
Console Programmable RPN Calculator 1

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Console Programmable RPN Calculator
CPRCA

By

Namir Clement Shammas

Contents
Dedication ... 14

Introduction .. 15

Basic Modes of Operations ... 15

RPN Calculator Mode .. 15

File Query Mode ... 16

Program View and Edit Mode ... 16

Program Execution Mode ... 17

Display Formatting .. 19

Types of Memory Registers .. 20

Floating–Point and Integer Values .. 20

The Stack ... 20

The Alpha Register .. 20

The Statistical Registers .. 21

The Main Memory Registers Pool ... 22

Filling Memory Registers with Values ... 22

Loop Control HP–41C Style ... 23

The New and Extended Loop Control Commands .. 23

A For–Like Loop Control .. 24

Searching and Sorting Memory Registers ... 26

The Logical Flags ... 27

Named Individual Variables .. 28

Named Individual Registers That Store Text... 28

Array Variables .. 28

Local Memory Registers for Subroutines .. 32

Statistical Regression Calculations .. 33

Console Programmable RPN Calculator 2

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Using the Statistical Registers ... 33

Using the READDATA Commands ... 33

Probability and Cumulative Distribution Functions .. 34

File I/O Support ... 34

Program Flow Control ... 35

Extended Logical Testing... 36

Solve and Integrate ... 37

Scanning a function for Roots, Minima, and Maxima .. 40

Best Linear and Multiple Regression Models ... 40

The DATA Statement is Back! ... 42

Comments in Source Code .. 44

Swapping Between Any Two Stack Registers ... 44

It’s About Time! .. 45

Basic Functions .. 47

+, –, *, /, ^ ... 48

–>HMS ... 48

1/X ... 48

ABS .. 48

ASIN, ACOS, ATAN ... 48

ASIND, ACOSD, ATAND.. 48

ASINH, ACOSH, ATANH ... 48

BESSELJ0, BESSELJ1, BESSELJN, BESSELY0, BESSELY1, BESSELYN. .. 48

BETA .. 48

CHEBYSHEV, HERMITE, LEGENDRE, LAGUERRE .. 48

CHI_CDF and CHI_ICDF ... 49

CHI_PDF... 49

CHS .. 49

CI ... 49

CIINTERCEPT .. 50

CIMEANX, CIMEANY .. 50

CIR ... 51

Console Programmable RPN Calculator 3

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

CIR2, CIRSQR ... 52

CISDEVX, CISDEVY ... 52

CISLOPE ... 53

CIYHAT, CIYHATFIT .. 54

CLEARSIGMA ... 56

CLRDSP .. 56

CLREG .. 56

CLREGX, CLREGY, CLREGZ, CLREGT ... 56

CLST, CLSTK, CLRSTK .. 56

COMB, PERM ... 56

COPYRIGHT .. 56

COPYSTACK ... 56

COV ... 56

D–>R .. 56

DSP .. 56

DSP? .. 56

ENTER .. 57

ERF, ERFC ... 57

EULER .. 57

EXP, 10^ .. 57

EXPOINTEG .. 57

F_CDF and F_ICDF ... 57

F_PDF .. 58

FACT .. 58

FIB.. 58

FIX .. 58

FLIP .. 58

FRC, FRAC .. 58

GAMMA... 58

GETDATE ... 58

GETHR, GETMIN, GETSEC .. 58

Console Programmable RPN Calculator 4

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

GETMAXMEM.. 58

GETNOW ... 59

GETTIME .. 59

GETYEAR, GETMONTH, GETDAY ... 59

HMS– ... 59

HMS+ ... 59

HMS–> ... 59

IERF, IERFC... 59

IFACT ... 59

IGAMMA.. 59

IICGAMMA .. 60

INT ... 60

LASTX, LASTY, LASTZ, LASTT .. 60

LN, LOG.. 60

LNFACT .. 60

LNGAMMA .. 60

LRXY ... 60

MEAN .. 61

MEANSDEV .. 61

MEMCOPY ... 61

MEMSWAP .. 61

MFILL ... 62

MFILLINTRND .. 62

MFILLNORMRND ... 62

MFILLRND .. 62

MFILLSEQ .. 63

MOD .. 63

NEXTPRIME, PREVPRIME .. 63

P–>R .. 63

PI ... 63

Q_CDF and Q_ICDF ... 64

Console Programmable RPN Calculator 5

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Q_PDF, Q_STD ... 64

