
Extensive Empirical Modeling Using Excel VBA 1

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Extensive Empirical Modeling Using Excel
VBA

By

Namir Clement Shammas

Contents
Disclaimer ... 2

Dedication ... 2

About the Clement 2 Project .. 3

Introduction ... 4

Taking the Code for a Quick Spin!... 6

The Excel File .. 8

The Switches Sheet ...10

The Data sheet ..13

The OriginalData sheet ...14

The Models Sheet ...14

Working with Term Math Expressions ..15

Creating Simpler Regression Models with Simple Cross-Product Terms21

The ModelsList Sheet ...23

The Results Sheet ..24

The Scratch Sheet ...24

The Normalization Sheet...25

The NormalizedData Sheet ...26

The ErrorsReport Sheet ...27

Using the Excel File ..27

1. Set Operational Switches ..27

2. Enter the Data in the Data Sheet ...27

3. Enter the Transformation Ranges and Steps ..28

Extensive Empirical Modeling Using Excel VBA 2

Copyright © 2021 Namir Clement Shammas Version 1.0.0

4. Select Normalization Options ...28

5. Running the VBA Code ..29

Notes on the VBA Code in the Data Sheet ..31

The Function Fx ..31

The Subroutine BuildSuperRegressionModels ..33

Fatal Runtime Errors ...37

Customizing the Transformations with VBA and User-Defined Functions37

The General Approach to Working with Custom Transformations38

The Steps for Setting Up Custom Transformations40

Using Term Math Expressions ..43

Epilogue ...47

Parting Words ...49

Appendix A – Source of Math-Related Runtime Errors ..50

Document History ...50

Disclaimer

The Excel VBA code described in this paper comes with no guarantees. The author

is not liable for any loss or injury due to the use of the Excel VBA code. Use it at

your own risk. I highly recommend that you first test the VBA code with small

samples of your own data before you dive in an put the VBA code to serious and full

use. You are exclusively and ultimately responsible for interpreting the results of the

best regression models generated. You are granted the rights to customize the code

(or translate it to other programming languages) to fit your own needs and for your

inhouse use. By using the VBA code, you agree with the terms of this disclaimer.

Dedication

To my most beloved son Joseph Shammas, PhD. As a data scientist, he lovingly

advised me that I was wasting my time doing this project using a dinosaur like Excel

VBA. As someone who still tinkers with over-forty-year-old programmable

calculators, using Excel VBA should come as no surprise.

Extensive Empirical Modeling Using Excel VBA 3

Copyright © 2021 Namir Clement Shammas Version 1.0.0

About the Clement 2 Project

I started my career as a programming book author in the mid-eighties. My first book,

a collaboration with other programmers, presented interesting Turbo Pascal

applications. One chapter presented the Clement application (named in honor of my

father) that performed sophisticated search for the best regression model by

successive improvements. I decided recently to revive the old project and chose to

start from scratch. I chose to use Excel and VBA as the tools to build an application

that selects the best regression model. I called the programming project Clement 2.

At a certain point, I decided to spin off the first program into multiple applications.

This study presents the first and initial part of the Clement 2 project. It offers a

sweeping approach that uses a grid of transformations searching for the best model.

Extensive Empirical Modeling Using Excel VBA 4

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Introduction

“Magic Mirror, on the wall, who, now, is the fairest one of all?”

 – quote of the Evil queen in the Snow-White legend.

This paper presents a powerful Excel file and VBA code that allows you to

investigate a wide range of empirical linearized multiple regression models that fit

your data. The search for the best regression model essentially uses a brute force

approach-assume little and search a lot! Such models may reveal transformations

and relationships between variables that were not obvious at the outset. If you are

analyzing a huge number of observations, then the VBA code would better serve

you as a prototype study you employ to examine smaller samples of your data. To

process a huge number of observations, you may opt to use code you develop (or

have it written for you) in other languages like Python, SQL, MATLAB, C++, or R.

The applications in these languages may still read and write information from and

to Excel files but do the calculations outside Excel, giving you some speed advantage

and a higher data capacity. Keep in mind that error in your data may favor certain

regression models over others. It’s a good idea to apply the VBA code to multiple

sets of data and compare the best models. If you are willing to divide your large data

into small enough sets, Excel would be able to handle the job.

The very root of the concept for the VBA code goes back four decades of using

vintage HP programmable calculators and their statistical applications. These

applications allowed you to select the best fit among linear, exponential, logarithmic,

and power regression models for your (x, y) data. I wasted no time in extending the

selection of models for these HP calculator applications by writing programs that

performed more transformations on the (x, y) data. I easily went from selecting from

4 models into selecting from 64 models by simply giving each regression variable

eight possible transformations—x, 1/x, ln(x), √x, 1/√x, x1.5, x2, and 1/x2.

I adapted the above simple concept to multiple regression between three variables

that examined up to 512 models (based on 8 transformations per variable). I applied

the best curve fit to calculators and over time migrated to Excel VBA to select the

models with the best transformations. The ability to view Excel sheets to inspect

data, transformations, and results, proved to be most valuable and unrivaled! I was

also able to explore empirical modeling for more than three variables. Over time I

Extensive Empirical Modeling Using Excel VBA 5

Copyright © 2021 Namir Clement Shammas Version 1.0.0

explored different schemes for applying the transformations to regression variables.

Early transformation schemes dealt with the various transformation as an

enumerated set of functions. Recently, I used the transformations as mostly powers

of values that supply different curvatures. This study brings the fruits of several

decades of writing programs that seek the best empirical models. This study

incorporates, for the first time, the ability to include the cross-products of two or

more variables and also use powerful math expressions in the regression models. As

I will discuss later, my preferred scheme of transformations is based on changing the

curvature of regression variables by raising these variables to integer and floating-

point powers.

This study allows you to determine the best models in the following general

schemes:

f0(y) = a0 + a1∙f1(x1) + a2∙f2(x2) + … + an∙fn(xn) (1)

f0(y) = a0 + a1∙f1(x1) + a2∙f2(x2) + … + an∙fn1(x1) ∙fn2(x2) + … (2)

Equation (1) allows you to perform multiple linearized regression on several

independent variables with fi(x) being the transformations applied to the variables.

The default transformations for fi(x) are either xi or ln(x). We can extend equation

(1) to include cross–products with transformations, yielding equation (2). The latter

offers a general form in which we can do powerful empirical curve fitting on data.

The more independent variables we have, the more cross–product terms of two or

more transformed variables we can have! It is easy to end up with hundreds or

thousands of empirical models to inspect! This paper discusses how to explore the

power of equation (2). Applying equation (1) is a mere subset. The paper also

presents the use of math expressions that include two or more regression variables.

 When this document uses the term VBA code it refers to ensemble of global

constants and variables, functions, and subroutines that work together to operate the

best curve fitting application. The terms VBA code and program are one and the

same.

The VBA code in this study does not explicitly perform the regression calculations.

Instead, it obtains the regression ANOVA table from a standard VBA toolkit. The

VBA code prepares the regression data for each model and invokes subroutine

ATPVBAEN.XLAM!Regress located in the Analysis ToolPak – VBA engine that

Extensive Empirical Modeling Using Excel VBA 6

Copyright © 2021 Namir Clement Shammas Version 1.0.0

generates the familiar ANOVA table. This table provides the VBA code with the

results it needs.

Taking the Code for a Quick Spin!

"Fasten your seatbelts, it's going to be a bumpy night."

From the movie "The Wisdom of Eve”

Let me guide you through a quick inspection and test for the Excel file using the

demo file BMLRdemo.xlsm. The file contains worksheets I prepared for this demo.

Make sure that the Analysis ToolPak and the Analysis ToolPak – VBA are enabled

in your Add-ins dialog box. Perform the following tasks:

1. Load the file BMLRdemo.xlsm. Activating this demo workbook also brings

up the nonmodal Main Menu form shown in Figure 1. Keep that form open

while you inspect various worksheets.

2. Click on the Data sheet to inspect the name of the variables and their values.

Notice the layout of the variable names and the data.

3. Click on the Models sheet to see the basic information for the transformations.

Notice the variable names in column A and the values in the other columns.

The information in this sheet sets the dependent variable to remain linear

while all other regression variables have linear and quadratic transformations.

4. Click on the ModelsList sheet to view the list of regression models.

5. Right-click the ModelsList sheet’s tab and select the View Code option. This

action switches you to the VBE. Click on the ThisWorkbook project in the

Project window of the VBE. This is the repertoire of most the VBA code.

The rest of the VBA code is in Module1.

6. Click on the Excel application windows again to select it.

7. Click on the Main Menu form and then click on the topmost button—the one

with a number 1 to its left. This choice displays an automatically closing

message form that shows the name of the subroutine DoMultipleRegression

before invoking it. The latter subroutine will ask you to proceed with the

process. Click the Yes button. The VBA code will do a complete cycle of

building the regression models list and then testing each model. During the

program execution you will hear messages related to the progress of this

process. When the VBA code is done executing it will ask you if you want to

remove the trailing punctuation characters from all of the variable names in

all of the sheets. Click Yes. You will see the Results sheet. Inspect that sheet

Extensive Empirical Modeling Using Excel VBA 7

Copyright © 2021 Namir Clement Shammas Version 1.0.0

with the sorted results. Notice that the values of the R-square and F statistic

decrease down columns A and B, respectively.

Figure 1. The Menu input box

8. Click on the Scratch sheet to view the regression data and results for the best

regression model that the VBA code processed.

9. Once you are done with the demo file, close it. The file BLMRv1_0.xlsm is the

file you want to work with from now on, so load that file. The demo Excel file

can serve a second role as a backup file.

 As a new user to the software, the Main Menu form is

your friend and guide.

 Always use backup copies of the Excel file if you plan to

tinker and experiment with data and regression models.

 Make sure that the Analysis ToolPak and the Analysis

ToolPak – VBA are enabled in your Add-ins dialog box.

 The VBA code checks for many critical errors, displays

(and speaks) an advisory message before the program

Extensive Empirical Modeling Using Excel VBA 8

Copyright © 2021 Namir Clement Shammas Version 1.0.0

stops. You should inspect the data in the various

worksheets to fix the source of the error.

The Main Menu form is a nonmodal form which you can leave open (and even

drag down to just above the task bar level) while inspecting various worksheets and

VBA code in the ThisWorkbook project. When you run the demo Excel file

BMLRdemo.xlsm, the Main Menu form loads automatically. When you load the

distribution file BMLRv1_0.xlsm you can open the Main Menu form using one of

these tasks (which also work for the demo Excel file):

• Clicking on the Switches sheet. Activating this sheet also brings up the Main

Menu form. If this action does not display the form, click on any other sheet

and then click on the Switches sheet again.

• Locate subroutine MiniMenu (it is the first subroutine after the global

declarations of constants and variables) and execute it. This subroutine

displays the nonmodal Main Menu form.

The form has multiple command buttons with numbers placed to their left as shown

in Figure 1. I will be referring to the buttons by these numbers. Each command

button invokes a subroutine that performs a task related to the regression modeling.

By default, when you click on any of these command buttons, the VBA code first

displays the name of the subroutine it will invoke in an automatically closing

message form (closes after five seconds) and then invokes that subroutine. I have

provided this help feature so that you can learn the names of the subroutines you are

using.

The Excel File

"If you build it, they will come."
From the movie “Field of Dreams”

The BMLRv1_0.xlsm file has the following worksheets that play different roles in

input, output, and calculations. The next table summarizes the roles of these sheets.

The sheets with the yellow background are your main input sheets.

Extensive Empirical Modeling Using Excel VBA 9

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Sheet Name Purpose

Switches Sheet that contains operational switches that fine-tune how the

software works.

Data Sheet where you place your data to be processed. The values in

this sheet are on the proverbial front line ready to be involved

in regression calculations.

Models Sheet containing the range of power patterns that create the

regression models’ list.

ModelsList Full list of regression models with each regression term

occupying a separate cell on the same row. This list is generated

by the VBA code and can be manually edited by the user.

