
Clement 2 1

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Clement 2
Optimized Best Regression Models

By

Namir Clement Shammas

Contents
Disclaimer ... 2

Dedication ... 2

About the Clement 2 Project .. 3

Introduction ... 3

Taking the Code for a Quick Spin!... 4

The Excel File .. 6

The Switches Sheet .. 8

The Data sheet ..11

The OriginalData sheet ...12

The Models Sheet ...12

Working with Term Math Expressions ..14

Creating Simpler Regression Models with Simple Cross-Product Terms19

The ModelsList Sheet ...21

The BestResults Sheet ...22

The Scratch Sheet ...22

The Normalization Sheet...24

The NormalizedData Sheet ...25

The ErrorsReport Sheet ...25

Using the Excel File ..25

1. Set Operational Switches ..25

2. Enter the Data in the Data Sheet ...26

3. Enter the Initial Transformation Ranges and Steps26

4. Select Normalization Options ...26

Clement 2 2

Copyright © 2021 Namir Clement Shammas Version 1.0.0

5. Running the VBA Code ..27

Notes on the VBA Code in the Data Sheet ..29

The Function Fx ..29

The Subroutine BuildSuperRegressionModels ..31

Fatal Runtime Errors ...35

Customizing the Transformations with VBA and User-Defined Functions35

Using Term Math Expressions ..36

Epilogue ...41

Appendix A – Source of Math-Related Runtime Errors ..42

Document History ...42

Disclaimer
The Excel VBA code described in this paper comes with no guarantees. The author

is not liable for any loss or injury due to the use of the Excel VBA code. Use it at

your own risk. I highly recommend that you first test the VBA code with small

samples of your own data before you dive in an put the VBA code to serious and full

use. You are exclusively and ultimately responsible for interpreting the results of the

best regression models generated. You are granted the rights to customize the code

(or translate it to other programming languages) to fit your own needs and for your

inhouse use. By using the VBA code, you agree with the terms of this disclaimer.

Dedication
To Richard Nelson, the founder of the PPC group for programmable calculator

fans. His genius is being the catalyst that built a community of calculator users that

lasted over four decades!

Clement 2 3

Copyright © 2021 Namir Clement Shammas Version 1.0.0

About the Clement 2 Project
I started my career as a programming book author in the mid-eighties. My first book,

a collaboration with other programmers, presented interesting Turbo Pascal

applications. One chapter presented the Clement application (named in honor of my

father) that performed sophisticated search for the best regression model by

successive improvements. I decided recently to revive the old project and chose to

start from scratch. I chose to use Excel and VBA as the tools to build an application

that selects the best regression model. I called the programming project Clement 2.

At a certain point, I decided to spin off the first program into multiple versions. This

study presents the third part of the Clement 2 project. It offers a scheme that uses a

simple optimization-based transformation search for the best model. I assume that

you are a bit familiar with the first version of the Excel application.

Introduction

This paper presents Clement2, a powerful Excel file and VBA code that allows you

to investigate a wide range of empirical linearized multiple regression models that

fit your data.

The search for the best regression model, in this study, essentially uses a simple hill-

climbing optimization approach. The baseline application in file BLMRv1_0.xlsm

searches for the best regression model within a big trust region of transformation

powers. By contrast, the application in this study starts with sets of (recommended)

three powers per regression variables. The application performs several iterations to

slowly move the best transformation powers from an initial set of values to better

values that yield higher adjusted R-square values. There is no predefined big trust

region, as is the case with BLMRv1_0.xlsm. Keep in mind that error in your data may

favor certain regression models over others. It’s a good idea to apply the VBA code

to multiple sets of data and compare the best models.

 When this document uses the term VBA code it refers to ensemble of global

constants and variables, functions, and subroutines that work together to operate the

best curve fitting application. The terms VBA code and program are one and the

same.

The VBA code in this study does not explicitly perform the regression calculations.

Instead, it obtains the regression ANOVA table from a standard VBA toolkit. The

Clement 2 4

Copyright © 2021 Namir Clement Shammas Version 1.0.0

VBA code prepares the regression data for each model and invokes subroutine

ATPVBAEN.XLAM!Regress located in the Analysis ToolPak – VBA engine that

generates the familiar ANOVA table. This table provides the VBA code with the

results it needs.

Taking the Code for a Quick Spin!
Let me guide you through a quick inspection and test for the Excel file using the

demo file Clement2demo.xlsm. The file contains worksheets I prepared for this

demo. Make sure that the Analysis ToolPak and the Analysis ToolPak – VBA are

enabled in your Add-ins dialog box. Perform the following tasks:

1. Load the file Clement2demo.xlsm. Activating this demo workbook also brings

up the nonmodal Main Menu form shown in Figure 1. Keep that form open

while you inspect various worksheets.

2. Click on the Data sheet to inspect the name of the variables and their values.

Notice the layout of the variable names and the data.

3. Click on the Models sheet to see the basic information for the transformations.

Notice the variable names in column A and the values in the other columns.

The information in this sheet assigns the initial power transformations for each

variable. The iterative search process will update these values.

4. Click on the ModelsList sheet to view the list of regression models.

5. Right-click the ModelsList sheet’s tab and select the View Code option. This

action switches you to the VBE. Click on the ThisWorkbook project in the

Project window of the VBE. This is the repertoire of all the VBA code.

6. Click on the Excel application windows again to select it.

7. Click on the Main Menu form and then click on the topmost button—the one

with a number 1 to its left. This choice displays an automatically closing

message form that shows the name of the subroutine DoMultipleRegression

before invoking it. The latter subroutine will ask you to proceed with the

process. Click the Yes button. The VBA code will repeat complete cycles of

building the regression models list and then testing each set of models.

Eventually this repetitive process will stop. During the program execution you

will hear messages related to the progress of this process. You will see the

BestResults sheet. Inspect that sheet with the results. Notice that the values of

the R-square and F statistic increase down columns A and B, respectively.

Each row in that sheet shows the best model obtained in each iteration cycle.

Clement 2 5

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Figure 1. The Menu input box

8. Click on the Scratch sheet to view a sample the regression data and results.

9. Once you are done with the demo file, close it. The file Clement2v1_0.xlsm is

the file you want to work with from now on, so load that file. The demo Excel

file can serve a second role as a backup file.

 As a new user to the software, the Main Menu form is

your friend and guide.

 Always use backup copies of the Excel file if you plan to

tinker and experiment with data and regression models.

 Make sure that the Analysis ToolPak and the Analysis

ToolPak – VBA are enabled in your Add-ins dialog box.

 The VBA code checks for many critical errors, displays

(and speaks) an advisory message before the program

stops. You should inspect the data in the various

worksheets to fix the source of the error.

The Main Menu form is a nonmodal form which you can leave open (and even

drag down to just above the task bar level) while inspecting various worksheets and

VBA code in the ThisWorkbook project. When you run the demo Excel file, the Main

Menu form loads automatically. When you load the distribution file

Clement2v1_0.xlsm you can open the Main Menu form using one of these tasks

(which also work for the demo Excel file):

Clement 2 6

Copyright © 2021 Namir Clement Shammas Version 1.0.0

• Clicking on the Switches sheet. Activating this sheet also brings up the Main

Menu form. If this action does not display the form, click on any other sheet

and then click on the Switches sheet again.

• Locate subroutine MiniMenu (it is the first subroutine after the global

declarations of constants and variables) and execute it. This subroutine

displays the nonmodal Main Menu form.

The form has three command buttons with numbers placed to their left as shown in

Figure 1. I will be referring to the buttons by these numbers. Each command button

invokes a subroutine that performs a task related to the regression modeling. By

default, when you click on any of these command buttons, the VBA code first

displays the name of the subroutine it will invoke in an automatically closing

message form (closes after five seconds) and then invokes that subroutine. I have

provided this help feature so that you can learn the names of the subroutines you are

using.

The Excel File

The Clement2v1_0.xlsm file has the following worksheets that play different roles

in input, output, and calculations. The next table summarizes the roles of these

sheets. The sheets with the yellow background are your main input sheets. The sheet

with the green background is your main output worksheet.

Sheet Name Purpose

Switches Sheet that contains operational switches that fine-tune how the

software works.

Data Sheet where you place your data to be processed. The values in

this sheet are on the proverbial front line ready to be involved

in regression calculations.

Models Sheet containing the range of power patterns that create the

regression models’ list.

ModelsList Full list of regression models with each regression term

occupying a separate cell on the same row. This list is generated

by the VBA code and can be manually edited by the user.

Results Sheet showing regression results sorted by the adjusted R-

square statistic. You can choose to sort the results using the F

statistic. This sheet changes with each iteration cycle. When the

iterations stop, this sheet shows the most recent results.

Clement 2 7

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Sheet Name Purpose

BestResults Sheet showing the best regression results for all the iteration

cycles.

Scratch A scratch sheet used to perform regression calculations.

ErrorsReport Sheet that lists non-fatal runtime errors that occur during the

regression calculations.

OriginalData Sheet that contains the copy of the data originally appearing in

sheet Data. The VBA code backs up (and later restores) the

original values of sheet Data to this sheet when normalized data

are used.

Normalization Sheet that lists the regression variables and indicates if data

normalization is needed.

NormalizedData Sheet that contains the last copy of the normalized data. This

sheet is available mainly for the inspection of the curious user.

The values in this sheet are also the source of data for a

subroutine that examines user-selected models in more details.

BigData This sheet is strictly for the user who wishes to store a large

number of variables and data points and analyze a portion of

that data, one at a time. The user can then select columns and

rows of data to copy to the Data sheet. This sheet is the user’s

ultimate data storage repertoire. The VBA code does not access

this sheet.

The VBA code is comprised of the following operational software components:

• Primary code:

o The code that builds the list of regression models.

o The code that performs the regression calculations, writes the results,

and sorts the results.

o The code for data normalization.