R–>D .. 64

R–>P .. 64

RAND ... 64

RANDNORM .. 64

RCL, RCL+, RCL–, RCL*, RCL/ ... 65

RCLIND, RCLIND+, RCLIND–, RCLIND*, RCLIND/ ... 65

RCLSTX, RCLSTY, RCLSTZ, RCLSTT. ... 65

RCLSTINDX, RCLSTINDY, RCLSTINDZ, RCLSTINDT. ... 65

RDN ... 65

RUP .. 65

SCALE ... 66

SCALE41... 66

SCI.. 66

SDEV .. 67

SHOWSTK .. 67

SI .. 67

SIGMA–, S– .. 67

SIGMA+, S+ .. 67

SIGMA++, S++ .. 68

SIGN ... 68

SIN, COS, TAN .. 68

SIND, COSD, TAND .. 68

SINH, COSH, TANH .. 68

SQRT .. 68

STO, STO+, STO–, STO*, STO/ ... 68

STOIND, STOIND+, STOIND–, STOIND*, STOIND/ ... 69

STOSTX, STOSTY, STOSTZ, and STOSTT ... 69

STOSTINDX, STOSTINDY, STOSTINDZ, and STOSTINDT ... 69

SUMNEGPWR .. 69

SUMNEGPWRTOL .. 70

Console Programmable RPN Calculator 6

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

SUMPWR ... 70

SUMPWRTOL ... 71

SUMX, SUMX2, SUMY, SUMY2, SUMXY, SUMN ... 71

T_CDF and T_ICDF ... 71

T_PDF .. 72

VERSION .. 72

X^2 .. 72

X<>nnn, Y<>nnn, Z<>nnn, T<>nnn .. 72

X<>Y, X<>Z, X<> Z, Y<>Z, Y<>T, Z<>T ... 72

XHAT .. 73

Y^X... 73

YHAT .. 73

ZETA .. 74

ZETA2 .. 74

Programming and Advanced Functions .. 74

' (single quote) ... 75

" (double quote) ... 75

|– (bar and dash/minus characters) ... 75

+RIDX, +SIDX.. 75

ADDDT ... 75

AINPUT .. 76

ARCL .. 76

ARCL– .. 76

ARCL+ .. 76

ARCLIX, ARCLIY, ARCLIZ, ARCLIT .. 76

ARCLS– .. 76

ARCLS+ .. 76

ARCLX, ARCLY, ARCLZ, ARCLT .. 77

ARCOPY ... 78

ARDEL .. 79

ARFILLINTRND ... 79

Console Programmable RPN Calculator 7

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

ARFILLNORMRND .. 79

ARFILLRND ... 79

ARFILLSEQ ... 80

ARGETSIZE ... 80

ARNEW .. 80

ARNEWINTRND ... 81

ARNEWNORMINTRND .. 81

ARNEWNORMRND .. 82

ARNEWRND ... 82

ARNEWSEQ ... 83

ARRESET .. 83

ARSWAP .. 83

ARVAR2MEM .. 84

ASTO .. 84

ATOX.. 84

AVIEW ... 84

AVIEW2 ... 84

BESTLR ... 85

BESTLRPWRS ... 87

BESTMLR ... 88

BESTMLRPWRS .. 90

BINSEARCHA.. 91

CLA .. 93

CLRFLGS ... 93

CSEARCH ... 94

CSEARCHA ... 96

DATAM .. 98

DATAR ... 98

DATAS .. 98

DIFFDT ... 99

DRCL .. 99

Console Programmable RPN Calculator 8

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

DSE, DSEIND .. 99

DSE41, DSEIND41 .. 99

DSL, DSLIND ... 100

DSL41, DSLIND41... 100

DSP? .. 100

DSTO .. 100

DVIEW ... 100

END.. 100

EXISTALPHAVAR .. 100

EXISTARRNAME ... 101

FILTER .. 101

FOR .. 102

FORCL .. 103

FORSET .. 103

FRMT ... 103

FS? IND, FS?C IND, FS?S IND, FS?FLIP IND, FC? IND, FC?C IND, FC?S IND, FC?FLIP IND 104

FS?, FS?C, FS?S, FS?FLIP, FC?, FC?C, FC?S, FC?FLIP ... 104

GAUSSCHEBQUAD (VER 1) .. 105

GAUSSCHEBQUAD (VER 2) .. 106

GAUSSHERQUAD (VER 1)... 107

GAUSSHERQUAD (VER 2)... 108

GAUSSKRONQUAD (VER 1) .. 109

GAUSSKRONQUAD (VER 2) .. 109

GAUSSKRONQUAD2 (VER 1) .. 109

GAUSSKRONQUAD2 (VER 2) .. 110

GAUSSLAGQUAD (VER 1)... 110

GAUSSLAGQUAD (VER 2)... 111

GAUSSLEGQUAD (VER 1)... 112

GAUSSLEGQUAD (VER 2)... 113

GETRIDX, GETSIDX ... 114

GETSTAT .. 114

Console Programmable RPN Calculator 9

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

GFTEST?, GFTEST?C, GFTEST?S, GFTEST?FLIP ... 115

GSB, GSBIND.. 115

GTO, GTOIND .. 116

HSEARCH ... 117

HSEARCHA ... 119

INTEG (version 1) .. 121

INTEG (version 2) .. 121

IS_BETWEEN .. 121

IS_OUTSIDE ... 122

IS_WITHIN ... 122

IS_WITHOUT.. 122

ISEVEN ... 122

ISG, ISGIND .. 122