Results Sheet showing regression results sorted by the adjusted R-

square statistic. You can choose to sort the results using the F

statistic.

Scratch A scratch sheet used to perform regression calculations.

ErrorsReport Sheet that lists non-fatal runtime errors that occur during the

regression calculations.

OriginalData Sheet that contains the copy of the data originally appearing in

sheet Data. The VBA code backs up (and later restores) the

original values of sheet Data to this sheet when normalized data

are used.

Normalization Sheet that lists the regression variables and indicates if data

normalization is needed.

NormalizedData Sheet that contains the last copy of the normalized data. This

sheet is available mainly for the inspection of the curious user.

The values in this sheet are also the source of data for a

subroutine that examines user-selected models in more details.

BigData This sheet is strictly for the user who wishes to store a large

number of variables and data points and analyze a portion of

that data, one at a time. The user can then select columns and

rows of data to copy to the Data sheet. This sheet is the user’s

ultimate data storage repertoire. The VBA code does not access

this sheet.

The VBA code is comprised of the following operational software components:

• Primary code:

o The code that builds the list of regression models.

o The code that performs the regression calculations, writes the results,

and sorts the results.

Extensive Empirical Modeling Using Excel VBA 10

Copyright © 2021 Namir Clement Shammas Version 1.0.0

o The code for data normalization.

• Secondary code:

o The code that supports VBA functions and user-defined functions used

for custom transformations.

o The code that manages the regression variable names.

o The code that manages math expressions and quasi-variables.

o The code that manages displaying, hiding, and working with the Main

Menu form.

The Switches Sheet

The Switches sheet contains over a dozen of switches that allow you to fine-tune

how the VBA code works. The sheet, shown in Figure 2, has three columns:

• Column A has the switch names. The names in this column match the name

of identifiers in the VBA code. As you become more familiar and comfortable

with the VBA code, you can search for the identifiers that match the switch

names in column A.

• Column B has the switch values. The switches can be strings, integers, and

numeric Boolean flags (0 for False and other integers for True).

• Column C contains a short explanation for what the switches do.

In the above and next outlines, I use the term numeric Boolean flag to mean a

logical flag that takes on the value of 0 for False and non-zero (preferably 1) for

True. It is easier, quicker, and less error-prone to type 0 or 1 than to type True or

False. Beyond the next outline, I will drop the numeric pre-qualifier.

The switches are:

• The switch RESULTS_SORT_COLUMN has a single-character string that

determines which column in the Results sheet is used to sort the results. The

default value is “A” which selects the adjusted R-square column. Assigning

“B” to the constant selects the F Statistic column for sorting the results.

• The switch SAYIT is a numeric Boolean flag that lets the VBA code speak

messages when the value is set to 1 (for True). When the value is set to 0 (for

False), the VBA code executes without verbal communications. The default

setting is 1.

• The switch WAIT_ON is a Boolean flag that lets you browse at the Results

sheet, switching back and forth between that sheet and the Data sheet. This

Extensive Empirical Modeling Using Excel VBA 11

Copyright © 2021 Namir Clement Shammas Version 1.0.0

pause does slow down the program but keeps you in touch with the best

regression models. The default setting is 1.

• The switch WAIT_DURATION specifies the number of integer seconds to

pause the VBA code while viewing the Results sheet. The default setting is 1.

• The switch NORMALIZE_DATA is a numeric Boolean flag that tells the

VBA code whether you want to normalize at least one regression variable

(when set to 1) or disable the data normalization feature altogether. Set the

value for this switch to 0 (False) if you wish to skip data normalization. The

default setting is 0.

• The switch APPENDED_CHAR_TO_VARNAMES contains the punctuation

character that is temporarily appended to the variable names during regression

calculations. By temporary I mean that when you are done with the analysis

of the regression models and inspecting individual regression models, you

have the following choices:

o Set switch REMOVE_TRAILING_PUNC_CHAR to 1 to let the VBA

automatically remove the trailing punctuation characters from all

variable names.

o Set switch REMOVE_TRAILING_PUNC_CHAR to 0 to make the

VBA code ask you about removing the trailing punctuation characters

from all variable names. Click Yes to the prompt if you are done with

the analysis.

o If you click No to the prompt, then you need to later on click on

command button 6 to remove the punctuation characters from all

the variable names in all of the sheets. Do this after you are done

with inspecting individual regression models in more details. The

default setting is the $ character. It is a good choice since valid function

names cannot include the $ character.

• The switch QUASI_VAR_FIRST_CHAR contains the first character(s) in the

names of quasi-variables used in math expressions. The switch has the default

value of “A”. More about this switch in subsection Using Term Math

Expressions.

• The switch MAX_ERROR_TO_STOP specifies the number of handled

runtime errors that will make the VBA code stop the regression calculations

to let you inspect the data and transformations. The default setting is 5.

• The switch SCALE_POWER is set to 100. It is the scaling factor that

magnifies the floating-point power values/increments to have integer values.

Extensive Empirical Modeling Using Excel VBA 12

Copyright © 2021 Namir Clement Shammas Version 1.0.0

• The switch MAIN_MENU_HELP is a numeric Boolean flag that tells the

VBA code to display the message form (when set to 1) or suppress that form

(when set to 0). The default setting is 1.

• The switch ENABLE_MAIN_MENU_FORM is a numeric Boolean flag that

tells the VBA code to display the Main Menu form (when set to 1) when you

activate the Switches sheet. Set the value of this switch to 0 (False) when you

wish to prevent the display of the Main Menu form. The default setting is 1.

If you set this switch to 0 while the Main Menu form is in view, the VBA code

will close that form.

• The switch MAX_RESULTS specifies the maximum number of results to

display in the sheet Results. The default value is 50.

• The switch BAR_CHAR specifies the character used after a math expression

to define the last row covered by that expression.

• The switch REMOVE_TRAILING_PUNCT_CHAR is a numeric Boolean

flag that, when set to 0, makes the VBA prompt you to delete the trailing

punctuation characters. When the switch is set to a 1, the VBA code will go

ahead and delete the trailing punctuation characters without asking the user.

 A B C

1 Switch Value Comments

2 RESULTS_SORT_COLUMN A Name of column in Results sheet used to sort the results

3 SAYIT 1 Turn on verbal messages 0=OFF non-0=ON

4 WAIT_ON 1
lets you view results sheets (slows down the process)
0=OFF non-0=ON

5 WAIT_DURATION 1 Number of seconds to wait

6 NORMALIZE_DATA 0 turn on/off data normalization feature 0=OFF non-0=ON

7 APPENDED_CHAR_TO_VARNAMES $ character appended to variable names

8 QUASI_VAR_FIRST_CHAR A first character(s) of the quasi-variable names

9 MAX_ERROR_TO_STOP 15
maximum number of errors that cause the calculations to
stop

10 SCALE_POWER 100 Scale factor for powers used to rais variables to

11 MAIN_MENU_HELP 1 Switch to display help form message 0=OFF non-0=ON

12 ENABLE_MAIN_MENU_FORM 1
Switch to ENABLE DISPLAYING Main Menu form 0=OFF
non-0=ON

13 MAX_RESULTS 50 Maximum number of results

14 BAR_CHAR |
Specifies the character used after a math expression to
define the last row covered by that expression.

15 REMOVE_TRAILING_PUNCT_CHAR 0
Remove trailing punctuation character without offering
choice for user when set to non-zero.

Figure 2. The Switches form.

Extensive Empirical Modeling Using Excel VBA 13

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The Main Menu form has multiple command buttons with numbers placed to

their left as shown in Figure 1. You can disable the message forms that pops up after

you click a command button. To do that, set the switch MAIN_MENU_HELP to 0

(False). You can also disable displaying the Main Menu form when you activate the

Switches sheet by setting the switch ENABLE_MAIN_MENU_FORM to 0 (False).

Once you are very comfortable with the VBA code you can even go a step further

and run the various subroutines directly from the VBA code listing in the

ThisWorkbook project in the VBE. I have placed these subroutines right after the

declaration of the global variables and constants. Remember that you can locate any

function or subroutine from the drop-down list of sorted routine names in the VBE

code editor when viewing the project ThisWorkbook.

The Data sheet

The Data sheet, as the name suggests, is where you enter, paste, and store your

working data. The first row has the headers for the variable names. The first column

is for the data of the dependent variable. The other contiguous columns are for the

independent variables. Figure 3 shows a sample Data sheet. The names of the

variables are Z, T, P, and V. I could have used slightly longer names such as Zfct,

Temp, Press, and Vol, respectively. The character case of the variable names is not

subject to any rule. However, the name of a variable should NOT contain the

punctuation character specified by the switch

APPENDED_CHAR_TO_VARNAMES (set by default as the $ sign). Why? The

VBA code removes all occurrences of the punctuation character from the variable

names. Thus, for example, if you have variables named Zfct, Zfct$, or Zfct$, the

VBA code will rename them all as Zfct. The VBA code will then temporarily

append that punctuation character to the same regression variables. In the final stages

of the calculations the VBA code will also delete the trailing punctuation characters

from the variable names. So, to have peace of mind, just use characters and digits in

naming your variables.

 A B C D

1 Z T P V

2 721 11 55 1.5

3 466 4 65 2

4 380 2 67 3

5 662 9 48 4

Extensive Empirical Modeling Using Excel VBA 14

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 A B C D

6 658 8 50 5

7 604 13 34 6

8 563 12 33 7

9 534 1 55 8

10 493 3 41 9

11 480 5 34 10

12 340 10 21 11

13 467 6 29 12

14 439 7 25 13
Figure 3. A sample Data worksheet.

The OriginalData sheet

This sheet has the copy of the original values in sheet Data and before any requested

transformations are performed. This sheet is distinct from the BigData sheet and

does not serve the same purpose.

The Models Sheet

This section looks at two ways to work with the sheet Models to create regression

models. The first subsection presents you the power of using term math expression.

By that I mean inserting math expressions in any term of the regression models. The

second subsection presents a simpler approach for creating simple cross-product

terms.

The Models sheet plays a paramount role in setting up the various regression models.

Rather than forcing you to type by hand hundreds or even thousands of rows that

define each model, this worksheet uses a much clever scheme as a shortcut. The

scheme for the data transformation has the following rules:

• Column A lists the regression variables that will contribute to the regression

models. Each regression variable is raised to a range of powers defined by

values in columns B, C, and D. These powers can be positive, zero, or

negative. When a power is zero, the VBA code applies the natural logarithm

transformation instead of raising values to zero to always get the value 1—a

wasted opportunity. Therefore, the general transformation for a non–zero

power i is xi and for a power of 0 is ln(x). These transformations represent

Extensive Empirical Modeling Using Excel VBA 15

Copyright © 2021 Namir Clement Shammas Version 1.0.0

different types of curvatures! A linear transformation with a power of 1 (i.e.,

taking the values of a variable as they are) represents zero curvature. Contrast

this with taking the squared values or the reciprocal values of a variable and

the kind of curvature these transformations offer. Here is a representation that

shows how the power values affect the level of concave and convex

curvatures. Thus, changing the curvature for a variable is the basic concept

behind the default transformation scheme that I present:

Increasing convex curvature __________ Increasing concave curvature

–5 < –4 < –3 < –2 < –1 < 1 < 2 < 3 < 4 < 5

• The non–zero powers can be integers or non–integers. If you use negative

powers or high–valued positive powers, I strongly suggest that you first

normalize the related variables to fall in the range (1, 2). The VBA code

supports data normalization by applying x = (x – xmin)/(xmax – xmin) + 1. For

data with positive values that vary wildly, you can also request the VBA code

to first calculate the natural logarithms of the variables and then proceed with

the normalization in the range (1, 2). This approach basically normalizes the

magnitude of the data points. By normalizing data into the range (1, 2) you

can apply positive or negative powers (both as integers or as floating–point

values) and have your mind rest at ease!

• The scheme of transformation uses a range of powers with a step increase in

power. You specify the minimum power, the maximum power, and the power

increment. This scheme is similar to the VBA For Next loop with a Step

clause.