• Secondary code:

o The code that supports VBA functions and user-defined functions used

in math expressions.

o The code that manages the regression variable names.

o The code that manages math expressions and quasi-variables.

o The code that manages displaying, hiding, and working with the Main

Menu form.

Clement 2 8

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The Switches Sheet

The Switches sheet contains over a dozen of switches that allow you to fine-tune

how the VBA code works. The sheet, shown in Figure 2, has three columns:

• Column A has the switch names. The names in this column match the name

of identifiers in the VBA code. As you become more familiar and comfortable

with the VBA code, you can search for the identifiers that match the switch

names in column A.

• Column B has the switch values. The switches can be strings, integers, and

numeric Boolean flags (0 for False and other integers for True).

• Column C contains a short explanation for what the switches do.

In the above and next outlines, I use the term numeric Boolean flag to mean a

logical flag that takes on the value of 0 for False and non-zero (preferably 1) for

True. It is easier, quicker, and less error-prone to type 0 or 1 than to type True or

False. Beyond the next outline, I will drop the numeric pre-qualifier.

The switches are:

• The switch RESULTS_SORT_COLUMN has a single-character string that

determines which column in the Results sheet is used to sort the results. The

default value is “A” which selects the adjusted R-square column. Assigning

“B” to the constant selects the F Statistic column for sorting the results.

Assigning “C” to the constant selects the Akaike information criteria column

for sorting the results.

• The switch SAYIT is a numeric Boolean flag that lets the VBA code speak

messages when the value is set to 1 (for True). When the value is set to 0 (for

False), the VBA code executes without verbal communications. The default

setting is 1.

• The switch WAIT_ON is a Boolean flag that lets you browse at the Results

sheet, switching back and forth between that sheet and the Data sheet. This

pause does slow down the program but keeps you in touch with the best

regression models. The default setting is 1.

• The switch WAIT_DURATION specifies the number of integer seconds to

pause the VBA code while viewing the Results sheet. The default setting is 1.

• The switch NORMALIZE_DATA is a numeric Boolean flag that tells the

VBA code whether you want to normalize at least one regression variable

Clement 2 9

Copyright © 2021 Namir Clement Shammas Version 1.0.0

(when set to 1) or disable the data normalization feature altogether. Set the

value for this switch to 0 (False) if you wish to skip data normalization. The

default setting is 0.

• The switch APPENDED_CHAR_TO_VARNAMES contains the punctuation

character that is temporarily appended (and later removed) to the variable

names during regression calculations.

• The switch QUASI_VAR_FIRST_CHAR contains the first character(s) in the

names of quasi-variables used in math expressions. The switch has the default

value of “A”. More about this switch in subsection Using Term Math

Expressions.

• The switch MAX_ERROR_TO_STOP specifies the number of handled

runtime errors that will make the VBA code stop the regression calculations

to let you inspect the data and transformations. The default setting is 4.

• The switch SCALE_POWER is set to 100. It is the scaling factor that

magnifies the floating-point power values/increments to have integer values.

• The switch MAIN_MENU_HELP is a numeric Boolean flag that tells the

VBA code to display the message form (when set to 1) or suppress that form

(when set to 0). The default setting is 1.

• The switch ENABLE_MAIN_MENU_FORM is a numeric Boolean flag that

tells the VBA code to display the Main Menu form (when set to 1) when you

activate the Switches sheet. Set the value of this switch to 0 (False) when you

wish to prevent the display of the Main Menu form. The default setting is 1.

If you set this switch to 0 while the Main Menu form is in view, the VBA code

will close that form.

• The switch MAX_RESULTS specifies the maximum number of results to

display in the sheet Results. The default value is 50.

• The switch BAR_CHAR specifies the character used after a math expression

to define the last row covered by that expression.

• The switch REMOVE_TRAILING_PUNCT_CHAR is Boolean flag that,

when set to 0, makes the VBA prompt you to delete the trailing punctuation

characters. When the switch is set to a 1, the VBA code will go ahead and

delete the trailing punctuation characters without asking the user.

• The switch MAX_CYCLES sets the maximum number of cycles/iterations

used to search for the best regression model. The default value is 20.

• The switch COMPLETE_CYCLE is a numeric Boolean flag that tells the

VBA code whether to stop (when set to zero) or to continue (when set to a

Clement 2 10

Copyright © 2021 Namir Clement Shammas Version 1.0.0

non-zero values) when the adjusted R-square values of the new regression

models do not improve. The default value is 0.

• The switch BREAK_BETWEEN_CYLE is a Boolean flag that tells the VBA

code to break (at a Stop statement in the VBA code) between cycles. This

break allows you to inspect intermediate results in various worksheets.

• The switch BREAK_EACH_NUM_OF_CYCLES tells the VBA code how

many cycles to skip between breaks. The default setting is 1. Increase this

number if you want the VBA code to break less frequently.

• The switch BEST_POWER_IN_MID_RANGE tells the VBA code how to

select the best mid-range power for the next cycle. The value of 1=best power

appears in the middle of next range, otherwise it appears at either end of next

range.

• The switch LN_SHIFT_VAL sets the value of the shift in calculating the

natural logarithm. Use a positive value, of say 1, when you anticipate the

calculations to divide by the natural logarithm. The default setting is 0

which assumes no division by a natural logarithm with an argument of 1.

 A B C

1 Switch Value Comments

2 RESULTS_SORT_COLUMN A Name of column in Results sheet used to sort the results

3 SAYIT 0 Turn on verbal messages 0=OFF non-0=ON

4
WAIT_ON 2 lets you view results sheets (slows down the process)

0=OFF non-0=ON

5 WAIT_DURATION 1 Number of seconds to wait

6 NORMALIZE_DATA 0 turn on/off data normalization feature 0=OFF non-0=ON

7 APPENDED_CHAR_TO_VARNAMES $ character appended to variable names

8 QUASI_VAR_FIRST_CHAR A first character(s) of the quasi-variable names

9
MAX_ERROR_TO_STOP 4 maximum number of errors that cause the calculations to

stop

10 SCALE_POWER 100 Scale factor for powers used to rais variables to

11 MAIN_MENU_HELP 1 Switch to display help form message 0=OFF non-0=ON

12
ENABLE_MAIN_MENU_FORM 1 Switch to ENABLE DISPLAYING Main Menu form

0=OFF non-0=ON

13
BAR_CHAR | Specifies the character used after a math expression to

define the last row covered by that expression

14
REMOVE_TRAILING_PUNCT_CHAR 1 Remove trailing punctuation character without offering

choice for user when set to non-zero.

15 MAX_CYCLES 20 Maximum cycles for small increment power search

16
COMPLETE_CYCLES 0 Complete all iteration cycles even if R2-adj stops

improving. 0=No, non-zero=Yes

17 BREAK_BETWEEN_CYCLE 0 Flag to optionally break between cycles.

18 BREAK_EACH_NUM_OF_CYCLES 1 Number of cycles to break

Clement 2 11

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 A B C

19
BEST_POWER_IN_MID_RANGE 0 1=best power appears in the middle of next range,

otherwise it appears at either end of next range

20
LN_SHIFT_VAL 0 Yields LN(X + LN_SHIFT_VAL). Value = 1 useful when

dividing by LN transformation in a math expression

Figure 2. The Switches form.

The Main Menu form has three command buttons with numbers placed to their

left as shown in Figure 1. You can disable the message forms that pops up after you

click a command button. To do that, set the switch MAIN_MENU_HELP to 0

(False). You can also disable displaying the Main Menu form when you activate the

Data sheet by setting the switch ENABLE_MAIN_MENU_FORM to 0 (False).

Once you are very comfortable with the VBA code you can even go a step further

and run the various subroutines directly from the VBA code listing in the

ThisWorkbook project in the VBE. I have placed these subroutines right after the

declaration of the global variables and constants. Remember that you can locate any

function or subroutine from the drop-down list of sorted routine names in the VBA

when viewing the project ThisWorkbook.

The Data sheet

The Data sheet, as the name suggests, is where you enter, paste, and store your

working data. The first row has the headers for the variable names. The first column

is for the data of the dependent variable. The other contiguous columns are for the

independent variables. Figure 3 shows a sample Data sheet. The names of the

variables are Z, T, P, and V. I could have used slightly longer names such as Zfct,

Temp, Press, and Vol, respectively. The character case of the variable names is not

subject to any rule. However, the name of a variable should NOT contain the

punctuation character specified by the switch

APPENDED_CHAR_TO_VARNAMES (set by default as the $ sign). Why? The

VBA code removes all occurrences of the punctuation character from the variable

names. Thus, for example, if you have variables named Zfct, Zfct$, or Zfct$, the

VBA code will rename them all as Zfct. The VBA code will then temporarily

append that punctuation character to the same regression variables. In the final stages

of the calculations the VBA code will also delete the trailing punctuation characters

from the variable names. So, to have peace of mind, just use characters and digits in

naming your variables.

 A B C D

1 Z T P V

Clement 2 12

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 A B C D

2 721 11 55 1.5

3 466 4 65 2

4 380 2 67 3

5 662 9 48 4

6 658 8 50 5

7 604 13 34 6

8 563 12 33 7

9 534 1 55 8

10 493 3 41 9

11 480 5 34 10

12 340 10 21 11

13 467 6 29 12

14 439 7 25 13
Figure 3. A sample Data worksheet.

The OriginalData sheet

This sheet has the copy of the original values in sheet Data and before any requested

transformations are performed. This sheet is distinct from the BigData sheet and

does not serve the same purpose.

The Models Sheet

This section looks at two ways to work with the sheet Models to create regression

models. The first subsection presents you the power of using term math expression.

By that I mean inserting math expression in any term of the regression models. The

second subsection presents a simpler approach for creating simple cross-product

terms.