ISODD .. 123

ISPRIME ... 123

IX–>A, IY–>A, IZ–>A, IT–>A .. 123

JUMP ... 123

JUMPIND ... 123

JUMPX, JUMPY, JUMPZ, and JUMPT ... 123

LASTPOS .. 124

LBL ... 124

LCASE ... 124

LEFT ... 124

LOGXLR and LOGYLR ... 124

LR ... 125

LRCL, LRCL+, LRCL–, LRCL*, LRCL/ ... 125

LSTO, LSTO+, LSTO–, LSTO*, ARTSO/ .. 126

MEM2ARVAR .. 126

MERGESTAT .. 126

MID .. 127

MLR ... 127

Console Programmable RPN Calculator 10

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

MSEARCH .. 128

MSEARCHA .. 129

NORMDATA2 ... 131

NORMDATA3 ... 133

NOSTACK ... 135

ONERRGOTO ... 135

ONERROFF ... 135

ONERRRESUME ... 135

POS .. 135

POWERLR .. 135

POWERMLR ... 136

PROMPT .. 136

PRTSTK .. 137

PRTX, PRTY, PRTZ, PRTT .. 139

PSE ... 139

QUADFIT .. 139

RCLFLGS ... 140

READ1VAR, READ2VARS, READ3VARS, READ4VARS ... 140

READDATA2... 140

READDATA3... 141

READMEM ... 142

READNVARS .. 142

REM, !, @, #, $, % .. 143

REPLACE .. 143

RESIZE .. 143

REV .. 143

RIDX .. 143

RIGHT .. 143

RRC+, RRC–, RRC$... 144

RRCL, RRCL+, RRCL–, RRCL*, RRCL/ ... 144

RST+, RST–, RST$... 145

Console Programmable RPN Calculator 11

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

RSTO, RSTO+, RSTO–, RSTO*, RTSO/ .. 145

SAVESTAT .. 146

SCAN .. 146

SEARCH .. 147

SEARCHA ... 149

SIDX .. 151

SIGMA+T, S+T .. 151

SOLVE (version 1) .. 152

SOLVE (version 2) .. 153

SOLVEBIN (version 1) .. 154

SOLVEBIN (version 2) .. 155

SOLVEHAL (version 1).. 156

Finds the root of ex-3x2 near x=4, using a tolerance of 1e-7 and a maximum of 100

iterations. .. 156

SOLVEHAL (version 2).. 157

SORTA .. 158

SORTARA ... 158

SORTARD ... 158

SORTD ... 159

–STK– ... 159

STOFLGS .. 159

STOP and R/S... 159

SWAPCASE... 159

T?=nn, T?<>nn, T?!=nn, T?>nn, T?>=nn, T?<nn, T?>nn, T?<=nn .. 160

TRIM .. 160

UCASE .. 160

VCA+, VCA–, VCA*, VCA/ .. 161

VCAFX .. 162

VCAS+, VCAS–, VCASA–, VCAS*, VCAS/, VCASA/ .. 163

VIEWDT ... 164

VIEWMEM ... 164

Console Programmable RPN Calculator 12

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

VIEWREGS ... 164

VIEWSTK .. 164

VIEWVAR ... 164

VIEWX, VIEWY, VIEWZ, VIEWT .. 164

VRCL, VRCL+, VRCL–, VRCL*, VRCL/ .. 164

VSTO, VSTO+, VSTO–, VSTO*, VSTO/ .. 164

WRITE1VAR, WRITE2VARS, WRITE3VARS, WRITE4VARS .. 165

WRITEMEM ... 165

WRITENVARS ... 165

–X– .. 165

X?=nn, X?<>nn, X?!=nn, X?>nn, X?>=nn, X?<nn, X?>nn, X?<=nn 166

X=0?, X<>0?, X!=0?, X>0?, X>=0?, X<0?, X<=0? ... 166

X=0?n, X<>0?n, X!=0?n, X>0?n, X>=0?n, X<0?n, X<=0?n ... 166

X=Y?, X<>Y?, X!=Y?, X>Y?, X>=Y?, X<Y?, X<=Y? .. 166

X=Y?n, X<>Y?n, X!=Y?n, X>Y?n, X>=Y?n, X<Y?n, X<=Y?n ... 166

X–>A, Y–>A, Z–>A, T–>A .. 166

XEQ .. 167

Y?=nn, Y?<>nn, Y?!=nn, Y?>nn, Y?>=nn, Y?<nn, Y?>nn, Y?<=nn .. 167

Z?=nn, Z?<>nn, Z?!=nn, Z?>nn, Z?>=nn, Z?<nn, Z?>nn, Z?<=nn... 167

Sample Programs .. 167

Sum of Reciprocal Power .. 167

Simple Integral of 1/X ... 168

Simple Integral of 1/X Take Two ... 170

Newton’s Method ... 171

Bisection Method .. 173

Program with Duplicate Labels ... 174

Simple Linear Regression Program ... 175

Power Fit Program for Two Variables ... 176

Multiple Linear Regression Program .. 177

Simple Linear Regression Program, Take 2 ... 178

Using The SOLVE Command .. 179

Console Programmable RPN Calculator 13

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Using The INTEG Command .. 180

