(3840 n4) + 10099/(2903040 n5)     (13) 

Table 14 shows the summary statistics for the errors in equation 13 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 1.11022E-15 1.92341E-13 

Maximum 4.45644E-13 7.72057E-11 

Mean 4.01716E-14 6.95954E-12 

Std Deviation 9.2046E-14 1.59465E-11 
Table 14. The summary statistics for the errors in equation 13 for 50 ≤ n ≤10000. 

The second Batir-Chen approximation is: 

 = Hn –ln(n + ½ + 1(24 m) – 37/(5760 m3) + 10313/ (2903040 m5)    (14) 

Where m = n + ½. 

Table 15 shows the summary statistics for the errors in equation 14 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 6.66134E-16 1.15405E-13 

Maximum 3.73711E-10 6.47437E-08 

Mean 3.22365E-11 5.58482E-09 

Std Deviation 8.40666E-11 1.45642E-08 
Table 15. The summary statistics for the errors in equation 14 for 50 ≤ n ≤10000. 

The third Negoi [5] approximation is: 

 = Hn – ln(n + ½ + 1/(24n)) – p(n)       (15) 
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Where p(n) =1/48/[n + 83/360 + 4909/64800/(n + 11976997/ 37112040)3]. 

Table 16 shows the summary statistics for the errors in equation 15 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 2.22045E-16 3.84682E-14 

Maximum 4.00791E-14 6.94351E-12 

Mean 1.13567E-14 1.96749E-12 

Std Deviation 1.44784E-14 2.50831E-12 
Table 16. The summary statistics for the errors in equation 15 for 50 ≤ n ≤10000. 

The Hurwitz [1] approximation is: 

 = Hn – ln(n) – p(n)         (16) 

Where p(n) =1/(2n) – 1/(12n2) + 1/(120n4). 

Table 17 shows the summary statistics for the errors in equation 16 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 1.11022E-15 1.92341E-13 

Maximum 2.55906E-13 4.43346E-11 

Mean 2.76631E-14 4.7925E-12 

Std Deviation 5.27728E-14 9.14266E-12 
Table 17. The summary statistics for the errors in equation 16 for 50 ≤ 

The Author’s Work 
My attempts at approximating Euler’s constant started with several polynomial 

models that fit the error in calculating Euler’s constant with the number of 

iterations. As you will see soon, my last regression model pointed to a versatile 

analytical solution. After exploring this solution I was happy to come across the 

best approximation for Euler’s constant, even though that relation was generally 

known already! 

The first regression model, a fourth-order polynomial fit, contributes to calculating 

Euler’s constant using the following approximation: 

 = Hn – ln(n) – 10Poly(n)         (17) 

Where Poly(n) is calculated using: 
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Poly(n) = –0.336890612822068 – 0.952200974992434 log10(n)  – 

2.40147901805659E-02 [log10(n)]2 + 

5.34486197957481E-03 [log10(n)]3 –  

4.42420215025482E-04 [log10(n)]4     (17a) 

Table 18 shows the summary statistics for the errors in equation 17 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 2.38759E-10 4.1364E-08 

Maximum 1.02886E-06 0.000178245 

Mean 2.38267E-07 4.12787E-05 

Std Deviation 3.73961E-07 6.47871E-05 
Table 18. The summary statistics for the errors in equation 17 for 50 ≤ n ≤10000. 

The second regression model, a fifth-order polynomial fit, contributes to 

calculating Euler’s constant using the following approximation: 

 = Hn – ln(n) – 10Poly(n)         (18) 

Where Poly(n) is calculated using: 

Poly = –0.349390867440153 – 0.921506218334963 log10(n)  – 

5.22015860254543E-02 [log10(n)]2 + 

5.34486197957481E-03 [log10(n)]3 –  

2.95515486800227E-03 [log10(n)]4 + 

1.98213992961801E-04 [log10(n)]5     (18a) 

Table 19 shows the summary statistics for the errors in equation 18 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 6.56377E-10 1.13714E-07 

Maximum 3.74337E-07 6.48522E-05 

Mean 6.53157E-08 1.13157E-05 

Std Deviation 1.04699E-07 1.81386E-05 
Table 19. The summary statistics for the errors in equation 18 for 50 ≤ n ≤10000. 
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The third regression model, a rational polynomial fit, contributes to calculating 

Euler’s constant using the following approximation: 

 = Hn – ln(n) – 10Poly(n)         (19) 

Where Poly(n) is calculated using: 

Poly(n) = P(n)/Q(n) 

Where, 

P(n) = –0.356484624590002 – 0.868207818526913 * log10(n)   (19a) 

Q(n) = 1 – 9.50299272631852E-02 log10(n) + 

3.94884084382336E-02 [log10(n)]2 –  

9.56562183896382E-03 [log10(n)]3 + 

1.25676353002308E-03 [log10(n)]4 –  

6.92420246695854E-05 [log10(n)]5     (19b) 

Table 20 shows the summary statistics for the errors in equation 19 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 8.96294E-12 1.55279E-09 

Maximum 1.19899E-07 2.07719E-05 

Mean 1.57907E-08 2.73566E-06 

Std Deviation 2.7957E-08 4.84342E-06 
Table 20. The summary statistics for the errors in equation 19 for 50 ≤ n ≤10000. 