The Models sheet plays a paramount role in setting up the various regression models

in each iteration cycle. The scheme for the data transformation has the following

rules:

• Column A lists the regression variables that will contribute to the regression

models. Each regression variable is raised to a narrow range of initial/current

powers defined by values in columns B, C, and D. These powers can be

Clement 2 13

Copyright © 2021 Namir Clement Shammas Version 1.0.0

positive, zero, or negative. The VBA code updates the values in columns B

and C for each iteration cycle. The initial values of columns A, B, and C are

copied to columns H, I, and J. When a power is zero, the VBA code applies

the natural logarithm transformation instead of raising values to zero to always

get the value 1—a wasted opportunity. Therefore, the general transformation

for a non–zero power i is xi and for a power of 0 is ln(x). These

transformations represent different types of curvatures! A linear

transformation with a power of 1 (i.e., taking the values of a variable as they

are) represents zero curvature. Contrast this with taking the squared values of

the reciprocal values of a variable and the kind of curvature these

transformations offer. Here is a representation that shows how the power

values affect the level of concave and convex curvatures. Thus, changing the

curvature for a variable is the basic concept behind the default transformation

scheme that I present:

Increasing convex curvature __________ Increasing concave curvature

–5 < –4 < –3 < –2 < –1 < 1 < 2 < 3 < 4 < 5

• The non–zero powers can be integers or non–integers. If your data has

negative values or high–valued positive values, I strongly suggest that you

normalize the related variables to fall in the range (1, 2). The VBA code

supports data normalization by applying x = (x – xmin)/(xmax – xmin) + 1. For

data with positive values that vary wildly, you can also request the VBA code

to first calculate the natural logarithms of the variables and then proceed with

the normalization in the range (1, 2). This approach basically normalizes the

magnitude of the data points. By normalizing data into the range (1, 2) you

can apply positive or negative powers (both as integers or as floating–point

values) and have your mind rest at ease!

• The iterative scheme of transformation uses a relatively narrow range of

powers with a step increase in power. For each variable, you specify three

power values in a narrow range. The first value (defined by From Power) is

for the lower power. The middle value (calculated using the values in the other

columns) is the mid-range power. The third value (defined by To Power) is

for the upper power. This scheme represents a simple optimization method.

The VBA code determines, for each regression variable, which of the three

power values (the lower, median, or upper power) participate in yielding the

best regression model in each iteration cycle. The best powers are set as the

new mid-range or lower/upper values for the next iteration cycle.

Clement 2 14

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Working with Term Math Expressions

This subsection presents the more advanced tool to create advanced transformations

using math expressions for the various terms of a regression model. Figure 4 shows

a sample Models sheet.

 A B C D E

1 Variable From Power To Power Power Step TME

2 Z 0.9 1.1 0.1

3 T 0.9 1.1 0.1

4 P 0.9 1.1 0.1

5 V 0.9 1.1 0.1

6 T 0.9 1.1 0.1 '=A6*A7

7 P 0.9 1.1 0.1

8 T 0.9 1.1 0.1 '=A8*A9*A10

9 P 0.9 1.1 0.1

10 V 0.9 1.1 0.1

Figure 4. A sample Models worksheet that uses math expressions.

The Models sheet has the following columns:

• Column A is labeled Variable and contains the names of the variables that

appear in a term (either all by itself or in math expressions). The regression

variables in column A must also appear in the first row in sheet Data. Unlike

the sheet Data, the regression variables can appear on multiple rows in

column A of the sheet Models. The cell A2 has the name of the dependent

variable. The cells below it list the names of independent variables and can

even have the name of the dependent variable (to create a Pade–style

empirical fit). You also need to observe the following rules in naming

variables:

o The variable names in the Models sheet must match those in the Data

sheet. If you spell the variable names differently in the Models sheet,

the VBA code will overwrite that spelling with the one appearing in

the Data sheet.

o All the named variables in column A must also appear in the first row

of the Data worksheet (but the reverse is not mandatory).

Clement 2 15

Copyright © 2021 Namir Clement Shammas Version 1.0.0

o The regression variables in column A can appear in multiple rows.

• Column B is labeled From Power. This column contains the initial lower

range power value for each variable. Values should not have more than 2

decimal places. The values in this column need not be the same for the same

regression variables that appear in different rows of the worksheet.

• Column C is labeled To Power. This column contains the initial upper range

power value for each variable. Values should not have more than 2 decimal

places. The values in this column need not be the same for the same

regression variables that appear in different rows of the worksheet.

• Column D is labeled Power Step. This column contains the power increment

value for each variable. Values should not have more than 2 decimal places.

The values in this column need not be the same for the same regression

variables that appear in different rows of the worksheet. The values in column

D remain fixed during all the iteration cycles.

• Column E is labeled TME (short for Term Math Expression). This column

tells the VBA whether you want to involve the subsequent variable(s) in a

math expression. Leave the cells in this column empty if the corresponding

variables appear in a term all by itself OR if it is in the range of regression

variables already covered by a math expression that appears in a previous

row. Otherwise, you can enter a mathematical expression that involves the

variable in the same row and one or more variables in subsequent rows. The

math expressions require you to observe the following syntax and rules:

o The first character is the single quote which tells Excel not to process

the remaining text.

o The equal sign.

o A special math expression using operators, parentheses, functions, and

quasi-variables. These quasi-variables have names that use the format

An where n is the row number that refers to each regression variable

in column A. Think of quasi-variables as transformed regression

variables and also as unique pointers to regression variables in column

A. If you enter a lowercase A for a quasi-variable name, the VBA code

will convert it to uppercase. While the names of the regression

variables in column A can be repeated, the names of the quasi-variables

appearing in a math expression must be unique and must not appear

in another math expression in the column TME. The VBA code will

replace the quasi-variables An with the names of the corresponding

Clement 2 16

Copyright © 2021 Namir Clement Shammas Version 1.0.0

regression variables and the applied transformations. The VBA code

needs to know the range of n in the quasi-variable names An that

appear in a math expression. The row in which the math expression

appears also specifies the minimum value of n in the quasi-variable

names An. To let VBA know about the last row covered by the

regression variables included in the math expression, you have two

choices:

▪ Use the rightmost reference to a quasi-variable An to refer to the

last sought row by the value of n. Thus, for example, the

expression '=A10*(A9+A8)/A11 tells the VBA code that the last

row to include a regression variable is row 11. The expression

should appear in row 8, so VBA knows the range of rows

covered by the math expression.

▪ Append a vertical bar character |, defined by switch

BAR_CHAR, followed by the number of the last sought row.

Thus, for example, the expression '=A10*(A11+A8)/A9|11 tells

the VBA code that the last row to include a regression variable

is row 11. The expression should appear in row 8, so VBA

knows the range of rows covered by the math expression.

o The digits n for the quasi-variables An can appear in any order BUT

must appear only once. For example, the expression

'=A8*(A8+A9)/A10 is incorrect because the quasi-variable A8 appears

more than once in the expression.

o The TME cells below a math expression, and whose rows are

referenced by the quasi-variables, must be empty.

o The math expression can use operators, parentheses, and even function

names. There is no restriction on the character-case for function names.

The functions and explicit operators used in a math expression are fixed

transformations. This means that they appear in every single term

generated by the VBA code for that math expression and for different

transformations of the regression variables.

o If you raise one quasi-variable to the power of another quasi-variable,

make sure you enclose both quasi-variables in pairs of parentheses, to

ensure proper precedence evaluation by VBA. I also highly

recommend that you normalize both variables referred to by the quasi-

variables so the results of raising to powers don’t go through the

Clement 2 17

Copyright © 2021 Namir Clement Shammas Version 1.0.0

proverbial roof! For example the expression '=(A8)^(A9) will correctly

preserve the proper order of evaluation done by function Evaluate in

function Fx. However, the expression '=A8^A9 may produce the

wrong results when A8 and A9 refer to regression variables that are

themselves raise to other powers. The VBA code may wrongly

evaluate, as an example, the string “1.2^2^1.8^3” and not the intended

string “(1.2^2)^(1.8^3)”.

o The VBA code sets the contents of the TME cells in the second sheet

row (corresponding to the entry for the dependent variable) to an empty

string as its content is logically irrelevant.

o The VBA code translates the quasi-variables into the names of the

associated regression variables. The code then appends a punctuation

character to each variable name. The function Fx then translates the

variable names (with their trailing punctuation characters) into string

images of numbers. The final stage is where function Fx calls the VBA

function Evaluate to pass a string with numbers, operators, and

function to the Excel interpreter and obtain a numeric value. Thus, the

process of going from the quasi-variables to the numeric result has

multiple layers before the Excel interpreter does its job.

 In this study I list the leading single-quote character used in the math

expressions. You do need to key in that character to start entering a math

expression with quasi-variables in any Excel cell. The second character in a math

expression must be the equal sign. Keep in mind that Excel will hide that leading

single-quote character in its worksheets. Excel will display the single-quote

character in the text edit box when you select a cell that contains a math

expression. The single-quote character for math expression appears in all the

examples of the math expressions as a reminder. The sheets ModelsList and

Results do not include the leading single-quote characters and the equal signs

when displaying the math expressions containing the names of the actual

regression variables.

 Since you can enter all kinds of text in the TME cells, you are highly

responsible to make sure that your input will translate into valid math

expressions. The VBA code will catch any runtime error generated by a faulty

evaluation of a math expression. It is possible to create math expressions with

logical errors that yield values, albeit the wrong ones. This logical error affects

Clement 2 18

Copyright © 2021 Namir Clement Shammas Version 1.0.0

the quality of the regression results. So, if the results look weird to you, check

the math expressions carefully for logical errors.

In Figure 4 you see a sample input with the following data:

• The second row declares the variable Z to have initial transformations in

the range of 0.9 to 1.1 in steps of 0.1. These values will change during the

different iteration cycles. The TME cell is empty to signal that the

dependent term is separate. In fact, the VBA code will enforce this rule.

• The third, fourth, and fifth rows declare the names of their variables to be

T, P, and V, respectively. Each variable has the transformations in the

initial range from 0.9 to 1.1 in steps of 0.1. These values will change

during the different iteration cycles. The TME cells for these variables are

empty to indicate that they occupy separate terms in the regression model.