Best Linearized Regression Model .. 181

Best Multiple Linearized Regression Model ... 182

Using Local Variables .. 184

Using Local Variables, Take 2 .. 186

Recursive Calls... 187

Formatted Output ... 189

Efficient Access of Array Variable Elements ... 190

Adding Time Units ... 192

Subtracting Date/Time Units .. 194

Scanning a Function .. 196

Gauss-Kronrod Quadrature .. 197

Appendix A .. 198

Appendix B .. 199

Appendix C .. 199

Final Remarks .. 200

Document Release and Updates History .. 201

Console Programmable RPN Calculator 14

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Dedication

To my son Joey who is my pride and joy!

To my beloved wife Sherry. What an awesome lady!

To my beloved grandchildren, Tyler, Oshby, Owen, and Gracie

Console Programmable RPN Calculator 15

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Introduction
This technical presentation discusses the operations and features of a console programmable

RPN calculator application. I wrote it in Visual Basic 2015 Community Edition. I call it CPRCA for

short. These initials should not be confused with the existing disease Constitutional Pure Red

Cell Aplasia! I often refer to CPRCA application as simply, the application. The core of the CPRCA

is based on the HP–41C calculator. I have added many new features, enhanced many existing

ones, and left out a few HP–41C functions and commands. Due to time limitation, this

document is relatively brief. I hope that I am providing you with enough information and

sample programs to make it worth tinkering with.

I have put a lot of work and my best effort in creating the CPRCA application. However, I make

no warranties explicit or implied about the fitness of the work. This application is developed for

programming fun. You are using the CPRCA application at your own risk. I am not responsible

for any damages that may result from using the CPRCA application.

Basic Modes of Operations
The application runs as a console program with text menus typical of legacy DOS programs. The

application displays a main menu with a numbered option list. You can exit the program by

choosing option 0 or select one of the operations that appear in the next subsections.

RPN Calculator Mode
In the RPN calculator mode you enter an RPN expression on a single line and press the Enter

key. The application remains in calculator mode until you just press Enter when prompted for

an RPN expression. Use the space character to delimit the terms in an RPN expression. The

CPRCA application parses your RPN expression and evaluates it. The RPN expressions must be

void of labels, GTO commands, GSB commands, and any other program flow control

commands. You have a generous 10,000 memory registers to use. They are numbered 0 to

9999. It is worth pointing out that an RPN expression can, within the same session, use the

values stored in the stack and memory registers left by evaluating previous RPN expressions.

This feature allows you to break down the calculations of a long equation into parts. Here are a

few examples of RPN expressions:

1. 355 113 /

2. 4 3 2 1 + + +

3. Pi 2 * x^2

4. 355 113 / pi – pi / 1e9 *

5. 2 sqrt ln sto 0 x^2 rcl 0 + 5 –

6. Sto 0 sin x^2 rcl 0 cos x^2 +

7. Enter sin x^2 x<>y cos x^2 +

As with physical HP calculators, the CPRCA application replaces the arguments of a function,

found in the stack, with the value of the function.

Console Programmable RPN Calculator 16

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

 You enter a sequence of numbers in an RPN expression by simply separating each

two numbers with a space. This space replaces using the ENTER key, between

two numbers, in physical HP RPN calculators. Only use the ENTER command to

push the number in the X register up into the other stack registers. Using a

sequence of three ENTER commands fills the four–register stack with the same

number.

File Query Mode
The CPRCA application does not include an IDE (that would be another project all by itself) or an

editor to enter the source code for your programs. You need to key in your source code

separately, as text, using your favorite text editor. The program files can have any extension. I

use .txt and that works fine for me. Using file extensions like .41, .hp41, .cprca, .con41, and the

like, is just fine. In case you don’t remember the names of the program files, you can ask the

application for help. Select option 2 from the main menu to ask the application for help in

viewing existing files. The application prompts you to enter the search path (or just press Enter

if you want to search in the application’s current directory) and a single file extension. The

program displays the matching files in batches of ten files. Since this option does not use a GUI

File Open dialog box, you will need to know the full path of the source code programs,

especially in case they are stored in a directory that differs from the executable files of the

CPRCA application. To avoid typing long directory names you can visit the target directory, copy

its full path, and then paste that it in the console application in response to the prompt for a

path. This is a method that is easy and free of typos.