Working with Term Math Expressions

This subsection presents the more advanced tool to create advanced transformations

using math expressions for the various terms of a regression model. Figure 4 shows

a sample Models sheet.

 A B C D E

1 Variable From Power To Power Power Step TME

2 Z 1 1 1

3 T 1 2 1

4 P 1 2 1

5 V 1 2 1

Extensive Empirical Modeling Using Excel VBA 16

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 A B C D E

6 T 1 2 1 '=A6*A7

7 P 1 2 1

8 T 1 2 1 '=A8*A9*A10

9 P 1 2 1

10 V 1 2 1

Figure 4. A sample Models worksheet that uses math expressions.

The Models sheet has the following columns:

• Column A is labeled Variable and contains the names of the variables that

appear in a term (either all by itself or in math expressions). The regression

variables in column A must also appear in the first row in sheet Data. Unlike

the sheet Data, the regression variables can appear on multiple rows in

column A of the sheet Models. The cell A2 has the name of the dependent

variable. The cells below it list the names of independent variables and can

even have the name of the dependent variable (to create a Padé–style

empirical fit. Keep in mind that to use such a model you need to employ an

iterative process to calculate the value of the independent variable). You also

need to observe the following rules in naming variables:

o The variable names in the Models sheet must match those in the Data

sheet. If you spell the variable names differently in the Models sheet,

the VBA code will overwrite that spelling with the one appearing in

the Data sheet.

o All the named variables in column A must also appear in the first row

of the Data worksheet (but the reverse is not mandatory).

o The regression variables in column A can appear in multiple rows.

• Column B is labeled From Power. This column contains the minimum power

value for each variable. Values should not have more than 2 decimal places.

The values in this column need not be the same for the same regression

variables that appear in different rows of the worksheet.

• Column C is labeled To Power. This column contains the maximum power

value for each variable. Values should not have more than 2 decimal places.

The values in this column need not be the same for the same regression

variables that appear in different rows of the worksheet.

Extensive Empirical Modeling Using Excel VBA 17

Copyright © 2021 Namir Clement Shammas Version 1.0.0

• Column D is labeled Power Step. This column contains the power increment

value for each variable. Values should not have more than 2 decimal places.

The values in this column need not be the same for the same regression

variables that appear in different rows of the worksheet.

• Column E is labeled TME (short for Term Math Expression). This column

tells the VBA whether you want to involve the subsequent variable(s) in a

math expression. Leave the cells in this column empty if the corresponding

variables appear in a term all by itself OR if it is in the range of regression

variables already covered by a math expression that appears in a previous

row. Otherwise, you can enter a mathematical expression that involves the

variable in the same row and one or more variables in subsequent rows. The

math expressions require you to observe the following syntax and rules:

o The first character is the single quote which tells Excel not to process

the remaining text.

o The equal sign.

o A special math expression using operators, parentheses, functions, and

quasi-variables. These quasi-variables have names that use the format

An where n is the row number that refers to each regression variable

in column A. Think of quasi-variables as transformed regression

variables and also as unique pointers to regression variables in column

A. If you enter a lowercase A for a quasi-variable name, the VBA code

will convert it to uppercase. While the names of the regression

variables in column A can be repeated, the names of the quasi-variables

appearing in a math expression must be unique and must not appear

in another math expression in the column TME. The VBA code will

replace the quasi-variables An with the names of the corresponding

regression variables and the applied transformations. The VBA code

needs to know the range of n in the quasi-variable names An that

appear in a math expression. The row in which the math expression

appears also specifies the minimum value of n in the quasi-variable

names An. To let VBA know about the last row covered by the

regression variables included in the math expression, you have two

choices:

▪ Use the rightmost reference to a quasi-variable An to refer to the

last sought row by the value of n. Thus, for example, the

expression '=A10*(A9+A8)/A11 tells the VBA code that the last

Extensive Empirical Modeling Using Excel VBA 18

Copyright © 2021 Namir Clement Shammas Version 1.0.0

row to include a regression variable is row 11. The expression

should appear in row 8, so VBA knows the range of rows

covered by the math expression.

▪ Append a vertical bar character |, defined by switch

BAR_CHAR, followed by the number of the last sought row.

Thus, for example, the expression '=A10*(A11+A8)/A9|11 tells

the VBA code that the last row to include a regression variable

is row 11. The expression should appear in row 8, so VBA

knows the range of rows covered by the math expression.

o The digits n for the quasi-variables An can appear in any order BUT

must appear only once. For example, the expression

'=A8*(A8+A9)/A10 is incorrect because the quasi-variable A8 appears

more than once in the expression.

o The TME cells below a math expression, and whose rows are

referenced by the quasi-variables, must be empty.

o The math expression can use operators, parentheses, and even function

names. There is no restriction on the character-case for function names.

The functions and explicit operators used in a math expression are fixed

transformations. This means that they appear in every single term

generated by the VBA code for that math expression and for different

transformations of the regression variables.

o If you raise one quasi-variable to the power of another quasi-variable,

make sure you enclose both quasi-variables in pairs of parentheses, to

ensure proper precedence evaluation by VBA. I also highly

recommend that you normalize both variables referred to by the quasi-

variables so the results of raising to powers don’t go through the

proverbial roof! For example the expression '=(A8)^(A9) will correctly

preserve the proper order of evaluation done by function Evaluate in

function Fx. However, the expression '=A8^A9 may produce the

wrong results when A8 and A9 refer to regression variables that are

themselves raise to other powers. The VBA code may wrongly

evaluate, as an example, the string “1.2^2^1.8^3” and not the intended

string “(1.2^2)^(1.8^3)”.

o The VBA code sets the contents of the TME cells in the second sheet

row (corresponding to the entry for the dependent variable) to an empty

string as its content is logically irrelevant.

Extensive Empirical Modeling Using Excel VBA 19

Copyright © 2021 Namir Clement Shammas Version 1.0.0

o The VBA code translates the quasi-variables into the names of the

associated regression variables. The code then appends a punctuation

character to each variable name. The function Fx then translates the

variable names (with their trailing punctuation characters) into string

images of numbers. The final stage is where function Fx calls the VBA

function Evaluate to pass a string with numbers, operators, and

functions to the Excel interpreter and obtain a numeric value. Thus, the

process of going from the quasi-variables to the numeric result has

multiple layers before the Excel interpreter does its job.

 In this study I list the leading single-quote character used in the math

expressions. You do need to key in that character to start entering a math

expression with quasi-variables in any Excel cell. The second character in a math

expression must be the equal sign. Keep in mind that Excel will hide that leading

single-quote character in its worksheets. Excel will display the single-quote

character in the text edit box when you select a cell that contains a math

expression. The single-quote character for math expression appears in all the

examples of the math expressions as a reminder. The sheets ModelsList and

Results do not include the leading single-quote characters and the equal signs

when displaying the math expressions containing the names of the actual

regression variables.

 Since you can enter all kinds of text in the TME cells, you are highly

responsible to make sure that your input will translate into valid math

expressions. The VBA code will catch any runtime error generated by a faulty

evaluation of a math expression. It is possible to create math expressions with

logical errors that yield values, albeit the wrong ones. This logical error affects

the quality of the regression results. So, if the results look weird to you, check

the math expressions carefully for logical errors.

In Figure 4 you see a sample input with the following data:

• The second row declares the variable Z to have transformations in the

range of 1 to 1 in steps of 1. Thus, the transformations include linear

values only. The TME cell is empty to signal that the dependent term is

separate. In fact, the VBA code will enforce this rule.

Extensive Empirical Modeling Using Excel VBA 20

Copyright © 2021 Namir Clement Shammas Version 1.0.0

• The third, fourth, and fifth rows declare the names of their variables to be

T, P, and V, respectively. Each variable has the transformations that range

from 1 to 2 in steps of 1. Thus, the transformations include the linear and

squared values. The TME cells for these variables are empty to indicate

that they occupy separate terms in the regression models.

• Rows 6 defines a simple cross-product for the variables T and P. The range

of transformations are linear and squared values. The TME cell E6

contains the math expression '=A6*A7 to state that you want

multiplicative cross-products of various powers of variables T and P

(named in cells as the quasi-variables A6 and A7). Notice that cell E7 is

empty.

• Rows 8 defines multiplicative double cross-products for the variables

named T, P, and V. The range of transformations are the linear and

squared values. The TME cell E8 contains the math expression

'=A8*A9*A10 to define the cross-product of the transformations of

variables T, P, and V (named in cells as the quasi-variables A8, A9, and

A10). Notice that TME cells E9 and E10 are empty.

The above information indicates that we seek an empirical model of the general

form:

f0(Z) = a0 + a1∙f1(T) + a2∙f2(P) + a3∙f3(V) +

 a4∙f41(T) ∙f42(P) + a5∙f51(T)∙f52(P)∙f53(V) (4)

The VBA code applies the various transformations to the fi() and fij() functions to

obtain the best models. The VBA code generates hundreds of empirical models to

test and find the best models! Of course, we do not want to see ALL these results.

Instead, the VBA code chooses something like the best 50 models! You can change

that limit by assigning a different value to the switch MAX_RESULTS.

The power of the information in the Model sheet is that you can apply different

transformation ranges to the same variable appearing in different terms, cross-

products, and math expressions.

You can set the Power Step values in the Models sheet to be less than 1 (but not less

than 0.01). For example, a value of 0.5 (with From Power = 0 and To Power = 2)

would generate the sequence of powers of 0 (for the natural logarithm), 0.5 (for the

square root), 1, 1.5, and 2.

Extensive Empirical Modeling Using Excel VBA 21

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 It does not take many transformations for each variable/term to generate over tens

of thousands of models! That is why I highly recommend you run the VBA code on

a separate and dedicated computer. Enabling the VBA code to speak messages is

very practical when you are running the VBA code on one machine while you are

working on another computer. The verbal messages include the percent progress in

the calculations.

Creating Simpler Regression Models with Simple Cross-Product Terms

This subsection presents a scheme to create regression models that include simpler

versions of the cross-product terms. Figure 5 shows a sample Models sheet with such

information.

 A B C D E

1 Variable From Power To Power Power Step TME

2 Z 1 1 1

3 T 1 2 1

4 P 1 2 1

5 V 1 2 1

6 T 1 2 1 *

7 P 1 2 1

8 T 1 2 1 *

9 P 1 2 1 *

10 V 1 2 1

Figure 5. a sample Models worksheet with no math expressions.

Columns A through D in Figure 5 match those in Figure 4 and serve the same

purpose. The TME column E serves a similar and simpler purpose, albeit using a

different syntax. This column tells the VBA whether you want to involve the

subsequent variable in a cross–product term. Leave the cells in this column empty if

the corresponding variable appears in a term all by itself. Otherwise, you can enter

* to declare that the variable and the one in the subsequent row are cross-products.

You can have more than two variables declared in cross-products. The TME

columns in Figures 4 and 5 are equivalent and create the same cross-product terms.

You can also enter / to indicate that you want to calculate the ratio of the transformed

Extensive Empirical Modeling Using Excel VBA 22

Copyright © 2021 Namir Clement Shammas Version 1.0.0

variables. You can even enter + and –, although using these operators makes more

sense in math expressions. Note that the TME cell of the last variable in a cross–

product term must be empty. This empty cell tells the VBA code that the variable in

the next row will be in the next term of the regression model. The VBA code sets

the contents of the TME cells in the second sheet row (corresponding to the entry

for the dependent variable) to an empty string as its contents are logically irrelevant.

You must make sure that the TME cell of the last row, declaring variables, is empty.

If you just use the power-based transformation scheme that I discussed above, then

you may need to only tweak the values of the switches. If you plan to use custom

transformation functions, then you need to do more in editing the VBA code. More

about this later.