• Rows 6 defines a simple cross-product for the variables T and P. The range

of 0.9 to 1.1 in steps of 0.1. These values will change during the different

iteration cycles. The TME cell E6 contains the math expression '=A6*A7

to state that you want multiplicative cross-products of various powers of

variables T and P (named in cells A6 and A7). Notice that cell E7 is empty.

• Rows 8 defines multiplicative double cross-products for the variables

named T, P, and V. The range of initial transformations are 0.9 to 1.1 in

steps of 0.1. These values will change during the different iteration cycles.

The TME cell E8 contains the math expression '=A8*A9*A10 to define

the cross-product of the transformations of variables T, P, and V (named

in cells A8, A9, and A10). Notice that TME cells E9 and E10 are empty.

The above information indicates that we seek an empirical model of the general

form:

f0(Z) = a0 + a1∙f1(T) + a2∙f2(P) + a3∙f3(V) +

 a4∙f41(T) ∙f42(P) + a5∙f51(T)∙f52(P)∙f53(V) (4)

The power of the information in the Model sheet is that you can apply different

transformation ranges to the same variable appearing in different terms, cross-

products, and math expressions.

 It does not take many transformations for each variable/term to generate over tens

of thousands of models! That is why I highly recommend making the range of

Clement 2 19

Copyright © 2021 Namir Clement Shammas Version 1.0.0

powers for each regression variable cover three points. If you have a few terms in

your regression model you can use ranges of five points. I also recommend you run

the VBA code on a separate and dedicated computer. Enabling the VBA code to

speak messages is very practical when you are running the VBA code on one

machine while you are working on another computer. The verbal messages include

the percent progress in the calculations.

Creating Simpler Regression Models with Simple Cross-Product Terms

This subsection presents a scheme to create regression include simpler versions of

the cross-product terms. Figure 5 shows a sample Models sheet with such

information.

 A B C D E

1 Variable From Power To Power Power Step TME

2 Z 0.9 1.1 0.1

3 T 0.9 1.1 0.1

4 P 0.9 1.1 0.1

5 V 0.9 1.1 0.1

6 T 0.9 1.1 0.1 *

7 P 0.9 1.1 0.1

8 T 0.9 1.1 0.1 *

9 P 0.9 1.1 0.1 *

10 V 0.9 1.1 0.1

Figure 5. a sample Models worksheet with no math expressions.

Columns A through D in Figure 5 match those in Figure 4 and serve the same

purpose. The TME column E serves a similar and simpler purpose, albeit using a

different syntax. This column tells the VBA whether you want to involve the

subsequent variable in a cross–product term. Leave the cells in this column empty if

the corresponding variable appears in a term all by itself. Otherwise, you can enter

* to declare that the variable and the one in the subsequent row are cross-products.

You can have more than two variables declared in cross-products. The TME

columns in Figures 4 and 5 are equivalent and create the same cross-product terms.

You can also enter / to indicate that you want to calculate the ratio of the transformed

variables. You can even enter + and –, although using these operators makes more

Clement 2 20

Copyright © 2021 Namir Clement Shammas Version 1.0.0

sense in math expressions. Note that the TME cell of the last variable in a cross–

product term must be empty. This empty cell tells the VBA code that the variable in

the next row will be in the next term of the regression model. The VBA code sets

the contents of the TME cells in the second sheet row (corresponding to the entry

for the dependent variable) to an empty string as its contents are logically irrelevant.

You must make sure that the TME cell of the last row, declaring variables, is empty.

If you just use the power-based transformation scheme that I discussed above, then

you may need to only tweak the values of the switches. If you plan to use custom

transformation functions, then you need to do more in editing the VBA code. More

about this later.

 As each iteration cycle changes the values in the columns From Power and To

Power, the VBA code generates a new list of regression model based on the updated

power values. The code then calculates the regression model statistics for the new

set of models. The iterations top either because they reach the maximum number of

iterations, or the calculations stopped improving the adjusted R-square values.

You can even let the name of the dependent variable appear with the cross–product

terms to fit the best Pade–type rational model variant:

f0(y) = a0 + a1∙f1(x1) + a2∙f2(x2) + a3∙f3(x3) + …

 –an∙fn1(x1) ∙fn2(y) – an+1∙fn+1,1(x2) ∙fn+1,2(y) – … (5)

In Figure 5 you see a sample input with the following data:

• The second row declares the variable Z to have transformations in the

initial range from 0.9 to 1.1 in steps of 0.1. These values will change

during the different iteration cycles. The TME cell is empty to signal that

the dependent term is separate. In fact, the VBA code will enforce this

setting.

• The third, fourth, and fifth rows declare the names of their variables to be

T, P, and V, respectively. Each variable has the transformations in the

initial range from 0.9 to 1.1 in steps of 0.1. These values will change

during the different iteration cycles. The TME cells for these variables are

empty to indicate that they occupy separate terms in the regression model.

• Rows 6 and 7 declare the variables named T and P. The range from 0.9 to

1.1 in steps of 0.1. These values will change during the different iterations.

Clement 2 21

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The cell E6 has a * character to indicate that the corresponding term has

the cross product of the transformations of T and P. Notice that cell E7 is

empty.

• Rows 8, 9 and 10 declare the variables named T, P, and V. Each variable

has the transformations in the initial range from 0.9 to 1.1 in steps of 0.1.

These values will change during the different iteration cycles. The cells

E8 and E9 have a * character to indicate that the corresponding terms has

the cross-product of the transformations of T, P, and V. Notice that cell

E10 is empty.

The ModelsList Sheet

The ModelsList sheet shows the list of all the models that will be tested. The VBA

code uses the data in sheet Models to create the big list. Figure 6 shows a partial

view of the sheet. Notice that the worksheet has no header row:

 A B C D E

1 Z^(-0.2) T^(-0.2) P^4.7 V^(-1.4) T*P*V

2 Z^(-0.1) T^(-0.2) P^4.7 V^(-1.4) T*P*V

3 LN(Z+1) T^(-0.2) P^4.7 V^(-1.4) T*P*V

4 Z^(-0.2) T^(-0.1) P^4.7 V^(-1.4) T*P*V

5 Z^(-0.1) T^(-0.1) P^4.7 V^(-1.4) T*P*V

6 LN(Z+1) T^(-0.1) P^4.7 V^(-1.4) T*P*V

7 Z^(-0.2) LN(T+1) P^4.7 V^(-1.4) T*P*V

8 Z^(-0.1) LN(T+1) P^4.7 V^(-1.4) T*P*V

9 LN(Z+1) LN(T+1) P^4.7 V^(-1.4) T*P*V

10 Z^(-0.2) T^(-0.2) P^4.8 V^(-1.4) T*P*V

11 Z^(-0.1) T^(-0.2) P^4.8 V^(-1.4) T*P*V

12 LN(Z+1) T^(-0.2) P^4.8 V^(-1.4) T*P*V

13 Z^(-0.2) T^(-0.1) P^4.8 V^(-1.4) T*P*V

14 Z^(-0.1) T^(-0.1) P^4.8 V^(-1.4) T*P*V

15 LN(Z+1) T^(-0.1) P^4.8 V^(-1.4) T*P*V

16 Z^(-0.2) LN(T+1) P^4.8 V^(-1.4) T*P*V

17 Z^(-0.1) LN(T+1) P^4.8 V^(-1.4) T*P*V

18 LN(Z+1) LN(T+1) P^4.8 V^(-1.4) T*P*V

19 Z^(-0.2) T^(-0.2) P^4.9 V^(-1.4) T*P*V

20 Z^(-0.1) T^(-0.2) P^4.9 V^(-1.4) T*P*V

21 LN(Z+1) T^(-0.2) P^4.9 V^(-1.4) T*P*V

Figure 6. A partial view of the ModelsList worksheet.

Each row in sheet ModelsList represents a regression model. The individual cells of

that row show the various terms of the regression model. Notice that the negative

powers are enclosed in parentheses to support a proper order of evaluation,

especially in cross-product terms. The first column shows the dependent variable

and its transformations. The second column and on show the various terms for the

Clement 2 22

Copyright © 2021 Namir Clement Shammas Version 1.0.0

independent variables and their transformations. Some terms show single variables

while others show cross-product terms.

The BestResults Sheet

The BestResults sheet displays a sorted list of the best regression models, each

obtained in a different iteration cycle. The results include the values for the adjusted

R–square, the F statistic, the transformations for each term of the regression model,

and the regression coefficients. The Results sheet has many columns, as shown in

Figure 7.

Rsqr Adj F Stat Transf of Y Transf of X1 Transf of X2 Transf of X3 Transf of X4 Coeff0 Coeff1 Coeff2 Coeff3 Coeff4

0.67600059 7.259276115 Z$^0.9 T$^1.1 P$^1.1 V$^0.9 T$*P$*V$ 2.168284669 -1.17405446 -

0.530136502
-1.538427724 1.329997389

0.70141557 8.047409362 Z$^0.7 T$^1.1 P$^1.3 V$^0.7 T$*P$*V$ 3.226414658 -

1.058329636
-0.50306872 -1.985366072 1.034593673

0.737347033 9.42191554 Z$^0.5 T$ P$^1.5 V$^0.5 T$*P$*V$ 3.988252115 -

0.958216952
-

0.371890901
-2.411068603 0.732647138

0.785686863 11.99820862 Z$^0.3 T$^0.8 P$^1.7 V$^0.3 T$*P$*V$ 4.544686618 -

0.839990415
-

0.216965227
-2.831858268 0.433810773

0.837337542 16.44310018 Z$^0.1 T$^0.6 P$^1.9 V$^0.1 T$*P$*V$ 4.537790475 -

0.415430163
-

0.064879979
-3.144122797 0.140225591

0.88522777 24.13872704 Z$^(-0.1) T$^0.4 P$^2.1 V$^(-0.1) T$*P$*V$ 3.676964271 0.664854529 0.054946194 -3.330399243 -0.133656681