Program View and Edit Mode
The CPRCA allows you to view program source code and edit its lines using Windows Notepad

text editor. The application provides a menu option for this purpose, prompting you to enter

the filename you want to access. The input must include the full path if the file is not located in

the same folder with the CPRCA’s executable files. If the filename you specify has a .txt

extension, you can omit that extension. With the correct filename supplied to the application, it

invokes Notepad, in normal view mode, with the target file in view. You can then view the

program’s code, search for text, edit, and replace text.

It is worth pointing out that after you have successfully executed a CPRCA program, the

application adds a special menu option. This option allows you to view and edit the file that you

ran without having to re-enter its name. You can repeatedly view, edit, save, and rerun the

program file.

Console Programmable RPN Calculator 17

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Program Execution Mode
The CPRCA application run program files that are text files with no line numbers. Each program

line contains one command, a single number, data text, or a comment. In the program

execution mode, the application prompts you to enter a program file name to execute. This

input requires a full path for the file, if it is not located in the same folder as the application’s

executable files. If your program has the .txt file extension, you need not enter it. If this

operation is successful, the program loads in memory. The application prompts you to select

from the following options:

1. Simply press the Enter key to start executing the application at the first line.

2. Enter the question mark (?) to ask the application to display a list of program labels. You

can then select the label to execute by enter the label’s number in the list.

3. Type in the exclamation character (!) to skip program execution and return to the main

prompt.

If you have successfully loaded a program, the application will add an additional menu option

that allows you to reload and run the last program.

Console Programmable RPN Calculator 18

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 1. Sample calculator mode session with the Console RPN Calculator application.

Figure 2. Sample program mode session with the Console RPN Calculator application.

Figure 1 shows a sample session that uses the calculator mode. In this mode we calculate the

arc sine, in degrees, of 1/√2, which is 45 degrees. The RPN expression that obtains this result is

“2 sqrt 1/x asind”.

Console Programmable RPN Calculator 19

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 2 shows a session that executes the program alpha1.txt (which calculates the integral of

1/X from X=1 to X=2) and uses the question mark to display the program’s labels. The session

shows the selection of the third label, START, as a program execution starting point. This

feature works like using the buttons A to J on the HP–41C calculator (in User mode). You can

select to trigger specific parts of your program that starts with an LBL and ends with a RTN. In

other words, using this feature does not limit the loaded programs from always starting at the

first program line. The application displays the contents of all four stack registers when it ends

execution. This approach permits you to view multiple results that your program can

conveniently place in the stack. To suppress displaying the stack at the end of the program

include the command NOSTACK in your program.

 The names of commands, labels, and variables are case insensitive in the console RPN

calculator. Thus, for example, Lbl Start, lbl start, LBL start, Lbl STart, and LBL START all

represent the same label declaration. Likewise, the commands, Vsto Xarr. vsto xarr,

and VSTO XARR, all store the value of the X register in the same variable, XARR.

The application makes a reasonable effort to detect run–time errors and report them. Your

program can use error–handling statements that allow you to:

 Turn on error handling, using ONERRGOTO, and specify a label that acts as an error

handler.

 Request to ignore the run–time error, using ONERRRESUME, and execute the next

program line.

 Turn off an error–handling mechanism, set by the above two options, using ONERROFF.

The above mechanism for error handling is inspired by Excel VBA error handling. It does not use

special flags as does the HP–41C.

Display Formatting
The application supports different display formats. Appendix A lists the display formats that

work with the application. The display formats are based on Visual Basic .Net formats, since the

application is written in that programming language. Unfortunately, Visual Basic does not

support engineering notation. The DSP command allows you to specify and use a display format

listed in Appendix A. The Fn and En formats display numbers in fixed and scientific notations

using n decimal places. The commands FIX n and SCI n are shortcut commands to set the display

to a fixed or scientific mode with n number of decimal places. The commands Xn and Dn display

n integers of the integer values in hexadecimal and integer formats, respectively. If the value of

n exceeds the number of digits, the application displays leading zeros. The application prefixes

hexadecimal integers with the letter x, such as x11. This prefix is very useful for displaying

Console Programmable RPN Calculator 20

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

hexadecimal integers that lack the hexadecimal digits A to F, since they can easily be mistaken

for decimal integers. The command DSP? works both in programs and with RPN expressions. It

both cases, it displays the current format string. In programming mode, it also copies the

display format to the Alpha register. The command CLRDSP turns off the display format and

causes the output to appear unformatted.

Types of Memory Registers
The application supports a wealth of different registers and arrays that well extend beyond the

capacity of vintage programmable HP calculators. The next subsections discuss the various

types of registers and memory storage.