You can even let the name of the dependent variable appear with the cross–product

terms to fit the best Padé–type rational model variant:

f0(y) = a0 + a1∙f1(x1) + a2∙f2(x2) + a3∙f3(x3) + …

 –an∙fn1(x1) ∙fn2(y) – an+1∙fn+1,1(x2) ∙fn+1,2(y) – … (5)

In Figure 5 you see a sample input with the following data:

• The second row declares the variable Z to have transformations in the

range of 1 to 1 in steps of 1. Thus, the transformations include linear

values only. The TME cell is empty to signal that the dependent term is

separate. In fact, the VBA code will enforce this setting.

• The third, fourth, and fifth rows declare the names of their variables to be

T, P, and V, respectively. Each variable has the transformations that range

from 1 to 2 in steps of 1. Thus, the transformations include the linear and

squared values. The TME cells for these variables are empty to indicate

that they occupy separate terms in the regression model.

• Rows 6 and 7 declare the variables named T and P. The range of

transformations are linear and squared values. The cell E6 has a *

character to indicate that the corresponding term has the cross product of

the transformations of T and P. Notice that cell E7 is empty.

• Rows 8, 9 and 10 declare the variables named T, P, and V. The range of

transformations are the linear and squared values. The cells E8 and E9

have a * character to indicate that the corresponding terms has the cross-

Extensive Empirical Modeling Using Excel VBA 23

Copyright © 2021 Namir Clement Shammas Version 1.0.0

product of the transformations of T, P, and V. Notice that cell E10 is

empty.

The transformation scheme presented in this subsection is an older application

version that I had developed for the VBA code. At the time, the scheme proved to

be very simple and efficient. I later decided to incorporate math expressions for the

regression terms. I modified that old version, but the resulting method of working

with the contents of the TME cells became a bit more complicated and quite

vulnerable to easily making mistakes in defining the math expressions. That is when

I switched to implementing math expressions that I presented in the previous

subsection. The single-line definition allows the user to easily write, edit, and read

math expressions written on one line. This is in contrast to fragmented instructions

spread over several rows of the TME column—something that is a bit hard to follow.

The ModelsList Sheet

The ModelsList sheet shows the list of all the models that will be tested. The VBA

code uses the data in sheet Models to create the big list. Figure 6 shows a partial

view of the sheet. Notice that the worksheet has no header row:

 A B C D E F

1 Z T P V T*P T*P*V

2 Z T^2 P V T*P T*P*V

3 Z T P^2 V T*P T*P*V

4 Z T^2 P^2 V T*P T*P*V

5 Z T P V^2 T*P T*P*V

6 Z T^2 P V^2 T*P T*P*V

7 Z T P^2 V^2 T*P T*P*V

8 Z T^2 P^2 V^2 T*P T*P*V

9 Z T P V T^2*P T*P*V

10 Z T^2 P V T^2*P T*P*V

11 Z T P^2 V T^2*P T*P*V

12 Z T^2 P^2 V T^2*P T*P*V

13 Z T P V^2 T^2*P T*P*V

14 Z T^2 P V^2 T^2*P T*P*V

15 Z T P^2 V^2 T^2*P T*P*V

16 Z T^2 P^2 V^2 T^2*P T*P*V

17 Z T P V T*P^2 T*P*V

18 Z T^2 P V T*P^2 T*P*V

19 Z T P^2 V T*P^2 T*P*V

20 Z T^2 P^2 V T*P^2 T*P*V

21 Z T P V^2 T*P^2 T*P*V

Figure 6. A partial view of the ModelsList worksheet.

Each row in sheet ModelsList represents a regression model. The individual cells of

that row show the various terms of the regression model. The first column shows the

Extensive Empirical Modeling Using Excel VBA 24

Copyright © 2021 Namir Clement Shammas Version 1.0.0

dependent variable and its transformations. The second column and on show the

various terms for the independent variables and their transformations. Some terms

show single variables while others show cross-product terms.

The Results Sheet

The Results sheet displays a sorted list of the best (fifty) regression models. The

results include the values for the adjusted R–square, the F statistic, the

transformations for each term of the regression model, and the regression

coefficients. The Results sheet has many columns, as shown in Figure 7.

Rsqr Adj F Stat
Transf of
Y

Transf of
X1

Transf of
X2

Transf of
X3

Transf of
X4 Transf of X5 Coeff0 Coeff1 Coeff2 Coeff3 Coeff4 Coeff5

0.9397515 38.43501634 Z T P^2 V^2 T^2*P^2 T^2*P^2*V 682.140109
-

55.62482386
-

0.042941808
-

0.044230979 0.001691435 0.000315937

0.939737086 38.42548882 Z T P^2 V T^2*P^2 T^2*P^2*V 688.5785405
-

55.91555151
-

0.043754877
-

0.896002957 0.00168943 0.000317963

0.932613886 34.21564641 Z T P V^2 T^2*P^2 T^2*P^2*V 817.0399804
-

62.96945073
-

4.655646931
-

0.105849326 0.001834558 0.000352988

0.932319226 34.06058759 Z T P V T^2*P^2 T^2*P^2*V 781.4931873
-

62.22100668
-

4.163841766 0.153400889 0.001828041 0.000357419

0.896204052 21.72228999 Z T P^2 V^2 T^2*P^2 T*P^2*V 619.7030684
-

35.30555443
-

0.047355298
-

0.556385008 0.001455125 0.002319201

0.890964304 20.61114024 Z T P^2 V^2 T^2*P T*P^2*V 506.9657384

-

60.06373071

-

0.011191655 0.381070792 0.115623045 0.00268083

0.8887208 20.16737293 Z T P V^2 T^2*P T*P^2*V 474.1698676 -59.4222053
-

0.307361077 0.536915761 0.116094049 0.002810198

0.885817007 19.61889209 Z T P^2 V^2 T^2*P^2 T*P*V 683.5720148
-

57.61650037
-

0.048814822
-

1.180530661 0.001952573 0.138040888

0.885659478 19.58993392 Z T P^2 V T^2*P T*P^2*V 550.1447976
-

59.48059731
-

0.020334446 1.963903523 0.112713495 0.002488317

0.884411639 19.36333612 Z T P^2 V^2 T^2*P^2 T^2*P^2*V^2 843.5878021
-

64.43745433
-

0.071095858
-

1.220547678 0.002175147 4.17762E-05

0.883394686 19.18225231 Z T P^2 V T^2*P^2 T*P^2*V 545.7402339
-

33.92930556
-

0.031977285
-

2.920698129 0.001466754 0.002610145

0.8827007 19.06048024 Z T P V T^2*P T*P^2*V 444.4809529
-

57.36171347 -0.11317263 8.009685475 0.114558791 0.002609426

0.878137936 18.29439805 Z T P V^2 T^2*P^2 T*P^2*V 699.4556313
-

38.62341299
-

4.324941935
-

0.526982424 0.001548402 0.002671698

0.877510928 18.19358468 Z T P V T^2*P^2 T*P^2*V 220.3868216
-

24.95321475 1.803137399 12.75407683 0.001463739 0.002777845

0.876425449 18.0214745 Z T^2 P V T^2*P T^2*P^2*V
-

68.91849599
-

3.682397981 5.92649469 27.04585977 0.114203279 0.000220921

0.868510588 16.85242027 Z T^2 P V T^2*P T*P^2*V
-

257.4829708
-

2.282226835 7.924936292 31.51063679 0.103765659 0.00193785

0.866699036 16.60437096 Z T P V^2 T^2*P^2 T*P*V 774.6443277
-

64.73105011
-

4.457432888
-

1.247131221 0.002130618 0.160653385

0.8655186 16.44633411 Z T P^2 V T^2*P^2 T^2*P^2*V^2 1070.412737 -74.5258043
-

0.100676317
-

28.50222666 0.002200419 4.95782E-05

0.857111656 15.39633149 Z T P^2 V^2 T^2*P^2 T*P^2*V^2 692.5556177
-

36.49541351
-

0.051312011
-

1.582116638 0.001614557 0.000310634

0.856847594 15.36534863 Z T P^2 V T^2*P^2 T^2*P*V 982.0241056
-

82.65053875
-

0.086801181
-

15.96353871 0.002284977 0.013363922

0.855672589 15.22885782 Z T P^2 V^2 T^2*P^2 T^2*P*V 834.4494293
-

73.34581013
-

0.066932667
-

0.661046234 0.002234072 0.011613377

0.855068015 15.15949164 Z T P V^2 T^2*P^2 T^2*P^2*V^2 1090.233024
-

78.19047407
-

7.935388985
-

1.501213963 0.002513504 5.04756E-05

0.849082554 14.50273396 Z T^2 P V T^2*P^2 T^2*P^2*V
-

177.1718888
-

1.675541859 7.291185423 31.0311106 0.001385357 0.000284402

0.847555094 14.34339255 Z T P^2 V T*P T^2*P^2*V 450.7362975
-

60.08712862
-

0.032161169 7.902384053 1.434826536 0.000226458

0.846707684 14.25636201 Z T P^2 V T*P T^2*P*V 505.1357466
-

91.61664979
-

0.047463719 6.928170944 2.024373901 0.011165129

0.846352502 14.22016972 Z T P^2 V^2 T*P T^2*P*V 661.003612 -88.0591944
-

0.074082443
-

0.262519265 1.871380853 0.009763006

0.845293618 14.11325789 Z T P^2 V^2 T*P T^2*P^2*V 616.651467
-

60.60064458
-

0.060841823 -0.206716 1.354122304 0.000199697

0.844701242 14.05408366 Z T P^2 V T^2*P^2 T*P*V 781.3207212
-

61.47375179
-

0.057781319
-

21.22911808 0.001939696 0.152839118

0.844484542 14.03254947 Z T P V T^2*P^2 T^2*P*V^2
-

2659.956894 206.9751254 34.03138253 140.5746463
-

0.002416005
-

0.004589761

Figure 7. A partial view of the Results worksheet

The Scratch Sheet

This sheet is used by the VBA code to perform multiple regression and copy selected

results to the Results sheet. When the calculations are done, you see the results of

the best regression model—assuming it the one you most likely want to see. The

sheet shows the familiar regression ANOVA table and the columns of the

transformed variables. The regression ANOVA table and the data columns always

start in columns A and K, respectively. Column J is always empty, separating the

regression ANOVA table from the data columns.

SUMMARY
OUTPUT Z T P^2 V^2

T^2*P^
2

T^2*P^2*
V

72

1
1
1

302
5

2.2
5 366025 549037.5

Extensive Empirical Modeling Using Excel VBA 25

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Regression Statistics
46

6 4
422

5 4 67600 135200

Multiple R 0.98227035
38

0 2
448

9 9 17956 53868

R Square 0.964855041
66

2 9
230

4 16 186624 746496
Adjusted R
Square 0.9397515

65
8 8

250
0 25 160000 800000

Standard Error 27.91036355
60

4
1
3

115
6 36 195364 1172184

Observations 13
56

3
1
2

108
9 49 156816 1097712

53

4 1
302

5 64 3025 24200

ANOVA
49

3 3
168

1 81 15129 136161

 df SS MS F Significance F
48

0 5

115

6 100 28900 289000

Regression 5 149702.1582
29940.4316

3
38.4350163

4 6.05861E-05
34

0
1
0 441 121 44100 485100

Residual 7 5452.918754
778.988393

5
46

7 6 841 144 30276 363312

Total 12 155155.0769
43

9 7 625 169 30625 398125

 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 682.140109 98.46679237
6.92761582

4
0.00022566

8 449.3031437
914.977074

2
449.303143

7
914.977074

2

T -55.62482386 7.703506222 -7.22071512
0.00017429

3 -73.84072149

-
37.4089262

2

-
73.8407214

9

-
37.4089262

2

P^2 -0.042941808 0.021671804

-
1.98145977

7 0.08799224 -0.094187481
0.00830386

5

-
0.09418748

1
0.00830386

5

V^2 -0.044230979 0.491510367

-
0.08998992

1

0.93081599

6 -1.206468313

1.11800635

5

-
1.20646831

3

1.11800635

5
T^2*P^2 0.001691435 0.000177908

9.50734638
8 2.98196E-05 0.001270749

0.00211212
1

0.00127074
9

0.00211212
1

T^2*P^2*V 0.000315937 6.70071E-05
4.71497460

9
0.00217023

3 0.00015749
0.00047438

4 0.00015749
0.00047438

4

RESIDUAL

OUTPUT

Observation Predicted Z Residuals Y Obs. %Err

1 732.8372632 -11.83726325 721

-
1.64178408

4
2 435.0904299 30.90957009 466

6.63295495
4

3 425.1169052 -45.11690516 380

-
11.8728697

8
4 633.3791177 28.62088231 662 4.32339612
5 652.0603996 5.939600413 658

0.90267483
5

6 608.5661272 -4.566127166 604

-
0.75598131

9

7 577.7631582 -14.76315822 563

-
2.62223058

9
8 506.5477992 27.45220079 534

5.14086157
1

9 508.1057644 -15.10576443 493 -3.06404958

10 490.1404215 -10.14042146 480

-
2.11258780

3
11 329.4558993 10.5441007 340

3.10120608
8

12 471.9014285 -4.901428502 467

-
1.04955642

4
13 436.0352861 2.964713878 439

0.67533345
7

Figure 8. the Scratch worksheet

The Normalization Sheet

The switch NORMALIZE_DATA acts as a main switch and tells the VBA code

whether to normalize at least one regression variable or skip the data normalization

feature all together. If the switch NORMALIZE_DATA is set to False, the VBA

code will ignore the contents of the Normalization sheet.