0.923610083 37.27219855 Z$^(-0.3) T$^0.2 P$^2.3 V$^(-0.3) T$*P$*V$ 0.308589045 4.112399657 0.133829072 -3.396597028 -0.376432354

0.949824729 57.79040983 Z$^(-0.5) T$^0.1 P$^2.5 V$^(-0.5) T$*P$*V$ -8.846254999 13.26792698 0.173713284 -3.349851029 -0.586180757

0.964727893 83.05304304 Z$^(-0.7) T$^(-0.1) P$^2.7 V$^(-0.7) T$*P$*V$ 22.76603162 -

18.38829549
0.188602473 -3.26287722 -0.7573049

0.973323046 110.4566156 Z$^(-0.7) T$^(-0.1) P$^2.9 V$^(-0.9) T$*P$*V$ 21.5613424 -

17.77025521
0.150166737 -2.576553105 -0.751505999

0.975897938 122.4706769 Z$^(-0.6) T$^(-0.1) P$^3.1 V$^(-1) T$*P$*V$ 18.18459264 -

14.93485793
0.105791475 -2.006315738 -0.645243382

0.978082256 134.875402 Z$^(-0.5) T$^(-0.1) P$^3.3 V$^(-1) T$*P$*V$ 15.00546998 -

12.13905854
0.073510622 -1.643821873 -0.530292636

0.979871173 147.0399829 Z$^(-0.4) T$^(-0.1) P$^3.5 V$^(-1) T$*P$*V$ 11.9954477 -

9.505419665
0.049347049 -1.297711563 -0.419919382

0.981577611 160.8453325 Z$^(-0.3) T$^(-0.1) P$^3.7 V$^(-1.1) T$*P$*V$ 9.152843155 -

7.079724958
0.031087138 -0.904720723 -0.319052664

0.983207773 176.6540827 Z$^(-0.2) T$^(-0.1) P$^3.9 V$^(-1.1) T$*P$*V$ 6.370063607 -

4.652409013
0.017602899 -0.599662574 -0.211898383

0.98457781 192.5249036 Z$^(-0.1) T$^(-0.1) P$^4.1 V$^(-1.1) T$*P$*V$ 3.659675533 -

2.299012235
0.0075099 -0.298941773 -0.105826446

0.985688765 207.6255111 Z$^(-0.1) T$^(-0.1) P$^4.3 V$^(-1.1) T$*P$*V$ 3.565743903 -

2.214296923
0.00623213 -0.288990283 -0.102818863

0.986510585 220.3966035 Z$^(-0.1) T$^(-0.1) P$^4.5 V$^(-1.1) T$*P$*V$ 3.480124996 -

2.137158093
0.005187617 -0.279867586 -0.100106521

0.987282154 233.8890028 Z$^(-0.1) T$^(-0.1) P$^4.7 V$^(-1.2) T$*P$*V$ 3.417214174 -

2.092228685
0.004315037 -0.257143335 -0.099575199

0.98825162 253.3543643 LN(Z+1) T^(-0.1) P^4.9 V^(-1.2) T*P*V -13.09952807 11.88173039 -

0.021682204
1.510418396 0.575495602

Figure 7. A partial view of the Results worksheet

The Scratch Sheet

This sheet is used by the VBA code to perform multiple regression and copy selected

results to the Results sheet. The sheet shows the familiar regression ANOVA table

and the columns of the transformed variables. The regression ANOVA table and the

data columns always start in columns A and K, respectively. Column J is always

empty, separating the regression ANOVA table from the data columns.

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.990326899

R Square 0.980747367

Adjusted R Square 0.971121051

Standard Error 0.020446718

Observations 13

ANOVA

 df SS MS F Significance F

Regression 4 0.170374361 0.04259359 101.8818958 6.76378E-07

Residual 8 0.003344546 0.000418068

Total 12 0.173718907

Clement 2 23

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%

 Upper 95.0%

Intercept 0.057945509 0.095184753 0.608768804 0.559562711 -0.161550927 0.277441944

 -0.161550927 0.277441944

LN(T+1) -1.943964816 0.151668638 -12.81718382 1.29571E-06 -2.293713322 -1.594216309

 -2.293713322 -1.594216309

P^4.9 -0.020509647 0.002299969 -8.917359844 1.98305E-05 -0.025813384 -0.01520591

 -0.025813384 -0.01520591

V^(-1.2) 1.484596686 0.099545999 14.91367512 4.02974E-07 1.255043201 1.714150171

 1.255043201 1.714150171

T*P*V 0.592395975 0.052032543 11.38510524 3.19772E-06 0.472408716 0.712383234

 0.472408716 0.712383234

RESIDUAL OUTPUT

Observation Predicted LN(Z+1) Residuals

1 1.098056348 0.00055594

2 0.854154993 -0.007982625

3 0.751204463 -0.006895231

4 1.034036872 0.011576935

5 1.061936603 -0.020019658

6 0.965954173 0.024669478

7 0.958264187 -0.008421921

8 0.881527375 0.038431163

9 0.885655744 -0.009531054

10 0.867475161 -0.005660017

11 0.684757598 0.008389583

12 0.863922908 -0.016625047

13 0.823782675 -0.008487546

Figure 8a. The ANOVA table in Scratch worksheet

LN(Z+1) LN(T+1) P^4.9 V^(-1.2) T*P*V

1.098612289 1.041453875 15.05315595 1 3.188405797

0.846172368 0.810930216 26.80864853 0.950210693 2.551984877

0.744309233 0.733969175 29.85705573 0.863187983 2.449275362

1.045613807 0.980829253 9.611001374 0.789739328 3.219911783

1.041916945 0.949080555 10.97202568 0.726989097 3.367202268

0.990623651 1.098612289 3.385801412 0.672811536 3.56899811

0.949842266 1.070441412 3.113750378 0.625602827 3.572463768

0.919958538 0.693147181 15.05315595 0.584131198 2.722117202

0.87612469 0.773189888 5.864782477 0.547435664 2.765595463

0.861815145 0.84729786 3.385801412 0.514755995 2.974165091

0.693147181 1.011600912 1 0.485483255 3.195652174

0.84729786 0.88238918 2.193896058 0.459124207 3.18147448

0.815295129 0.916290732 1.504664401 0.435275282 3.260869565

Figure 8b. The data columns in Scratch worksheet

Clement 2 24

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The Normalization Sheet

The switch NORMALIZE_DATA acts as a main switch and tells the VBA code

whether to normalize at least one regression variable or skip the data normalization

feature all together. If the switch NORMALIZE_DATA is set to False, the VBA

code will ignore the contents of the Normalization sheet.

The VBA code first copies the Data sheet into the OriginalData sheet and then

performs the transformations. The Normalization sheet allows you to specify if you

want to transform any regression variable and also if you want to first apply the

natural logarithm transformation to that variable. Figure 9 shows a sample

Normalization sheet.

 A B C D E

1 Z T P V
2 N N N N Normalize?

3 N N N N Take the Log values First?

4 Minimum

5 Maximum
Figure 9. The Normalization sheet with sample data.

The Normalization sheet has the following rows and columns:

• The first row lists the regression variables. These variable names must match

those in the Data sheet. The VBA code makes sure that the names of the

variables in the first row match those in the sheet Data.

• The second row has the single-character switches that state if a variable is to

be normalized. The VBA code regards any cell that is neither Y nor y as a

request not to normalize values and vice versa.

• The third row has the switches that state if the variable is to be first

transformed into its natural logarithm values. The VBA code regards any cell

that is neither Y nor y as a request not to transform and vice versa. The values

in this row are ignored if the corresponding value in row 2 does not request

normalization. The VBA code will check if a normalized variable has non-

positive values. If it does, the VBA code will set the normalization switch to

N for that variable and will skip taking its natural logarithm. You will receive

Clement 2 25

Copyright © 2021 Namir Clement Shammas Version 1.0.0

a notification to that effect and be prompted if you wanted to stop the

calculation process altogether to cure your data, change normalization

switches, and then try again.

• The fourth and fifth rows show the calculated minimum and maximum values

used in the data normalization.

• The column that appears right after the last variable name has rows that

describe the meaning of rows 2 to 4.

The NormalizedData Sheet

This sheet will contain the normalized values of your data if you apply data

normalization. The values in this sheet are mainly for the curious user’s inspection.

The values are also used by sub ExamineARegressionModel when the switch

NORMALIZE_DATA is set to 1 (True) to quickly retrieved normalized data.

The ErrorsReport Sheet

The ErrorsReport sheet store the regression runtime errors. This information

includes the offending model number and the error message. The VBA code makes

a verbal warning (when enabled) when a runtime error occurs and logs in that error

in the ErrorsReport sheet. The VBA code allows a specified maximum number of

errors before it ends program execution. This scheme prevents the error warnings

from getting out of hand and becoming annoying, since it is very possible that the

numbers of regression models are in the hundreds, thousands, or even tens of

thousands! Besides, I do not want the reader to get mad with her/his computer, break

it, and then bill me for a new one!

Using the Excel File

This section looks at the steps involved in using the Excel file and the VBA code to

perform empirical curve fitting. The steps involved are outlined in the next

subsections. I would like to point out that I have enabled verbal messages from the

code to confirm the prompt for action, completion of certain tasks, and report error

messages. The verbal messaging offers valuable non-visual communications that

allows you to run the VBA code on a separate dedicated machine (while you work

on your main computer) and listen to the messages that, for example, report on the

progress of the calculations.

1. Set Operational Switches

You may need to change the operational switches listed in sheet Switches (and

shown in Figure 2) to influence how the VBA code works. For example, if you intend

Clement 2 26

Copyright © 2021 Namir Clement Shammas Version 1.0.0

to normalize one or more regression variables, then you set switch

NORMALIZE_DATA to 1.

2. Enter the Data in the Data Sheet

Select the Data sheet and clear it to start entering new data or pasting it from another

source. Keep in mind the following rules:

1. The first column must store the data for the dependent variable.

2. The second columns and on store data for various independent variables.

3. All columns must have the same number of rows. You must deal with missing

data by doing one of the following:

a. Delete the row that has missing data (especially if several columns have

missing data in that row).

b. Estimate the missing data by averaging or any other suitable method.