Floating–Point and Integer Values
Since the application handles integers and real numbers, I need to point out the range of

floating–point numbers. The CPRCA application does not support complex numbers. The

application supports double–precision floating–point numbers. Since the application is written

in Visual Basic 2015 it supports the ranges of the Double type in that language. This type ranges

in values from 4.94065645841246544E–324 through 1.79769313486231570E+308 for positive

values. Negative values range from –1.79769313486231570E+308 through –

4.94065645841246544E–324. Entering numbers, in the calculator and program modes, that lie

outside these ranges yield zero values! Dividing small positive numbers that result in values

below 4.94065645841246544E–324 end up being zero. A similar statement is true for small

negative numbers. Regarding integers, the application uses them mostly as indices for memory

registers. It takes the integer part of a number in a stack register. As such you will certainly be

within the supported range of the Visual Basic Integer type which is –2,147,483,648 through

2,147,483,647.

The Stack
As expected, the RPN application has a legacy 4–register stack with a full set of backup stack

registers. The CPRCA application supports the ability to store and recall values in various stack

registers. The application also supports register arithmetic with and without indirect addressing

for the stack registers storage commands. The CPRCA application also offers commands to

swap between any two stack registers, and not just the X and Y registers. The application backs

up the entire stack when performing calculations. Consequently, you can recall the last X, Y, Z,

and T registers using the LastX, LastY, LastZ, and LastT commands, respectively. You can display

any and all stack registers using an output format. Consult Appendix A for the output formats.

The Alpha Register
Like the HP–41C, the application supports an Alpha register. This register can store a sizable

text. The text size is not as limited as the Alpha register in the HP–41C calculator. The

application allows you to store and recall text between the Alpha register and special named

registers that store text. The contents of the Alpha register (and its copies, stored in special text

variables) are case sensitive. The application also offers commands to manipulate the Alpha

register as follows:

Console Programmable RPN Calculator 21

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

1. Replace the Alpha register with leading, trailing, and middle characters.

2. Trim leading and trailing spaces in the Alpha register.

3. Convert the text in the Alpha register to either lowercase or uppercase.

4. Toggle the character case for the text in the Alpha register.

5. Reverse the text in the Alpha register.

6. Search for the first or last occurrence of a substring in the Alpha register.

7. Replace characters in the Alpha register.

8. Filter out user-defined characters from the Alpha register.

The Statistical Registers
The CPRCA application supports a set of statistical registers, which are separate from any other

memory group. These registers keep track of the number of observations and the sum of X,

sum of X squared, sum of Y, sum of Y squared, and sum of X*Y. You can perform the following

operations with these registers:

 Clear the statistical registers.

 Add or subtract (X, Y) values in the statistical registers.

 Calculate the mean values for variables X and Y.

 Compute the standard deviations for variables X and Y.

 Calculate the covariance for the variables X and Y.

 Calculate the confidence intervals for the mean and standard deviation for the variables

X and Y.

 Calculate the slope, intercept, and coefficient of determination (R2) for the linear

regression model Y = intercept + slope * X. Of course you can transform the original

values of X and/or Y to perform a linearized regression.

 Compute projections of X onto Y and of Y onto X based on the most recent linear

regression calculations.

 Calculate the confidence intervals for the slope, intercept, coefficient of determination,

and the projections of X onto Y.

 Recall the values for the individual statistical summations using the following

commands:

o SUMN returns the number of observations.

o SUMX returns the sum of X values.

o SUMX2 returns the sum of X squared.

o SUMY returns the sum of Y values.

o SUMY2 returns the sum of Y squared.

o SUMXY returns the sum of X*Y.

 Write and read the statistical register to/from a text file. The commands SAVESTAT and

GETSTAT support these features. These features are only available in programs.

 Merge statistical registers’ values store in a file with those in memory. You can divide a

large set of data into small groups, get the statistics for the small groups first, then

Console Programmable RPN Calculator 22

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

merge the small groups into bigger ones and obtain the statistics for the bigger groups.

You can apply this scheme for two, three, or more layers of data, depending on the type

of research you are doing. The approach for using MERGESTAT, to manage a double

layer of data, follows the subsequent method:

o Divide your data into N small groups.

o For each small group i:

 Clear the statistical registers.

 Accumulate values of group I in the statistical registers using the

command S+.

 Perform statistical calculations and record the results.

 Save the values in the current statistical registers to a file using the

command SAVESTAT.

o Clear the statistical registers.

o Read the values for the statistical registers in group 1 using the command

GETSTAT.

o Merge the statistical registers’ data from groups 2 to N, using the command

MERGESTAT.

o Perform the calculations on the merged values and record the results.

o Compare the results of the statistical calculations for the N small groups with the

results of the large group.