The fourth regression model, a rational polynomial fit, contributes to calculating 

Euler’s constant using the following approximation: 

 = Hn – ln(n) + Poly(n)         (20) 

Where, 

Poly(n) = 1.58197134978339E-14 - 0.5/n + 

  8.33333332716528E-02/n2 – 

   8.33319446155676E-03/n4 + 

   3.91413719514747E-03/n6       (20a) 
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Table 21 shows the summary statistics for the errors in equation 20 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 2.22045E-16 3.84682E-14 

Maximum 2.39808E-14 4.15457E-12 

Mean 1.34661E-14 2.33294E-12 

Std Deviation 6.10631E-15 1.05789E-12 
Table 21. The summary statistics for the errors in equation 20 for 50 ≤ n ≤10000. 

Equation 20 can be rewritten as the following approximation by taking the 

reciprocal of the regression coefficients in equation 20a: 

 = Hn – ln(n) + Poly(n)         (21) 

Where, 

Poly(n) = –1/(2 n) + 1/(12 n2) – 1/(120 n4) + 1/ (255.5 n6)    (21a) 

Table 22 shows the summary statistics for the errors in equation 21 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 1.11022E-16 1.92341E-14 

Maximum 3.9857E-14 6.90505E-12 

Mean 1.1278E-14 1.95387E-12 

Std Deviation 1.45986E-14 2.52913E-12 
Table 22. The summary statistics for the errors in equation  21 for 50 ≤ n ≤10000. 

Equation 21 encouraged me to use the approximation for Euler’s constant that 

involves the Bernoulli numbers (see Havil [6] page 103 and Wikipedia’s article on 

Harmonic number [8]): 

 = Hn – ln(n) – 
1

2𝑛
+ ∑

𝐵2𝑟

2𝑟 𝑛2𝑟
∞
𝑟=1      (22) 

Where B2r is the Bernoulli number. Table 23 shows the sequence of the first few 

Bernoulli numbers is: 

n Bn 

0 1 

1 –1/2 

2 1/6 
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n Bn 

4 –1/30 

6 1/42 

8 –1/30 

10 5/66 

12 –601/2730 

14 7/6 

16 –3617/510 

18 43867/798 

20 –174611/330 
Table 23. The values for the first few Bernoulli numbers.  

I used several terms from equation 22, as shown by the following equation: 

 = Hn – ln(n) + Poly(n)         (23) 

Where, 

Poly(n) = – 1/(2 n) + 1/(12 n2) – 1/(120 n4) + 1/ (252 n6) –  

1/(240 n8) + 1/(132 n10)       (23a) 

The above polynomial is a superset of Hurwitz’s approximation that uses fewer 

terms to calculate Poly(n). Havil [6] also mentions an approximation that resembles 

equation 23. 

Table 24 shows the summary statistics for the errors in equation 23 for 50 <= n 

<=10000: 

 Error %Error 

Minimum 0 0 

Maximum 3.9857E-14 6.90505E-12 

Mean 1.10745E-14 1.9186E-12 

Std Deviation 1.47136E-14 2.54906E-12 
Table 24. The summary statistics for the errors in equation 23 for 50 ≤ n ≤10000. 

The minimum errors occur at n = 20 and 90 (using Excel 2013) matching the 

hardcoded value of Euler’s constant in the VBA code. To show you how good 

equation 23 works, Table 25 lists the errors in Euler’s constant for a low range of 2 

to 20 iterations: 
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n Calculated Euler Constant Error 

2 0.577218446 2.78067E-06 

3 0.577215693 2.83493E-08 

4 0.577215666 1.02043E-09 

5 0.577215665 7.50449E-11 

6 0.577215665 8.75888E-12 

7 0.577215665 1.41243E-12 

8 0.577215665 2.89102E-13 

9 0.577215665 7.07212E-14 

10 0.577215665 1.9762E-14 

11 0.577215665 5.9952E-15 

12 0.577215665 1.9984E-15 

13 0.577215665 7.77156E-16 

14 0.577215665 6.66134E-16 

15 0.577215665 4.44089E-16 

16 0.577215665 4.44089E-16 

17 0.577215665 1.11022E-16 

18 0.577215665 1.11022E-16 

19 0.577215665 3.33067E-16 

20 0.577215665 0 
Table 25. The estimated values for Euler’s constant and their errors for a low range of 

iterations. 

 In researching reference for this article, I came across a web page by 

Wolfram-Math-World titled Euler-Mascheroni Constant Approximations. 

This web page contains a set of very clever short approximation for Euler’s 

constant. These approximations, which range in accuracy, do not use 

summations and instead rely on simple empirical calculations. You can 

easily perform these calculations with your pocket calculator and get the 

value of Euler’s constant accurate to a few decimals. I highly recommend 

visiting that the Wolfram-Math-World web page. 

Conclusion 
The best approximations for Euler’s constant are ones based on equation 22 which 

uses a summation involving Bernoulli numbers. This article points out the 

advantages of such approximations, over others—something that several references 

that mention the approximation shy away from stressing its importance. 
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