3. Enter the Initial Transformation Ranges and Steps

The Models sheet provide you with a powerful framework to generate hundreds and

thousands of regression models that will appear in the ModelsList sheet. The Models

sheet allows you to specify the initial and narrow range of transformations and their

increments. The range for each regression variable will change with each iteration.

Select the Models sheet and populate columns A to E with data that select the

variable(s) for each term, specify the initial narrow range and small increment in the

transformational powers, and optionally enter math expressions or specify if two or

more rows make up a single cross–product term. Your Models sheet should resemble

the one in Figure 4 or in Figure 5.

 If you want to use VBA functions and/or user-defined functions (that you declare

in a module) then you need to follow the instructions in subsections Customizing the

Transformations with VBA Functions and User-Defined Functions.

4. Select Normalization Options

To enable the data normalization feature, you must first set the switch (in sheet

Switches) NORMALIZE_DATA to 1. Otherwise, the VBA code bypasses

subroutines that perform data normalization related tasks. After setting the switch to

1 (True), I suggest that you click button 7 in the Main Menu form to execute

subroutine SetDefaultNormalization. This subroutine setups the default

Normalization sheet. This setup lists the variable names and the right-side tags. The

cells for the normalization switches are all set to N (short for no). Select the

Normalization sheet to choose which variable you need to normalize. Set the cell in

row 2 under the selected variable name(s) to y or Y to normalize. Set the cell in row

Clement 2 27

Copyright © 2021 Namir Clement Shammas Version 1.0.0

3 under the selected variable name(s) to y or Y if you want the VBA code to first

calculate their natural logarithms before normalizing their values.

The VBA code copies the values in the Data sheet into the OriginalData sheet before

performing the normalization and regression calculations. The VBA code restores

the original values of sheet Data:

• After the regression calculations end without a runtime error.

• After the maximum number of runtime errors have been reached.

As a failsafe, you can invoke subroutine RestoreData to restore the original values

in sheet Data.

5. Running the VBA Code

Before I discuss running the VBA code you need to make sure that the options for

the Add–ins Analysis Toolpak and Analysis Toolpak – VBA are checked in the Add–

ins dialog box, as shown in Figure 10.

Figure 10. The Add–ins dialog box.

You can use the command buttons in the Main Menu form (see Figure 1) to invoke

the regression calculations as a single task (using button 1). You can also run the

subroutine DoMultipleRegression directly. Select any sheet and choose to view the

VBA code in the ThisWorkbook part. The code uses DoEvents to prevent Excel from

shutting you out and allows you to pause or stop the VBA code if need be, by

clicking on the pause or stop icons in the Debug toolbar of the VBE. I recommend

Clement 2 28

Copyright © 2021 Namir Clement Shammas Version 1.0.0

that you have the VBA code of the Data sheet remain in view to give you full control

(an easier task if you have two screens). Figure 11 is a table that gives you a heads-

up summary of the subroutines, in the ThisWorkbook part, you can use to perform

the empirical regression models calculations. The subroutines are grouped by colors.

Your go to subroutine is MiniMenu. The middle column of that figure shows the

command button numbers, in Main Menu form, associated with the subroutines.

Subroutine Name Button

Number

Purpose

MiniMenu Displays a multiline input box

that allows you to easily invoke

the rest of the subroutines

listed in this table.

DoMultipleRegression 1 The main “one–stop shop”

subroutine to build the models

list and run the regression

calculations.

SetDefaultNormalization 3 Setup the default

Normalization sheet with all

normalization switches off.

restoreVarNames 2 Remove trailing punctuation

characters from all the variable

names in all the sheets.

Figure 11. The list of the relevant subroutines you will be using.

You can build the list of regression models and then perform the regression

calculations in one swoop. Click on sheet Switches to activate it (or Run the

MiniMenu subroutine) to launch the Main Menu form. Click on button 1 to invoke

the subroutine DoMultipleRegression. This subroutine requests your confirmation

that you have prepared your data and regression model information. The message

also announces the number of regression models that will be tested. If that number

overwhelms you, then click the Cancel button and edit the values in the columns To

Power, From Power, and Power Step, in the Models sheet, to test fewer models.

 The simplest way to use the VBA code to perform regression model selection is

to:

1. Tweak the switches in worksheet Switches.

2. Select your initial transformation ranges.

Clement 2 29

Copyright © 2021 Namir Clement Shammas Version 1.0.0

3. Click on button 1 of the Main Menu form to execute subroutine

DoMultipleRegression.

Notes on the VBA Code in the Data Sheet

The Function Fx

The code for function Fx in the ThisWorkbook project transforms the variables in a

regression term from a string of text to a string images of numeric values (with

possible operators and functions) and then evaluates that string to yield a resulting

floating-point number:

Function Fx(ByVal sExpress As String, ByRef sVarNames() As String, ByRef

nVarIdx() As Integer, ByRef X() As Double) As Double

 Dim I As Integer, I1 As Integer, I2 As Integer, J As Integer

 Dim NumFx As Integer, countFX As Integer

 Dim msg As String, sFx() As String

 Dim bFoundMyFx As Boolean

 On Error GoTo HandleErr

 sExpress = Replace(sExpress, " ", "")

 ' loop using array nVarIdx to replace correctly replace variable names with

theirvalues

 For I = LBound(X) To UBound(X)

 J = nVarIdx(I)

 sExpress = Replace(sExpress, sVarNames(J), GetValImage(X(J)))

 Next I

 Fx = Evaluate(sExpress)

ExitProc:

 Exit Function

HandleErr:

 MsgBox "The variable sExpress contains " & sExpress, vbOKOnly + vbInformation,

"Information"

 FinalMessage "Fatal error in function Fx. The program execution will stop.

Error is " & Err.Description

End Function

The parameter sExpress has the string that contains a regression model terms that

use the names of the regression variables. The VBA code uses a special sorting

scheme that allow variable names (that appear in the same expression) that are

subsets of other variable names to be replaced starting with the variables with longer

names. Thus, for example you can declare variables with names such as T, T2, and

TT2. The function Fx will replace the names of TT2, then T2, and then T with the

values of these variables. To distinguish between the names of regression variables

and possible transformation functions (especially those with overlapping characters

Clement 2 30

Copyright © 2021 Namir Clement Shammas Version 1.0.0

with the regression variable names), the VBA code temporarily appends a

punctuation character (default is the $ sign) to the variable names. Since function

names cannot have the $ sign as part of their names, there is no mix up in replacing

the regression variable names with their numeric values. This approach allows the

VBA code to work/use variable names that are not VBA-compliant, since the

variable names must be replaced with their numeric values. Appending a punctuation

character to the variable names is a simpler solution than, say, forcing variable names

to have all uppercase characters and function names to have all lowercase characters

(or vice versa). Using character case to distinguish between variables and functions

is a bit restrictive and is error prone to typos. The statement in the function, located

before label ExitProc, invokes the VBA function Evaluate to evaluate the string

variable sExpress that contains a string of a math expression containing numbers,

functions, and operators.



 The VBA function Evaluate evaluates expressions that may include the

name of functions. It performs its task by invoking the Excel mathematical

interpreter (made up of an expression parser and an evaluator). The function

names handled by function Evaluate must match the ones supported by the

Excel spreadsheets and not VBA itself. For example, the function names

LN, LOG, and SQRT are evaluated as the natural logarithm, the common

logarithm, and the square root, respectively. These are functions supported

by the spreadsheet. By comparison, VBA itself uses Log to evaluate the

natural logarithm and Sqr to evaluate the square root. However, VBA has

no predefined function for the common logarithm. You can access the

wealth of Excel functions by writing short wrapper functions (in a module)

that use the syntax WorksheetFunction.fx_name to access an Excel’s

function.

The good news here is that there are no character-case restrictions for

function names, as long as function Evaluate can call these functions.

The parameter VarNames passes the array of the regression variable names. The

parameter nVarIdx passes the array of indices that determine the order of accessing

the elements of array VarNames. The parameter X passes the values for the

regression variables. The arrays VarNames, nVarIdx, and X have zero-based indices.

The values at index 0 refer to the dependent regression term/variable.

Clement 2 31

Copyright © 2021 Namir Clement Shammas Version 1.0.0

If a runtime error occurs in function Fx, the program execution will stop because

such a runtime error is profoundly serious. The function displays (and verbalizes) a

message to that effect. The message box also displays the current text in string

variable sExpress. This information maybe key to dealing with the source of error.

You may also need to inspect the values in the sheet Data and the models in sheet

ModelsList to find the source of the error.

The Subroutine BuildSuperRegressionModels

The first task the subroutine BuildSuperRegressionModels does is to call function

unifyVarNames to make sure that every variable name in sheet Models and

Normalize also appear in sheet Data. If not, you get a fatal error message that

mentions the name(s) of the unmatched variable(s) before the VBA code stops

running.

The subroutine BuildSuperRegressionModels copies the values of sheet Data into

sheet OriginalData if you request normalization of at least one regression variable.

Upon successfully completing the regression calculations or reaching the maximum

number of runtime errors, the VBA code copies the normalized values in sheet Data

to sheet NormalizedData, before copying the original values from sheet

OriginalData back to sheet Data. These copying tasks occur only if you requested

the normalization of data. The normalized values in sheet NormalizedData are there

for your curious inspection.