The VBA code first copies the Data sheet into the OriginalData sheet and then

performs the transformations. The Normalization sheet allows you to specify if you

want to transform any regression variable and also if you want to first apply the

natural logarithm transformation to that variable. Figure 9 shows a sample

Normalization sheet.

Extensive Empirical Modeling Using Excel VBA 26

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 A B C D E

1 Z T P V
2 N N N N Normalize?

3 N N N N Take the Log values First?

4 Minimum

5 Maximum
Figure 9. The Normalization sheet with sample data.

The Normalization sheet has the following rows and columns:

• The first row lists the regression variables. These variable names must match

those in the Data sheet. The VBA code makes sure that the names of the

variables in the first-row match those in the sheet Data.

• The second row has the single-character switches that state if a variable is to

be normalized. The VBA code regards any cell that is neither Y nor y as a

request not to normalize values and vice versa.

• The third row has the switches that state if the variable is to be first

transformed into its natural logarithm values. The VBA code regards any cell

that is neither Y nor y as a request not to transform and vice versa. The values

in this row are ignored if the corresponding value in row 2 does not request

normalization. The VBA code will check if a normalized variable has non-

positive values. If it does, the VBA code will set the normalization switch to

N for that variable and will skip taking its natural logarithm. You will receive

a notification to that effect and be prompted if you wanted to stop the

calculation process altogether to cure your data, change normalization

switches, and then try again.

• The fourth and fifth rows show the calculated minimum and maximum values

used in the data normalization.

• The column that appears right after the last variable name has rows that

describe the meaning of rows 2 to 4.

The NormalizedData Sheet

This sheet will contain the normalized values of your data if you apply data

normalization. The values in this sheet are mainly for the curious user’s inspection.

The values are also used by sub ExamineARegressionModel when the switch

NORMALIZE_DATA is set to 1 (True) to quickly retrieved normalized data.

Extensive Empirical Modeling Using Excel VBA 27

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The ErrorsReport Sheet

The ErrorsReport sheet store the regression runtime errors. This information

includes the offending model number and the error message. The VBA code makes

a verbal warning (when enabled) when a runtime error occurs and logs in that error

in the ErrorsReport sheet. The VBA code allows a specified maximum number of

errors before it ends program execution. This scheme prevents the error warnings

from getting out of hand and becoming annoying, since it is very possible that the

numbers of regression models are in the hundreds, thousands, or even tens of

thousands! Besides, I do not want the reader to get mad with her/his computer, break

it, and then bill me for a new one!

Using the Excel File

“Working nine to five, what a way to make a living?!”

From the theme song of the movie “9 to 5”

This section looks at the steps involved in using the Excel file and the VBA code to

perform empirical curve fitting. The steps involved are outlined in the next

subsections. I would like to point out that I have enabled verbal messages from the

code to confirm the prompt for action, completion of certain tasks, and report error

messages. The verbal messaging offers valuable non-visual communications that

allows you to run the VBA code on a separate dedicated machine (while you work

on your main computer) and listen to the messages that, for example, report on the

progress of the calculations.

1. Set Operational Switches

You may need to change the operational switches listed in sheet Switches (and

shown in Figure 2) to influence how the VBA code works. For example, if you intend

to normalize one or more regression variables, then you set switch

NORMALIZE_DATA to 1.

2. Enter the Data in the Data Sheet

Select the Data sheet and clear it to start entering new data or pasting it from another

source. Keep in mind the following rules:

1. The first column must store the data for the dependent variable.

2. The second columns and on store data for various independent variables.

3. All columns must have the same number of rows. You must deal with missing

data by doing one of the following:

Extensive Empirical Modeling Using Excel VBA 28

Copyright © 2021 Namir Clement Shammas Version 1.0.0

a. Delete the row that has missing data (especially if several columns have

missing data in that row).

b. Estimate the missing data by averaging or any other suitable method.

3. Enter the Transformation Ranges and Steps

The Models sheet provide you with a powerful framework to generate hundreds and

thousands of regression models that will appear in the ModelsList sheet. The Models

sheet allows you to specify the range of transformations and their increments. Select

the Models sheet and populate columns A to E with data that select the variable(s)

for each term, specify the range and increment in the transformational powers, and

optionally enter math expressions or specify if two or more rows make up a single

cross–product term. Your Models sheet should resemble the one in Figure 4 or in

Figure 5.

 If you want to use VBA functions and/or user-defined functions (that you declare

in a module) then you need to follow the instructions in subsections Customizing the

Transformations with VBA Functions and User-Defined Functions.

4. Select Normalization Options

To enable the data normalization feature, you must first set the switch (in sheet

Switches) NORMALIZE_DATA to 1. Otherwise, the VBA code bypasses

subroutines that perform data normalization related tasks. After setting the switch to

1 (True), I suggest that you click button 7 in the Main Menu form to execute

subroutine SetDefaultNormalization. This subroutine setups the default

Normalization sheet. This setup lists the variable names and the right-side tags. The

cells for the normalization switches are all set to N (short for no). Select the

Normalization sheet to choose which variable you need to normalize. Set the cell in

row 2 under the selected variable name(s) to y or Y to normalize. Set the cell in row

3 under the selected variable name(s) to y or Y if you want the VBA code to first

calculate their natural logarithms before normalizing their values.

The VBA code copies the values in the Data sheet into the OriginalData sheet before

performing the normalization and regression calculations. The VBA code restores

the original values of sheet Data:

• After the regression calculations end without a runtime error.

• After the maximum number of runtime errors have been reached.

Extensive Empirical Modeling Using Excel VBA 29

Copyright © 2021 Namir Clement Shammas Version 1.0.0

As a failsafe, you can invoke subroutine RestoreData to restore the original values

in sheet Data.

5. Running the VBA Code

Before I discuss running the VBA code you need to make sure that the options for

the Add–ins Analysis Toolpak and Analysis Toolpak – VBA are checked in the Add–

ins dialog box, as shown in Figure 10.

Figure 10. The Add–ins dialog box.

You can use the command buttons in the Main Menu form (see Figure 1) to invoke

the regression calculations as a single task (using button 1) or break them down in

two stages using command buttons 2 and 3.

You can also run the subroutines directly. Select any sheet and choose to view the

VBA code in the ThisWorkbook part. The code uses DoEvents to prevent Excel from

shutting you out and allows you to pause or stop the VBA code if need be, by

clicking on the pause or stop icons in the Debug toolbar of the VBE. I recommend

that you have the VBA code of the Data sheet remain in view to give you full control

(an easier task if you have two screens). Figure 11 is a table that gives you a heads-

up summary of the subroutines, in the ThisWorkbook part, you can use to perform

the empirical regression models calculations. The subroutines are grouped by colors.

Your go to subroutine is MiniMenu. The middle column of that figure shows the

command button numbers, in Main Menu form, associated with the subroutines.

Extensive Empirical Modeling Using Excel VBA 30

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Subroutine Name Button

Number

Purpose

MiniMenu Displays a multiline input box

that allows you to easily invoke

the rest of the subroutines

listed in this table.

DoMultipleRegression 1 The main “one–stop shop”

subroutine to build the models

list and run the regression

calculations.

BuildSuperRegressionModels 2 Build the models list. You can

then inspect and edit the

models list.

GoDoMultiplRegressionCalculations 3 Perform the regression

calculations after using the

above subroutine.

ExamineARegressionModel 4 Recalculate the regression

ANOVA table of a specific

model in the Results sheet.

RedoLastRegressionModel 5 Recalculate the regression

ANOVA table after deleting

one or more data columns in

the Scratch sheet.

SetDefaultNormalization 7 Setup the default

Normalization sheet with all

normalization switches off.

RestoreData Copies all the values from

sheet DataOriginial to sheet

Data.

restoreVarNames 6 Remove trailing punctuation

characters from all the variable

names in all the sheets.

Figure 11. The list of the relevant subroutines you will be using.

You can build the list of regression models and then perform the regression

calculations in one swoop. Click on sheet Switches to activate it (or run the

MiniMenu subroutine) to launch the Main Menu form. Click on button 1 to invoke

the subroutine DoMultipleRegression. This subroutine requests your confirmation

that you have prepared your data and regression model information. The message

Extensive Empirical Modeling Using Excel VBA 31

Copyright © 2021 Namir Clement Shammas Version 1.0.0

also announces the number of regression models that will be tested. If that number

overwhelms you, then click the Cancel button and edit the values in the columns To

Power, From Power, and Power Step, in the Models sheet, to test fewer models.

 The simplest way to use the VBA code to perform regression model selection is

to:

1. Tweak the switches in worksheet Switches.

2. Select your transformation ranges.

3. Click on button 1 of the Main Menu form to execute subroutine

DoMultipleRegression.

You can also divide the process into two stages. You can first build (and then inspect

and/or edit) the list of models by clicking on button 2 in the Main Menu. This action

launches subroutine BuildSuperRegressionModels. If you did not get any error

messages and were VERY careful with any list edits, you can trigger the regression

calculations by clicking on button 3 of the Main Menu form to invoke subroutine

GoDoMultiplRegressionCalculations. This subroutine sets the GREEN_LIGHT

global variable to True and then calls the subroutine

DoMultiplRegressionCalculations. The latter subroutine does the “heavy lifting”

regression calculations and sorting of results. The subroutine prepares the data in the

Scratch worksheet and then invokes the subroutine DoMLR2 in the module

Module1. The subroutine DoMLR2 invokes ATPVBAEN.XLAM!Regress (you must

have the Add–ins option of Analysis ToolPak – VBA checked for VBA to be able to

invoke it) to yield the familiar ANOVA regression table in the Scratch worksheet.

Notes on the VBA Code in the Data Sheet

“The devil is in the detail” -- Friedrich Wilhelm Nietzsche

The Function Fx

The code for function Fx in the ThisWorkbook project transforms the variables in a

regression term from a string of text to a string image of numeric values (with

possible operators and functions) and then evaluates that string to yield a resulting

floating-point number:

Function Fx(ByVal sExpress As String, ByRef sVarNames() As String, ByRef

nVarIdx() As Integer, ByRef X() As Double) As Double

 Dim I As Integer, I1 As Integer, I2 As Integer, J As Integer

 Dim NumFx As Integer, countFX As Integer

 Dim msg As String, sFx() As String

Extensive Empirical Modeling Using Excel VBA 32

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 Dim bFoundMyFx As Boolean

 On Error GoTo HandleErr

 sExpress = Replace(sExpress, " ", "")

 ' loop using array nVarIdx to replace correctly replace variable names with

theirvalues

 For I = LBound(X) To UBound(X)

 J = nVarIdx(I)

 sExpress = Replace(sExpress, sVarNames(J), GetValImage(X(J)))

 Next I

 Fx = Evaluate(sExpress)

ExitProc:

 Exit Function

HandleErr:

 MsgBox "The variable sExpress contains " & sExpress, vbOKOnly + vbInformation,

"Information"

 FinalMessage "Fatal error in function Fx. The program execution will stop.