The Main Memory Registers Pool
The application offers ten thousand (10,000) memory registers with indices in the range of 0 to

9999. You access these registers using STO nn and RCL nn. The application also supports register

arithmetic versions of the basic STO and RCL commands. In addition, you can use indirect

addressing in the STO and RCL sets of commands. Simply append the letters IND (in any

character case) to the STO and RCL commands. Register arithmetic is also available for the

STOIND and RCLIND commands. The application uses the absolute values of the memory

registers and indirect memory registers in all the STO, STOIND, RCL, and RCLIND commands.

The CPRCA application offers storage and recall commands between various data sources and

destinations. Consult appendices B and C for a summary of the basic STO and RCL commands.

Using these appendices will help you to correctly select the type of STO and RCL commands for

your programs.

Filling Memory Registers with Values

The application offers several MFILLxxx commands to fill a range of memory registers with

various kinds of values. All these command use a stack register to specify the range of memory

registers. The value that controls the range has the numeric format of aaaa.bbbbcc. This means

that you can specify both the range of registers to work with, and the number of registers in

that range to skip over. The MFILL command fills a range of memory register with a fixed value.

The MFILLSEQ command fills a range of memory registers with a sequence of values. This

sequence may contain increasing, decreasing, or even fixed values. These values can be integers

Console Programmable RPN Calculator 23

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

or floating-point numbers. The commands MFILLRND and MFILLINTRND fill a range of memory

registers with uniformly-distributed floating-point and integers, respectively. The command

MFILLNROMRND fills a range of memory registers with normally-distributed floating-point

values.

Loop Control HP–41C Style

The application supports the ISG41 and DSE41 loop controlling commands. They mimic the ISG

and DSE commands that first appeared in the HP–41C calculator. The ISG41 and DSE41 use the

three–integers and five–decimals index format, aaa.bbbcc. The ISG41 can loop from aaa (in the

range of 0 to 999) to and including bbb (in the range of 0 to 999) in increments of cc (with a

minimum of 1). The DSE41 decrements from aaa (which can have more than 3 digits) down to

bbb (between 0 and 999) in steps of cc. You are reminded that the DSE41 command has less

restriction in the range of values it handles than the ISG41.

The New and Extended Loop Control Commands

The application also supports the ISG and DSE loop controlling commands. They use the wider

memory register range of 0 to 9,999 and work with the four–integers and six–decimals format

aaaa.bbbbcc. They allow you to loop between aaaa and bbbb in increments/decrements of cc.

The ISG can loop from aaaa (in the range of 0 to 9999) to and including bbbb (in the range of 0

to 9999) in increments of cc (with a minimum of 1). The DSE decrements from aaaa (which can

have more than 4 digits) down to bbbb (between 0 and 9999) in steps of cc. Please keep this

difference in mind when programming with DSE and ISG. I also added the command DSL which

is Decrement and Skip If Less. This command allows a loop control register to count down from

a positive value until and including zero. This scheme makes the value of zero accessible, to the

loop control register, in a loop. The DSE command can access all of the memory registers from

9999 down to 1 in that order. By comparison, the DSL command can include 0 to the DSE’s

lower limit. I also added the DSL41 command that provides an HP–41C flavor of the DSL

command.

Console Programmable RPN Calculator 24

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

 Remember that the bbbb values in commands ISG, DSE, and DSL require AT LEAST

FOUR DECIMAL PLACES. As an HP-41C programmer you are used to dividing integer

limits for ISG and DSE by 1000. You must now divide them by 10000. The application

has a predefined constants called SCALE and SCALE41 that you can use. SCALE is

equal to 10,000. SCALE41 is equal to 1000. So, for example to loop within memory

registers 10 through 5000 using memory register 0 for indirect addressing, perform

the following steps:

10 LBL 0

5000 RCLIND 0

SCALE …

/ ISG 0

+ GTO 0

STO 0

The HP-41C style version of the above loop that accesses memory registers 10

through a smaller upper limit of 500 is:

10 LBL 0
500 RCLIND 0

SCALE41 …

/ ISG41 0

+ GTO 0
STO 0

A For–Like Loop Control

The application also supports a BASIC–like FOR loop control command. The BASIC FOR loop has

the following syntax:

FOR varI = initialValue TO finalValue STEP incValue

Where varI is the loop control variable which stores the initial value and its updates. The loop

iterates, by changing the value in the loop control variable, from the initialValue to the

finalValue in steps of incValue. If the latter value is positive, then the initialValue must be less

than or equal to the finalValue for the iterations to occur. Conversely, if the incValue is

negative, then the initialValue must be greater than or equal to the finalValue for the iterations

to occur. The initialValue, finalValue, and incValue are usually integers and can be floating

points. Here is an upward counting FOR loop in BASIC:

FOR I = 1 TO 100 STEP 2

Console Programmable RPN Calculator 25

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

The above loop initializes the loop control variable, I, with the value of 1. The loop iterates with

values of I progressing in the sequence, 1, 3, 5, 7, …, 97, and 99. The last iteration starts with

value in variable I becoming 101. Since it is greater than the final value of 100, the FOR loop

bypasses executing the statements in the loop. Program execution resumes after the end of the

FOR loop. Here is a downward–counting loop which is the counterpart of the one above:

FOR I = 100 TO 1 STEP –2

The above loop initializes the loop control variable, I, with the value of 100. The loop iterates

with values of I progressing in the sequence, 100, 98, 96, ..., 6, 4, and 2. The last iteration starts

with value in variable I becoming 0. Since it is less than the final value of 1, the FOR loop

bypasses executing the statements in the loop. Program execution resumes after the end of the

FOR loop.