In subroutine BuildSuperRegressionModels you will see the following loop:

 NumVars = 0

 NumTerms = 0

 For ModelRow = 1 To MaxModelRows

 Call checkIfCellIsEmpty("Variable name", ModelRow + 1, 1, sModelsSheet)

 sVarNames(ModelRow) = Sheets(sModelsSheet).Cells(ModelRow + 1, 1)

 Call checkIfCellIsEmpty("From Power", ModelRow + 1, 2, sModelsSheet)

 iFrom(ModelRow) = SCALE_POWER * Sheets(sModelsSheet).Cells(ModelRow + 1,

2)

 Call checkIfCellIsEmpty("To Power", ModelRow + 1, 3, sModelsSheet)

 iTo(ModelRow) = SCALE_POWER * Sheets(sModelsSheet).Cells(ModelRow + 1, 3)

 ' enforce iFrom < iTo

 If iFrom(ModelRow) > iTo(ModelRow) Then

 ' swap values

 I = iFrom(ModelRow)

 iFrom(ModelRow) = iTo(ModelRow)

 iTo(ModelRow) = I

 ' also swap cell values

 I = Sheets(sModelsSheet).Cells(ModelRow + 1, 2)

Clement 2 32

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 Sheets(sModelsSheet).Cells(ModelRow + 1, 2) =

Sheets(sModelsSheet).Cells(ModelRow + 1, 3)

 Sheets(sModelsSheet).Cells(ModelRow + 1, 3) = I

 End If

 ' enforce iStep > 0

 Call checkIfCellIsEmpty("Power Scale", ModelRow + 1, 4, sModelsSheet)

 iStep(ModelRow) = SCALE_POWER * Abs(Sheets(sModelsSheet).Cells(ModelRow +

1, 4))

 If iStep(ModelRow) = 0 Then iStep(ModelRow) = 1

 ' ignore TermMathExpr contents in rows 2 and in the last row

 If ModelRow > 1 Then ' And ModelRow < MaxModelRows Then

 sTermMathExpr(ModelRow) = Sheets(sModelsSheet).Cells(ModelRow + 1, 5)

 If Left(sTermMathExpr(ModelRow), 1) = "'" Then sTermMathExpr(ModelRow)

= Mid(sTermMathExpr(ModelRow), 2)

 Else

 Sheets(sModelsSheet).Cells(ModelRow + 1, 5) = ""

 sTermMathExpr(ModelRow) = ""

 End If

 If Len(sTermMathExpr(ModelRow)) = 0 Then NumTerms = NumTerms + 1

 idx(ModelRow) = iFrom(ModelRow)

 Next ModelRow

Also notice that the statements that assign values to the transformation–range arrays

iFrom(), iTo() and iStep(), multiply the values in the source cells of sheet Models by

the value of switch SCALE_POWER (currently set to 100)! Why do that, you may

ask? I discovered that it is better to convert floating point numbers into integers to

perform more robust logical tests between integers. That is why I do not recommend

entering values in the From Power, To Power, and Power Step columns that have

three or more decimal places. If you do, then you need to replace the value of switch

SCALE_POWER with a larger power of 10 to make sure that all significant decimal

digits become part of an integer.

Also notice in subroutine BuildSuperRegressionModels the following code fragment

that builds each term using one or more variables:

 Do

 DoEvents

 DoEvents

 Col = 1

 For I = 1 To N

 Sheets(sModelsListSheet).Range("AAA1").Offset(row - 1, I - 1).Value =

idx(I) / 100

 If idx(I) = 0 Then

 If LN_SHIFT_VAL <> 0 Then

 sTransformedVar = "LN(" & sVarNames(I) & "+" & LN_SHIFT_VAL & ")"

 Else

 sTransformedVar = "LN(" & sVarNames(I) & ")"

 End If

Clement 2 33

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 ElseIf idx(I) = SCALE_POWER Then

 sTransformedVar = sVarNames(I)

 ElseIf idx(I) = -SCALE_POWER Then

 sTransformedVar = sVarNames(I) & "^(-1)"

 ElseIf idx(I) > 0 Then

 sTransformedVar = "(" & sVarNames(I) & "^" & CStr(idx(I) / SCALE_POWER)

& ")"

 ElseIf idx(I) < 0 Then

 sTransformedVar = "(" & sVarNames(I) & "^(-" & CStr(Abs(idx(I)) /

SCALE_POWER) & "))"

 Else

 sTransformedVar = sVarNames(I)

 End If

 ' no math expression or cross-product operator?

 If Not bCMEfound And Len(sTermMathExpr(I)) = 0 Then

 If Left(sTransformedVar, 1) = "(" And Right(sTransformedVar, 1) = ")"

Then

 sTransformedVar = Mid(sTransformedVar, 2)

 sTransformedVar = Left(sTransformedVar, Len(sTransformedVar) - 1)

 End If

 Sheets(sModelsListSheet).Cells(row, Col) =

Sheets(sModelsListSheet).Cells(row, Col) & sTransformedVar

 Col = Col + 1

 ' found cross-product operator?

 ElseIf (Not bCMEfound) And (InStr("+-/*,", Left(sTermMathExpr(I), 1)) >

0) Then

 Sheets(sModelsListSheet).Cells(row, Col) =

Sheets(sModelsListSheet).Cells(row, Col) & sTransformedVar & sTermMathExpr(I)

 Else

 ' handle math expressions

 sTME = sTermMathExpr(I)

 ' continue to process current math expression?

 If bCMEfound Then

 ' now process the first variable in the compact math expression

 CMEidx = CMEidx + 1

 CMEexpress = Replace(CMEexpress, QUASI_VAR_FIRST_CHAR & CMEidx &

APPENDED_CHAR_TO_VARNAMES, sTransformedVar)

 bCMEfound = IIf(CMEidx = CMEmaxIdx, False, True)

 If Not bCMEfound Then

 Sheets(sModelsListSheet).Cells(row, Col) = CMEexpress

 Col = Col + 1

 End If

 ' found a new math experssion

 ElseIf Not bCMEfound And Left(sTME, 1) = "=" Then

 bCMEfound = True

 ''' CMEexpress = Replace(UCase(Mid(sTME, 2)), " ", "")

 CMEexpress = Replace(Mid(sTME, 2), " ", "")

 K = FindLastCharAndDigit(CMEexpress, QUASI_VAR_FIRST_CHAR)

 L = InStrRev(CMEexpress, "|")

 CMEtrailNumber = 0

 ' Is there a trailing comma in mth expression?

Clement 2 34

Copyright © 2021 Namir Clement Shammas Version 1.0.0

 If L > K Then

 CMEmaxIdx = getNumber(CMEexpress, L + 1)

 CMEtrailNumber = CMEmaxIdx

 CMEexpress = Left(CMEexpress, L - 1)

 Else

 If K = 0 Then FinalMessage "Fatal error in math expression in row

" & CStr(I + 1) & " of Models sheet"

 CMEmaxIdx = getNumber(CMEexpress, K + L2)

 If CMEmaxIdx = 0 Then FinalMessage "Fatal error in math expression

in row " & CStr(I + 1) & " of Models sheet"

 End If

 CMEidx = I + 1

 ' check for incomplete quasi-var names

 Call checkforIncompleteQuasiVar_names(CMEexpress)

 ' Append punctuation char to quasi-var names

 Call appendPunctCharToQuasiVars(CMEexpress)

 ' check that quasi-var numbers are valid and in range

 Call checkQuasiVarIndices(CMEexpress, CMEmaxIdx, I + 1)

 ' check for duplicate quasi-vars in a math expression

 Call checkDuplicateQuasiVars(CMEexpress, I + 1, CMEmaxIdx)

 ' now process the first variable in the math expression

 CMEexpress = Replace(CMEexpress, QUASI_VAR_FIRST_CHAR & CMEidx &

APPENDED_CHAR_TO_VARNAMES, sTransformedVar)

 End If

 End If

 Next I

Notice that several ElseIf clauses compare values of idx(I) with SCALE_POWER

or –SCALE_POWER. These values represent the scaled-up values of 1 and –1,

respectively.

The last aspect I want to draw your attention to is the coded trick where I simulate

nested loops using just one For loop:

' Start implementing the quasi–nested loops

idx(1) = idx(1) + iStep(1)

If idx(1) > iTo(1) Then

 idx(1) = iFrom(1)

 For I = 2 To N

 idx(I) = idx(I) + iStep(I)

 If idx(I) > iTo(I) And I < N Then

 idx(I) = iFrom(I)

 ElseIf idx(I) > iTo(I) And I = N Then

 Exit Do

 Else

 Exit For

 End If

 Next I

 End If

Clement 2 35

Copyright © 2021 Namir Clement Shammas Version 1.0.0

The nested loop uses the arrays idx(), iFrom(), iTo(), and iStep() in a scheme that

resembles a logical ticking clock. The array element idx(i) simulates the current loop

control variable for variable i. You initialize the values of idx(i) with the

corresponding values of iFrom(i). The Do Until loop that I showed earlier in this

subsection performs this initialization. Using this programming trick, the VBA code

can handle any number of terms (i.e., nested loops) in the regression model.

Fatal Runtime Errors

The VBA code checks numerous aspects of the data, variable names, and math

expressions. In addition, function Fx may still catch runtime errors. All these errors

cause the program execution to stop, because there is no sense in continuing

calculations that will yield wrong results. The VBA code speaks the error message

(when enabled) and displays it in a message box. The messages identified the error

and its source, in as much as possible. Check the following sources to determine the

cause of the fatal errors:

• The data in the Data sheet.

• The names of the regression variables in the Data, Models, and Normalization

worksheets.

• The math expressions (check the names of the quasi-variables) or single-

operator transformations in the Models sheet.

• The names of the transformation functions in the math expressions or in the

VBA code.

Customizing the Transformations with VBA and User-Defined Functions

The VBA code supports three types of transformations:

• The default transformations that apply different powers (and the natural

logarithm) to single regression variables.

• Simple multiplicative cross-products of two or more regression variables.

• Mathematical expressions for different terms that can use various operators,

parenthesis, and even functions. These expressions that allow the terms of

regression models to support more elaborate mathematical expressions such

as:

f1(X1)+f2(X2)/(f3(X3)+f4(X1)+f5(X2)

Where f1 through f5 are transformations of the different regression variables.

You can include VBA functions or user-defined functions in the math

Clement 2 36

Copyright © 2021 Namir Clement Shammas Version 1.0.0

expressions. Keep in mind that each model generated will have these

functions as part of the terms the are associated with.