Error is " & Err.Description

End Function

The parameter sExpress has the string that contains a regression model terms that

use the names of the regression variables. The VBA code uses a special sorting

scheme that allow variable names (that appear in the same expression) that are

subsets of other variable names to be replaced starting with the variables with longer

names. Thus, for example you can declare variables with names such as T, T2, and

TT2. The function Fx will replace the names of TT2, then T2, and then T with the

values of these variables. To distinguish between the names of regression variables

and possible transformation functions (especially those with overlapping characters

with the regression variable names), the VBA code temporarily appends a

punctuation character (default is the $ sign) to the variable names. Since function

names cannot have the $ sign as part of their names, there is no mix up in replacing

the regression variable names with their numeric values. This approach allows the

VBA code to work/use variable names that are not VBA-compliant, since the

variable names must be replaced with their numeric values. Appending a punctuation

character to the variable names is a simpler solution than, say, forcing variable names

to have all uppercase characters and function names to have all lowercase characters

(or vice versa). Using character case to distinguish between variables and functions

is a bit restrictive and is error prone to typos. The statement in the function, located

before label ExitProc, invokes the VBA function Evaluate to evaluate the string

variable sExpress that contains a string of a math expression containing numbers,

functions, and operators.

Extensive Empirical Modeling Using Excel VBA 33

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 The VBA function Evaluate evaluates expressions that may include the

name of functions. It performs its task by invoking the Excel mathematical

interpreter (made up of an expression parser and an evaluator). The function

names handled by function Evaluate must match the ones supported by the

Excel spreadsheets and not VBA itself. For example, the function names

LN, LOG, and SQRT are evaluated as the natural logarithm, the common

logarithm, and the square root, respectively. These are functions supported

by the spreadsheet. By comparison, VBA itself uses Log to evaluate the

natural logarithm and Sqr to evaluate the square root. However, VBA has

no predefined function for the common logarithm. You can access the

wealth of Excel functions by writing short wrapper functions (in a module)

that use the syntax WorksheetFunction.fx_name to access an Excel’s

function.

The good news here is that there are no character-case restrictions for

function names, as long as function Evaluate can call these functions.

The parameter VarNames passes the array of the regression variable names. The

parameter nVarIdx passes the array of indices that determine the order of accessing

the elements of array VarNames. The parameter X passes the values for the

regression variables. The arrays VarNames, nVarIdx, and X have zero-based indices.

The values at index 0 refer to the dependent regression term/variable.

If a runtime error occurs in function Fx, the program execution will stop because

such a runtime error is profoundly serious. The function displays (and verbalizes) a

message to that effect. The message box also displays the current text in string

variable sExpress. This information maybe key to dealing with the source of error.

You may also need to inspect the values in the sheet Data and the models in sheet

ModelsList to find the source of the error.

The Subroutine BuildSuperRegressionModels

The first task the subroutine BuildSuperRegressionModels does is to call function

unifyVarNames to make sure that every variable name in sheet Models and

Normalize also appear in sheet Data. If not, you get a fatal error message that

mentions the name(s) of the unmatched variable(s) before the VBA code stops

running.

Extensive Empirical Modeling Using Excel VBA 34

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The subroutine BuildSuperRegressionModels copies the values of sheet Data into

sheet OriginalData if you request normalization of at least one regression variable.

Upon successfully completing the regression calculations or reaching the maximum

number of runtime errors, the VBA code copies the normalized values in sheet Data

to sheet NormalizedData, before copying the original values from sheet

OriginalData back to sheet Data. These copying tasks occur only if you requested

the normalization of data. The normalized values in sheet NormalizedData are there

for your curious inspection.

In subroutine BuildSuperRegressionModels you will see the following loop:

 NumVars = 0

 NumTerms = 0

 For ModelRow = 1 To MaxModelRows

 Call checkIfCellIsEmpty("Variable name", ModelRow + 1, 1, sModelsSheet)

 sVarNames(ModelRow) = Sheets(sModelsSheet).Cells(ModelRow + 1, 1)

 Call checkIfCellIsEmpty("From Power", ModelRow + 1, 2, sModelsSheet)

 iFrom(ModelRow) = SCALE_POWER * Sheets(sModelsSheet).Cells(ModelRow + 1,

2)

 Call checkIfCellIsEmpty("To Power", ModelRow + 1, 3, sModelsSheet)

 iTo(ModelRow) = SCALE_POWER * Sheets(sModelsSheet).Cells(ModelRow + 1, 3)

 ' enforce iFrom < iTo

 If iFrom(ModelRow) > iTo(ModelRow) Then

 ' swap values

 I = iFrom(ModelRow)

 iFrom(ModelRow) = iTo(ModelRow)

 iTo(ModelRow) = I

 ' also swap cell values

 I = Sheets(sModelsSheet).Cells(ModelRow + 1, 2)

 Sheets(sModelsSheet).Cells(ModelRow + 1, 2) =

Sheets(sModelsSheet).Cells(ModelRow + 1, 3)

 Sheets(sModelsSheet).Cells(ModelRow + 1, 3) = I

 End If

 ' enforce iStep > 0

 Call checkIfCellIsEmpty("Power Scale", ModelRow + 1, 4, sModelsSheet)

 iStep(ModelRow) = SCALE_POWER * Abs(Sheets(sModelsSheet).Cells(ModelRow +

1, 4))

 If iStep(ModelRow) = 0 Then iStep(ModelRow) = 1

 ' ignore TermMathExpr contents in rows 2 and in the last row

 If ModelRow > 1 Then ' And ModelRow < MaxModelRows Then

 sTermMathExpr(ModelRow) = Sheets(sModelsSheet).Cells(ModelRow + 1, 5)

 If Left(sTermMathExpr(ModelRow), 1) = "'" Then sTermMathExpr(ModelRow)

= Mid(sTermMathExpr(ModelRow), 2)

 Else

 Sheets(sModelsSheet).Cells(ModelRow + 1, 5) = ""

 sTermMathExpr(ModelRow) = ""

 End If

 If Len(sTermMathExpr(ModelRow)) = 0 Then NumTerms = NumTerms + 1

 idx(ModelRow) = iFrom(ModelRow)

 Next ModelRow

Extensive Empirical Modeling Using Excel VBA 35

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Also notice that the statements that assign values to the transformation–range arrays

iFrom(), iTo() and iStep(), multiply the values in the source cells of sheet Models by

the value of switch SCALE_POWER (currently set to 100)! Why do that, you may

ask? I discovered that it is better to convert floating point numbers into integers to

perform more robust relational tests between integers. That is why I do not

recommend entering values in the From Power, To Power, and Power Step columns

that have three or more decimal places. If you do, then you need to replace the value

of switch SCALE_POWER with a larger power of 10 to make sure that all

significant decimal digits become part of an integer.

Also notice in subroutine BuildSuperRegressionModels the following code fragment

that builds each term using one or more variables:

 Do

 DoEvents

 Col = 1

 For I = 1 To N

 If idx(I) = 0 Then

 s = "LN(" & sVarNames(I) & ")"

 ElseIf idx(I) = SCALE_POWER Then

 s = sVarNames(I)

 ElseIf idx(I) = -SCALE_POWER Then

 s = "1/" & sVarNames(I)

 ElseIf idx(I) > 0 Then

 s = sVarNames(I) & "^" & CStr(idx(I) / SCALE_POWER)

 ElseIf idx(I) < 0 Then

 s = "1/" & sVarNames(I) & "^" & CStr(Abs(idx(I)) / SCALE_POWER)

 Else

 s = sVarNames(I)

 End If

 ' no math expression or cross-product operator?

 If Not bCMEfound And Len(sTermMathExpr(I)) = 0 Then

 Sheets(sModelsListSheet).Cells(Row, Col) =

Sheets(sModelsListSheet).Cells(Row, Col) & s

 Col = Col + 1

 ' found cross-product operator?

 ElseIf (Not bCMEfound) And (InStr("+-/*,", Left(sTermMathExpr(I), 1)) >

0) Then

 Sheets(sModelsListSheet).Cells(Row, Col) =

Sheets(sModelsListSheet).Cells(Row, Col) & s & sTermMathExpr(I)

 Else

 ' handle math expressions

 sTME = sTermMathExpr(I)

 ' continue to process current math expression?

 If bCMEfound Then

Extensive Empirical Modeling Using Excel VBA 36

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 ' now process the first variable in the compact math expression

 CMEidx = CMEidx + 1

 CMEexpress = Replace(CMEexpress, QUASI_VAR_FIRST_CHAR & CMEidx &

APPENDED_CHAR_TO_VARNAMES, s)

 bCMEfound = IIf(CMEidx = CMEmaxIdx, False, True)

 If Not bCMEfound Then

 Sheets(sModelsListSheet).Cells(Row, Col) = CMEexpress

 Col = Col + 1

 End If

 ' found a new math experssion

 ElseIf Not bCMEfound And Left(sTME, 1) = "=" Then

 bCMEfound = True

 ''' CMEexpress = Replace(UCase(Mid(sTME, 2)), " ", "")

 CMEexpress = Replace(Mid(sTME, 2), " ", "")

 K = FindLastCharAndDigit(CMEexpress, QUASI_VAR_FIRST_CHAR)

 L = InStrRev(CMEexpress, ",")

 CMEtrailNumber = 0

 ' Is there a trailing comma in mth expression?

 If L > K Then

 CMEmaxIdx = getNumber(CMEexpress, L + 1)

 CMEtrailNumber = CMEmaxIdx

 CMEexpress = Left(CMEexpress, L - 1)

 Else

 If K = 0 Then FinalMessage "Fatal error in math expression in row

" & CStr(I + 1) & " of Models sheet"

 CMEmaxIdx = getNumber(CMEexpress, K + L2)

 If CMEmaxIdx = 0 Then FinalMessage "Fatal error in math expression

in row " & CStr(I + 1) & " of Models sheet"

 End If

 CMEidx = i + 1

 ' check for incomplete quasi-var names

 Call checkforIncompleteQuasiVar_names(CMEexpress)

 ' Append punctuation char to quasi-var names

 Call appendPunctCharToQuasiVars(CMEexpress)

 ' check that quasi-var numbers are valid and in range

 Call checkQuasiVarIndices(CMEexpress, CMEmaxIdx, i + 1)

 ' check for duplicate quasi-vars in a math expression

 Call checkDuplicateQuasiVars(CMEexpress, i + 1, CMEmaxIdx)

 ' now process the first variable in the math expression

 CMEexpress = Replace(CMEexpress, QUASI_VAR_FIRST_CHAR & CMEidx &

APPENDED_CHAR_TO_VARNAMES, sTransformedVar)

End If

 Next I

Notice that several ElseIf clauses compare values of idx(I) with SCALE_POWER

or –SCALE_POWER. These values represent the scaled-up values of 1 and –1,

respectively.

The last aspect I want to draw your attention to is the coded trick where I simulate

nested loops using just one For loop:

Extensive Empirical Modeling Using Excel VBA 37

Copyright © 2021 Namir Clement Shammas Version 1.0.0

' Start implementing the quasi–nested loops

idx(1) = idx(1) + iStep(1)

If idx(1) > iTo(1) Then

 idx(1) = iFrom(1)

 For I = 2 To N

 idx(I) = idx(I) + iStep(I)

 If idx(I) > iTo(I) And I < N Then

 idx(I) = iFrom(I)

 ElseIf idx(I) > iTo(I) And I = N Then

 Exit Do

 Else

 Exit For

 End If

 Next I

 End If

The nested loop uses the arrays idx(), iFrom(), iTo(), and iStep() in a scheme that

resembles a logical ticking clock. The array element idx(i) simulates the current loop

control variable for variable i. You initialize the values of idx(i) with the

corresponding values of iFrom(i). The Do Until loop that I showed earlier in this

subsection performs this initialization. Using this programming trick, the VBA code

can handle any number of terms (i.e., nested loops) in the regression model.