Using Term Math Expressions

Earlier in this paper I mentioned that simple cross-product terms can be defined

using text like '=A8*A9 in a TME cell. This is really the tip of the iceberg. You can

write more elaborate math expressions that use math operators, parentheses, and

even functions to create more sophisticated expressions for regression terms. This is

really stepping on the proverbial gas! Keep in mind that using functions and explicit

operators (like raising to a specific power or adding a fixed value) in a math

expression applies to each and every regression term created with that math

expression. It is what I call fixed transformations.

The switch QUASI_VAR_FIRST_CHAR contains the first character(s) in the

names of quasi-variables used in math expressions. The constant has the default

value of “A”. I chose that value because the names of the regression variables in

sheet Models appear in column A. I recommend you keep the default assignment,

unless you are getting conflicts with your custom function names that end with “A”

or “a” and are followed by one or more digits. In this case, you have one of two

general solutions:

• You can replace the letter A with another letter that will not reproduce the

above problems. Letters like Z or V are good general candidates for the first

letters in quasi-variable names. You are the ultimate judge in deciding what

works for you. When you assign a new character to switch

QUASI_VAR_FIRST_CHAR remember to change the quasi-variable names

in the math expressions to match the new leading character. Your math

expressions would look like '=V14*V15*V16 or '=Z14*Z15*Z16.

• You can select appending a punctuation character like % or # to the letter A

and ending up with A% or A# as the leading characters of quasi-variable

names. You then edit switch QUASI_VAR_FIRST_CHAR and assign

something like “A%” or “A#” to it. When you assign new characters to switch

QUASI_VAR_FIRST_CHAR remember to change the quasi-variable names

in the math expressions to match the new leading characters. Your math

expressions would look like '=A%14*A%15*A%16 or '=A#14*A#15*A#16.

• You can combine both of the above solutions. Your math expressions would

look like '=Z%14*Z%15*Z%16 or '=V#14*V#15*V#16.

Clement 2 37

Copyright © 2021 Namir Clement Shammas Version 1.0.0

When you work with any quasi-variables An think of it as “a variable with any of its

transformations” and not just a variable. In other words, a quasi-variable is defined

by two attributes. Also think of An as a unique pointer to a regression variable in the

Models sheet. The regression variable in each row of the sheet Model can have its

own transformation range and increment, even when multiple rows in sheet Models

can refer to the same regression variable.

 You can use Excel functions and your own custom functions in math expressions.

These functions will appear in their associated term in every regression model. When

using Excel functions that are not explicitly part of the VBA math function library,

like Sinh(x), you will need to write a wrapper function in a module, such as:

Function Sinh(Byval X as Double) As Double

 Sinh = Worksheetfunction.Sinh(x)

End Function

Likewise, to use your custom function, such as MyFx1(x), you define that function

in a module:

Function MyFx1(Byval X as Double) As Double

 MyFx1 = Exp(x)-3*x^2

End Function

You can then include the names of these functions in your math expressions. Unlike

the other two versions of the Excel application in the Clement 2 project, I do not

support associating custom functions with iterative search for the best model. I don’t

see how introducing functions like sine, cosine, sinh, tanh, and so on, helps transition

the various terms through a smooth and gradual curvature. I feel using such functions

would be more of a roller coaster experience—one that can be highly vulnerable to

errors in the data.

Using term math expressions gives you a lot of power that you should be use very

carefully to avoid runtime errors. You cannot use the math expression

transformations with the dependent variable term. Figure 12 shows various examples

of what you can do with term math expressions. Keep in mind that these expressions

work on the various power transformations and custom functions for the different

regression variables. What Figure 12 shows is just the tip of the iceberg. You can

get creative with the sophistication of the math expressions. Expect the calculations

process to take a considerable amount of time. However, you may stumble on

relevant expressions that describe relations between variables that are far from being

Clement 2 38

Copyright © 2021 Namir Clement Shammas Version 1.0.0

obvious or theoretically based. And that, my dear reader, is where this VBA

application shines! That is the power of brute force search for empirical regression

models.

Math Expression Example Appears

in Row

Covers

Last Row

Comments

'=A8*A9 8 9 Simple multiplicative cross products

for the transformations of the

variables named in cells A8 and A9.
'=A8*A9*A10 8 10 Multiplicative cross products for the

transformations of the three

variables named in cells A8, A9 and

A10.
'=(A8)^(A9) 8 9 Raises the value of transformed

variable named in cell A8 to the

variable named in cells A9. Notice

that I have enclosed each quasi-

variable in pairs of parentheses to

ensure that VBA correctly evaluates

the expression.
'=LN((A2+1)^(A3)) 2 3 Calculates the natural logarithm of

the result of raising the value of

transformed variable named in cell

A8, plus one, to the variable named

in cells A9. Notice that I have

enclosed each quasi-variable in pairs

of parentheses to ensure that VBA

correctly evaluates the expression.
'=(A8*A10)+A9|10 8 10 Expression to multiply the

transformations of the variables

named in cells A8 and A10 and then

add the results to the

transformations of the variable

named in cell A9.
'=(A8+A9)*(A10+A11) 8 11 Expression to multiply the results of

adding the transformations of the

variables named in cells A8 and A9

with the results of adding the

transformations of the variables

named in cells A10 and A11.
'=(A8+A9)/(A10+A11) 8 11 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9

by the results of adding the

Clement 2 39

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Math Expression Example Appears

in Row

Covers

Last Row

Comments

transformations of the variables

named in cells A10 and A11.
'=(A8+A9)/(A12+A11)*A10|12 8 12 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9

by the results of adding the

transformations of the variables

named in cells A12 and A11, and

then multiplying by the variable

named in cell A10.
'=LN((A8*A11)+(A10*A9))|11 8 11 Expression to takes the natural

logarithm of adding the results of

multiplying the transformations of the

variables named in cells A8 and A11

with the results of multiplying the

transformations of the variables named

in cells A10 and A9. The use of the

natural logarithm is consistent for all

the terms created with that math

expression.
'=((A8*A9)+(A10*A11))/

((A12*A15)+(A14*A13)|15
8 15 Expression for the ratio of the products

of two sums of variables whose names

appear in cells A8 through A15.
'=SQRT(A8)+SQRT(A9) 8 9 Expression for the sum of the square

roots of the regression variables named

in cells A8 and A9. The use of the

square roots is consistent for all the

terms created with that math

expression.
'=(A8+A9)/LN((A10+A11)^2+1) 8 11 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9 by

the results of the natural logarithm of

squared sum of the transformations of

the variables named in cells A10 and

A11 plus 1. The use of the natural

logarithm, the explicit squaring

operator, and the addition of 1 is

consistent for all the terms created

with that math expression.
'=(A8+A9)/SQRT((A10+A11)^2+1) 8 11 Expression to divide the results of

adding the transformations of the

variables named in cells A8 and A9 by

the results of the square root of the sum

of the transformations of the variables

named in cells A10 and A11. The use

of the square root, the explicit

Clement 2 40

Copyright © 2021 Namir Clement Shammas Version 1.0.0

Math Expression Example Appears

in Row

Covers

Last Row

Comments

squaring operator, and the addition

of 1 is consistent for all the terms

created with that math expression.

Figure 12. Various examples of math expressions that can be used in the Models

sheet.

Clement 2 41

Copyright © 2021 Namir Clement Shammas Version 1.0.0



 The math expression transformation is a powerful transformation feature.

With power comes responsibility. Plan very carefully the value you enter

in the TME cells. I strongly recommend you separately run subroutine

BuildSuperRegressionModels and examine the output in the ModelsList

sheet. Edit the math expressions in the TME cells until you get correct terms

in the ModelsList sheet. Once you get correct models, you can then perform

the regression calculations

The subroutine BuildSuperRegressionModels performs the following basic checks

for each math expression in column E of the Models sheet:

• The subroutine examines the number of open and close parentheses and also

the order of their appearance.

• The subroutine checks for invalid quasi-variable indices.

• The subroutine checks for invalid high row limits if the math expression uses

a trailing bar character followed by a number that should represent the high

row limit for the math expression.

• The subroutine checks for duplicate quasi-variables sharing the same index.

• The subroutine checks for bare quasi-variable names (with no numbers) in the

math expression, such as ')A(', ')A+', 'A12A*', 'AA*', '*A+', and so on. The

subroutine will do its earnest to catch common errors related to invalid quasi-

variable names. The subroutine may well miss more complex errors. As a

result, the subroutine BuildSuperRegressionModels will proceed with

building a list of incorrect models! The function Fx is the software component

that will champion catching incorrect model errors, declaring them as fatal

runtime errors and stopping program execution.

If the subroutine BuildSuperRegressionModels finds any error, it will speak (when

enabled) and display a fatal error message. Keep in mind that the subroutine’s tests

are very basic and serve to catch trivial errors. The information in the TME cells of

the Models sheet can still generate runtime or logical error-prone expressions.

Epilogue

Using this optimum search version of the Excel application may require several runs.

You can experiment with the size of the step values and the initial ranges of the

Clement 2 42

Copyright © 2021 Namir Clement Shammas Version 1.0.0

transformations. I found that it is possible to get more than one good regression

model when using different initial ranges for the transformations.

You can use three-point ranges (my recommendation) or five-point ranges. Use the

latter when your models involve relatively fewer regression variables.

Appendix A – Source of Math-Related Runtime Errors
The next table summarizes the various kinds of math-related runtime errors.

Case Arguments Comments

LN function used in math

expressions.

Negative or zero values. Generate errors in all

cases.

LN function used in math

expressions.

1 When divided by LN(1)

you get division by zero

error.

LN function due to 0

transformation

Negative or zero values. Generate errors in all

cases.

LN function due to 0

transformation

1 When divided by LN(1)

you get division by zero

error.

Powers Raising negative numbers

to negative powers.

Document History
Version Release Date Comments

1.0.0 June 17, 2021 Initial release.