Fatal Runtime Errors

The VBA code checks numerous aspects of the data, variable names, and math

expressions. In addition, function Fx may still catch runtime errors. All these errors

cause the program execution to stop, because there is no sense in continuing

calculations that will yield wrong results. The VBA code speaks the error message

(when enabled) and displays it in a message box. The messages identified the error

and its source, in as much as possible. Check the following sources to determine the

cause of the fatal errors:

• The data in the Data sheet.

• The names of the regression variables in the Data, Models, and Normalization

worksheets.

• The math expressions (check the names of the quasi-variables) or single-

operator transformations in the Models sheet.

• The names of the transformation functions in the math expressions or in the

VBA code.

Customizing the Transformations with VBA and User-Defined Functions

“I'm not buggy. I'm just coded that way."

Paraphrased quote from the movie “Who Framed Roger Rabbit.”

Extensive Empirical Modeling Using Excel VBA 38

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The VBA code supports three types of transformations:

• The default transformations that apply different powers (and the natural

logarithm) to single regression variables.

• Simple multiplicative cross-products of two or more regression variables.

• Custom transformations that use the VBA functions and user-defined

functions.

• Mathematical expressions for different terms that can use various operators,

parenthesis, and even functions. These expressions that allow the terms of

regression models to support more elaborate mathematical expressions such

as:

f1(X1)+f2(X2)/(f3(X3)+f4(X1)+f5(X2)

Where f1 through f5 are transformations of the different regression variables.

The General Approach to Working with Custom Transformations

The default transformations supported by the VBA code include negative powers

(both integer and fractional), the natural logarithm, and positive powers (both integer

and fractional). What if you want to add, say a sine and a cosine transformation?

What if you want your own user-defined functions? These additions must piggyback

on the current power numbering scheme. As an example, let’s say that you do not

plan to use positive powers beyond 4 (with the power step of 1). Then you can assign

the sine and cosine transformations to what would be powers 5 and 6. The values in

the To Power column (of sheet Models) would read 6. Here is what the updated code

looks like:

Do

 DoEvents

 Col = 1

 For I = 1 To N

 If idx(I) = 0 Then

 s = "LN(" & sVarName(I) & ")"

 ElseIf idx(I) = SCALE_POWER Then

 s = sVarName(I)

 ElseIf idx(I) = –SCALE_POWER Then

 s = "1/" & sVarName(I)

 ElseIf idx(I) = 5 * SCALE_POWER Then

 s = “SIN(“ & sVarName(I) & ")"

 ElseIf idx(I) = 6 * SCALE_POWER Then

 s = “COS(“ & sVarName(I) & ")"

 ElseIf idx(I) > 0 Then

 s = sVarName(I) & "^" & CStr(idx(I) / SCALE_POWER)

 ElseIf idx(I) < 0 Then

 s = "1/" & sVarName(I) & "^" & CStr(ABS(idx(I)) / SCALE_POWER)

 Else

 s = sVarName(I)

Extensive Empirical Modeling Using Excel VBA 39

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 End If

 If Len(sTME(I)) = 0 Then

 Sheets(sModelsListSheet).Cells(Row, Col) =

Sheets(sModelsListSheet).Cells(Row, Col) & s

 Col = Col + 1

 Else

 Sheets(sModelsListSheet).Cells(Row, Col) =

Sheets(sModelsListSheet).Cells(Row, Col) & s & sTME(I)

 End If

 Next I

Notice that all the new ElseIf clauses must be inserted after the If clause and before

the clause ElseIf idx(I) > 0 Then. Notice that the names of the sine and cosine

functions can appear in lowercase, uppercase, or mixed case. I do recommend that

you define your own constants (such as SIN_SELECT) to replace 5 *

SCALE_POWER and other custom scale multipliers. In addition, such constants

make your custom code more readable.

You can also use low–value negative powers (such as –5 or –6, or even –1 if you do

not plan to use any negative powers) to trigger special transformations. In that case,

the code would look like (with using additional global constants for the custom

transformations):

‘ Global constants for the custom transformations

Const SIN_SELECT = –500

Const COS_SELECT = –600

. . .

Do

 DoEvents

 Col = 1

 For I = 1 To N

 If idx(I) = 0 Then

 s = "ln(" & sVarName(I) & ")"

 ElseIf idx(I) = SCALE_POWER Then

 s = sVarName(I)

 ElseIf idx(I) = –SCALE_POWER Then

 s = "1/" & sVarName(I)

 ElseIf idx(I) = SIN_SELECT Then

 s = “SIN(“ & sVarName(I) & ")"

 ElseIf idx(I) = COS_SELECT Then

 s = “COS(“ & sVarName(I) & ")"

 ElseIf idx(I) > 0 Then

 s = sVarName(I) & "^" & CStr(idx(I) / SCALE_POWER)

 ElseIf idx(I) < 0 Then

 s = "1/" & sVarName(I) & "^" & CStr(ABS(idx(I)) / SCALE_POWER)

Else

 s = sVarName(I)

 End If

 If Len(sTME(I)) = 0 Then

 Sheets(sModelsListSheet).Cells(Row, Col) =

Sheets(sModelsListSheet).Cells(Row, Col) & s

Extensive Empirical Modeling Using Excel VBA 40

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 Col = Col + 1

 Else

 Sheets(sModelsListSheet).Cells(Row, Col) =

Sheets(sModelsListSheet).Cells(Row, Col) & s & sTME(I)

 End If

 Next I

If you want to have multiple sine and cosine terms, the above new ElseIf clause for

the trigonometric transformations would be something like:

 ‘ Global constants for the custom transformations

Const SIN_SELECT = 500

 Const COS_SELECT = 600

 Const SIN2_SELECT = 700

 Const COS2_SELECT = 800

 . . .

 ElseIf idx(I) = SIN_SELECT Then

 s = “SIN(“ & sVarName(I) & ")"

 ElseIf idx(I) = SIN2_SELECT Then

 s = “SIN(2*“ & sVarName(I) & ")"

 ElseIf idx(I) = COS_SELECT Then

 s = “COS(“ & sVarName(I) & ")"

 ElseIf idx(I) = COS2_SELECT Then

 s = “COS(2*“ & sVarName(I) & ")"

If you are using power increments of, say, 0.5, the above new ElseIf clause for the

trigonometric transformations would be something like:

 ‘ Global constants for the custom transformations

Const SIN_SELECT = 500

 Const COS_SELECT = 550

 . . .

 ElseIf idx(I) = SIN_SELECT Then

 s = “SIN(“ & sVarName(I) & ")"

 ElseIf idx(I) = COS_SELECT Then

 s = “COS(“ & sVarName(I) & ")"

If get a bit more creative and use (1 + sin(x)) and (1 + cos(x)), the above new ElseIf

clause for the trigonometric transformations would be something like:

 ‘ Global constants for the custom transformations

Const SIN_SELECT = 500

 Const COS_SELECT = 550

 . . .

 ElseIf idx(I) = SIN_SELECT Then

 s = “(1 + SIN(“ & sVarName(I) & "))"

 ElseIf idx(I) = COS_SELECT Then

 s = “(1 + COS(“ & sVarName(I) & "))"

The Steps for Setting Up Custom Transformations

 There are three types of functions that you can use in custom transformations:

Extensive Empirical Modeling Using Excel VBA 41

Copyright © 2021 Namir Clement Shammas Version 1.0.0

1. Simple VBA functions like Sin, Cos, Tan, and so on. You simply include the

names of these functions in the new ElseIf clauses that you add.

2. VBA functions accessed using the WorksheetFunction.function_name syntax.

You need to first write a wrapper function in a module and then include the

names of these functions in the new ElseIf clauses. For example, you need to

write the wrapper function Sinh to access WorksheetFunction.Sinh:

Function Sinh(ByVal X As Double) As Double

 Sinh = WorksheetFuncion.Sinh(X)

End Function

3. Your very own user-defined functions. Declare these functions in Module1 or

any other module inserted in the VBA project. You then include the names of

these user-defined functions in the new ElseIf clauses.

There is no character-case restriction for the function names used for custom

transformations. The steps involved in working with custom transformation

functions are:

1. Your user-defined functions and wrapper functions must reside in a module

(Module1 would be good). Code your functions in a module. For example,

you write code for the user-defined functions MyFx1 and MyFx2.

Function MyFx1(ByVal X as double) as Double

 <declarations of variables>

 <statements>

 MyFx1= <expression of X>

End Function

Function MyFx2(ByVal X as double) as Double

 <declarations of variables>

 <statements>

 MyFx2 = <expression of X>

End Function

2. Code wrapper functions in a module. For example, to code a wrapper for

hyperbolic sine, Sinh, function that is supported by Excel:

Function Sinh(ByVal X As Double) As Double

 Sinh = WorksheetFuncion.Sinh(X)

End Function

3. Switch to the global declarations in the VBA code of the Data sheet

4. You have the option to declare global constants that clearly identify your user-

defined transformations. The following sample constants use the powers 3 and

Extensive Empirical Modeling Using Excel VBA 42

Copyright © 2021 Namir Clement Shammas Version 1.0.0

4 to call the user-defined functions MyFx1 and MyFx2. Use power 5 to call

the wrapper function Sinh:

‘ Global constants for the custom transformations

Const MYFX1_SELECT = 300

 Const MYFX2_SELECT = 400

 Const SINH_SELECT = 500

5. Locate the For Next loop that writes the transformation expressions for the

various terms of the regression models.

6. Insert the ElseIf clauses that generate the required terms. These new ElseIf

clauses must be inserted after the If clause and before the ElseIf idx(I) > 0

Then clause:

 ElseIf idx(I) = MYFX1_SELECT Then

 s = “MyFx1(“ & sVarName(I) & ")"

 ElseIf idx(I) = MYFX2_SELECT Then

 s = “MyFx2(“ & sVarName(I) & ")"

 ElseIf idx(I) = SINH_SELECT Then

 s = “Sinh(“ & sVarName(I) & ")"

The function Fx is coded to evaluate all of the functions and regression variables.

The function Fx makes the distinction between functions and variable names

because the latter end with a punctuation character (the $) which function names

cannot use. This difference prevents Fx from making fatal mix-up substitution of

function names (or parts thereof) with values meant for variables. For example, if

you have a variable named nh and are using the user-defined function Sinh, then

without the VBA code appending the punctuation character to the variable name, the

Fx function would replace the letters nh in Sinh with the value meant for variable

nh. The result is the letters Si followed by some number. This results in string

variable sExpress containing a string that cannot be correctly evaluated by function

Evaluate. This mix-up would not occur when the variable nh is temporarily named

nh$ making it distinguishable from Sinh.

The Fx function applies function Evaluate to the string variable sExpress to obtain

the function’s result. The appending of a punctuation character to variable names is

a temporary measure performed by the VBA code. When the VBA code completes

the regression calculations it will prompt you to restore the original names of the

regression variables in all of the worksheets by calling subroutine restoreVarNames.

If a fatal error occurs and the regression calculations come to a halt, you need to

click on button 6 of the Main Menu form to invoke subroutine restoreVarNames.

This subroutine restores the original variable names in the various worksheets.

Extensive Empirical Modeling Using Excel VBA 43

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Using Term Math Expressions

Earlier in this paper I mentioned that simple cross-product terms can be defined

using text like '=A8*A9 in a TME cell. This is really the tip of the iceberg. You can

write more elaborate math expressions that use math operators, parentheses, and

even functions to create more sophisticated expressions for regression terms. This is

really stepping on the proverbial gas! Keep in mind that using functions and explicit

operators (like raising to a specific power or adding a fixed value) in a math

expression applies to each and every regression term created with that math

expression. It is what I call fixed transformations.

The switch QUASI_VAR_FIRST_CHAR contains the first character(s) in the

names of quasi-variables used in math expressions. The constant has the default

value of “A”. I chose that value because the names of the regression variables in

sheet Models appear in column A. I recommend you keep the default assignment,

unless you are getting conflicts with your custom function names that end with “A”

or “a” and are followed by one or more digits. In this case, you have one of two

general solutions:

• You can replace the letter A with another letter that will not reproduce the

above problems. Letters like Z or V are good general candidates for the first

letters in quasi-variable names. You are the ultimate judge in deciding what

works for you. When you assign a new character to switch

QUASI_VAR_FIRST_CHAR remember to change the quasi-variable names

in the math expressions to match the new leading character. Your math

expressions would look like '=V14*V15*V16 or '=Z14*Z15*Z16.

• You can select appending a punctuation character like % or # to the letter A

and ending up with A% or A# as the leading characters of quasi-variable

names. You then edit switch QUASI_VAR_FIRST_CHAR and assign

something like “A%” or “A#” to it. When you assign new characters to switch

QUASI_VAR_FIRST_CHAR remember to change the quasi-variable names

in the math expressions to match the new leading characters. Your math

expressions would look like '=A%14*A%15*A%16 or '=A#14*A#15*A#16.

• You can combine both of the above solutions. Your math expressions would

look like '=Z%14*Z%15*Z%16 or '=V#14*V#15*V#16.

When you work with any quasi-variables An think of it as “a variable with any of its

transformations” and not just a variable. In other words, a quasi-variable is defined

by two attributes. Also think of An as a unique pointer to a regression variable in the

Extensive Empirical Modeling Using Excel VBA 44

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Models sheet. The regression variable in each row of the sheet Model can have its

own transformation range and increment, even when multiple rows in sheet Models

can refer to the same regression variable.

Using term math expressions gives you a lot of power that you should be use very

carefully to avoid runtime errors. You cannot use the math expression

transformations with the dependent variable term. Figure 12 shows various examples

of what you can do with term math expressions. Keep in mind that these expressions

work on the various power transformations and custom functions for the different

regression variables. What Figure 12 shows is just the tip of the iceberg. You can

get creative with the sophistication of the math expressions. Expect the calculations

process to take a considerable amount of time. However, you may stumble on

relevant expressions that describe relations between variables that are far from being

obvious or theoretically based. And that, my dear reader, is where this VBA

application shines! That is the power of brute force search for empirical regression

models.

Math Expression Example Appears

in Row

Covers

Last Row

Comments

'=A8*A9 8 9 Simple multiplicative cross products

for the transformations of the

variables named in cells A8 and A9.
'=A8*A9*A10 8 10 Multiplicative cross products for the

transformations of the three

variables named in cells A8, A9 and

A10.
'=(A8)^(A9) 8 9 Raises the value of transformed

variable named in cell A8 to the

variable named in cells A9. Notice

that I have enclosed each quasi-

variable in pairs of parentheses to

ensure that VBA correctly evaluates

the expression.
'=LN((A2+1)^(A3)) 2 3 Calculates the natural logarithm of

the result of raising the value of

transformed variable named in cell

A2, plus one, to the variable named

in cells A3. Notice that I have

enclosed each quasi-variable in pairs

of parentheses to ensure that VBA

correctly evaluates the expression.

Extensive Empirical Modeling Using Excel VBA 45

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Math Expression Example Appears

in Row

Covers

Last Row

Comments

'=(A8*A10)+A9|10 8 10 Expression to multiply the

transformations of the variables

named in cells A8 and A10 and then

add the results to the

transformations of the variable

named in cell A9.
'=(A8+A9)*(A10+A11) 8 11 Expression to multiply the results of

adding the transformations of the

variables named in cells A8 and A9

with the results of adding the

transformations of the variables

named in cells A10 and A11.
'=(A8+A9)/(A10+A11) 8 11 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9

by the results of adding the

transformations of the variables

named in cells A10 and A11.
'=(A8+A9)/(A12+A11)*A10|12 8 12 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9

by the results of adding the

transformations of the variables

named in cells A12 and A11, and

then multiplying by the variable

named in cell A10.
'=LN((A8*A11)+(A10*A9))|11 8 11 Expression to takes the natural

logarithm of adding the results of

multiplying the transformations of the

variables named in cells A8 and A11

with the results of multiplying the

transformations of the variables named

in cells A10 and A9. The use of the

natural logarithm is consistent for all

the terms created with that math

expression.
'=((A8*A9)+(A10*A11))/

((A12*A15)+(A14*A13)|15
8 15 Expression for the ratio of the products

of two sums of variables whose names

appear in cells A8 through A15.
'=SQRT(A8)+SQRT(A9) 8 9 Expression for the sum of the square

roots of the regression variables named

in cells A8 and A9. The use of the

square roots is consistent for all the

terms created with that math

expression.

Extensive Empirical Modeling Using Excel VBA 46

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Math Expression Example Appears

in Row

Covers

Last Row

Comments

'=(A8+A9)/LN((A10+A11)^2+1) 8 11 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9 by

the results of the natural logarithm of

squared sum of the transformations of

the variables named in cells A10 and

A11 plus 1. The use of the natural

logarithm, the explicit squaring

operator, and the addition of 1 is

consistent for all the terms created

with that math expression.
'=(A8+A9)/SQRT((A10+A11)^2+1) 8 11 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9 by

the results of the square root of the sum

of the transformations of the variables

named in cells A10 and A11. The use

of the square root, the explicit

squaring operator, and the addition

of 1 is consistent for all the terms

created with that math expression.

Figure 12. Various examples of math expressions that can be used in the Models

sheet.

Extensive Empirical Modeling Using Excel VBA 47

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 The math expression transformation is a powerful transformation feature.

With power comes responsibility. Plan very carefully the values you enter

in the TME cells. I strongly recommend you separately run subroutine

BuildSuperRegressionModels and examine the output in the ModelsList

sheet. If need be, edit the math expressions in the TME cells until you get

correct terms in the ModelsList sheet. Once you get correct models, you can

then perform the regression calculations

The subroutine BuildSuperRegressionModels performs the following basic checks

for each math expression in column E of the Models sheet:

• The subroutine examines the number of open and close parentheses and also

the order of their appearance.

• The subroutine checks for invalid quasi-variable indices.

• The subroutine checks for invalid high row limits if the math expression uses

a trailing bar character followed by a number that should represent the high

row limit for the math expression.

• The subroutine checks for duplicate quasi-variables sharing the same index.

• The subroutine checks for bare quasi-variable names (with no numbers) in the

math expression, such as ')A(', ')A+', 'A12A*', 'AA*', '*A+', and so on. The

subroutine will do its earnest to catch common errors related to invalid quasi-

variable names. The subroutine may well miss more complex errors. As a

result, the subroutine BuildSuperRegressionModels will proceed with

building a list of incorrect models! The function Fx is the software component

that will champion catching incorrect model errors, declaring them as fatal

runtime errors and stopping program execution.

If the subroutine BuildSuperRegressionModels finds any error, it will speak (when

enabled) and display a fatal error message. Keep in mind that the subroutine’s tests

are very basic and serve to catch trivial errors. The information in the TME cells of

the Models sheet can still generate runtime or logical error-prone expressions.

Epilogue

Extensive Empirical Modeling Using Excel VBA 48

Copyright © 2021 Namir Clement Shammas Version 1.0.0

"You've got to ask yourself one question: 'Do I feel lucky?' Well, do ya punk?" –

Dirty Harry

Using the transformations to linearize variables and cross–product is a powerful tool.

You may need to run alternate sets of regression models replacing the multiplication

of multiple transformed variables with the ratios of the transformed variables. This

shift from multiplication to division may need to happen in stages, with each stage

generating a best selection of regression models! When all is said and done you will

have a sizable set of good regression models.

Once you obtain the set of best empirical regression models, you may need to look

at the detailed regression ANOVA table of some of the models listed in the Results

sheet. To perform this task, click No to the prompt that asks you if you want to

remove the trailing punctuation characters from the variable names. You still need

these characters to correctly evaluate the expressions in the various terms of

regression models. The process of examining individual regression models in details

involves the following steps:

1. Determine the row number in sheet Results whose model you want to

examine.

2. Launch/access the Main Menu form and click on button 4. This command

button executes the subroutine ExamineARegressionModel. The subroutine

will prompt you to enter the row number for the selected model. Enter the row

number of the selected model and click Ok. The subroutine will perform the

regression calculations and switch you to sheet Scratch to see the results.

3. First examine the values of the adjusted coefficient of determination, the F

statistic, and the significance of that statistic. If the value of the latter is above

0.05 then reject the whole model. If not, continue with the next step.

4. Examine the regression coefficients and the p–values. Pay attention to the

following:

a. Regression coefficients that are exceedingly small (much smaller than

the others)

b. Regression coefficients with a confidence interval ranging from

negative to positive values.

c. Regression coefficients that have p–values greater than 0.05.

Such regression coefficients may refer to terms that can be dropped out of

the current model.

Extensive Empirical Modeling Using Excel VBA 49

Copyright © 2021 Namir Clement Shammas Version 1.0.0

5. If the coefficients (and their p–value) look good, then the selected regression

model is acceptable. If not, then resume with the next step.

6. If one or more of the coefficients (and their p–value) do not look good, delete

the columns of the data in the Scratch sheet that yielded the unacceptable

regression coefficients.

7. Click on button 5 in the Main Menu form to invoke the subroutine

RedoLastRegressionModel. This subroutine recalculates the regression

ANOVA table for the reduced model. Examine the results.

8. You may need to remove more data columns and rerun subroutine

RedoLastRegressionModel.

9. Once you are done with analyzing the data sets, click on command button

6 in the Main Menu form to remove the trailing punctuation character from

all the variable names in the various worksheets.

Parting Words

"To infinity and beyond!"

--Buzz Lightyear from the movie “Toy Story”

The VBA code in this study is not magic (and certainly is not bug–free and not–

crash proof)! I have earnestly anticipated handling several types of runtime errors.

The program code has evolved to be a somewhat complex system of multiple

software components. The code assumes that each regression model adheres to the

basic curve fitting assumptions which states that the errors in the (transformed)

dependent variable are normally distributed. The code also adheres to the legacy

adage “trash in, trash out!”. Remember that error in your data can prove to be a

cunning enemy. Errors in your data may favor certain transformations, cross-

products, and math expressions that fit the errors and noise generated by these errors.

Dividing and testing your error-prone data into multiple sets may prove to be a good

remedy, allowing you to detect best recurring regression models.

You should know your data and deal with negative values by normalization. You

should also normalize data that have wildly swinging magnitudes. When you

normalize data, keep record of the maxima and minima values. You will need them

when using the model(s) you select to predict new values.

Extensive Empirical Modeling Using Excel VBA 50

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The VBA code in this study is aimed at empirical modeling. The scheme works best

with accurately measured/calculated data, such as:

• Well-established properties of materials.

• Accurately measure data for weather, commerce, transportation, and so on.

• Probability distribution curves.

• Math functions, especially ones that require the evaluation of multi–term

series or integrals.

In such a case, you simply seek the best model.

In the case of working with research data, you need to run the VBA code with several

data batches (especially if you have a large number of observations) and detect the

model that shows some prominence in all or most of these batches. In this kind of

study, the absolute best model, that appears just once, is not always the true winner.

Appendix A – Source of Math-Related Runtime Errors

The next table summarizes the various kinds of math-related runtime errors.

Case Arguments Comments

LN function used in math

expressions.

Negative or zero values. Generate errors in all

cases.

LN function used in math

expressions.

1 When divided by LN(1)

you get division by zero

error.

LN function due to 0

transformation

Negative or zero values. Generate errors in all

cases.

LN function due to 0

transformation

1 When divided by LN(1)

you get division by zero

error.

Powers Raising negative numbers

to negative powers.

Document History

“I’ll be Back” --The Terminator

Extensive Empirical Modeling Using Excel VBA 51

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Version Release Date Comments

1.0.0 July 17, 2021 Initial release.