The application offers the command FOR that uses a text variable as a loop control variable.

This variable contains the comma–delimited string images of the values for the initialvalue

(which become the currentValue after the first loop iteration), finalValue, and incValue. Each

time you use command FOR it performs the following tasks:

1. Obtain the values of the initialvalue, finalValue, and incValue from the text variable.

2. Increment/decrement the loop control variable by adding the incValue to the

initialValue/currentValue.

3. If the incValue is positive, the command checks if the updated initialValue/currentValue

is less than or equal to the finalValue. When this condition is true, the application

updates the text in the loop control variable and executes the next program line—

usually a GTO command. Otherwise, the application skips the next program line without

updating the text in the loop control variable.

4. If the incValue is negative, the command checks if the updated initialValue/currentValue

is greater than or equal to the finalValue. When this condition is true, the application

updates the text in the loop control variable and executes the next program line—

usually a GTO command. Otherwise, the application skips the next program line without

updating the text in the loop control variable.

Thus each loop alters the current value (which starts out as the initial value) while maintaining

the final and increment values. The application also offers the command FORCL to obtain the

current value of the loop control variable. The name of this variable is the argument of the

command FORCL. The CPRCA application also offers the command FORSET that allows you to

obtain the values for the initialValue, finalValue, and incValue from the stack and store them as

comma-delimited text in a string variable.

As an example of using the commands FOR and FORCL to control loop iteration, consider the

next program that adds the integers from 1 to 100, in increments of 1. To set up the loop

control variable we have 1 as the initial value, 100 as the final value, and 1 as the increment.

Console Programmable RPN Calculator 26

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

This means that the loop control variable, which I will call incVar, must be initialized with the

text “1,100,1” that I first place in the Alpha register using the following program lines:

'1,100,1
asto incVar

I can also use the command FORSET instead of the command ASTO to assemble the text in

variable incVal using the following code:

1

100

1

forset incVal

The example requires a loop that adds the integers from 1 to 100. Here is the semi–finished

code for that loop:

lbl start

'1,100,1

asto incVar

0

lbl 0

get the current value of the loop control variable

+

for incVar

gto 0

end

The comment inside the loop (between LBL 0 and GTO 0) states that the loop needs to access

the current value of the loop control variable incVar. The command FORCL incVar satisfies this

requirement. The complete code is:

lbl start

'1,100,1

asto incVar

0

lbl 0

forcl incVar

+

for incVar

gto 0

end

The FOR command is more powerful than the ISG, DSE, and DSL commands since it overcomes
the limitations of these commands. The initial, final, and increment values used with the FOR
command can be integers or floating point numbers and can be either positive or negative
numbers! You can also nest FOR commands.

Searching and Sorting Memory Registers

The CPRCA application offers the SORTA and SORTD commands that allow you to sort the

memory registers and search for values in them. The sort command allows you to treat some or

all of the memory registers as a virtual table or matrix. You define the number of rows and

Console Programmable RPN Calculator 27

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

columns for that virtual table, as well as the first memory register where it starts. You also

select the column in the virtual table whose values are used as key values in the sorting

process. The sort command copies the targeted memory registers to a local matrix, sorts the

elements of that matrix, then copies the matrix elements back to the source memory registers.

As for searches, the application offers the commands SEARCH, MSEARCH, CSEARCH, and

HSEARCH supports forward sequential, backward sequential, middle–first, forward circular,

backward circular, forward heuristic and backward heuristic searching. The latter two searches

allow you to move the matching element forward or backward, in support of optimistic or

pessimistic search schemes, respectively. The search commands (except the heuristic ones)

allow you to search for the first memory register that is equal to (or approximately equal to),

less than, or greater than a searched value.

The Logical Flags
Logical flags. The application supports 100 flags, indexed 0 to 99. You can set, clear, and test the

flags. The tests can be simple––testing if a flag is set or clear. You can also test a flag AND then

set it, clear it, or simply flip its state. The application also supports versions of the flag test

commands that use indirection. These command work with the values in the memory registers.

You can also store and recall all the flags into/from text variables. The program stores the flags

as strings of 1s and 0s. Examples for working with flags are:

1. SF 0

2. CF 1

3. FS? 0

4. FC? 4

5. FS?C 3

6. FS?S 2

7. FC?FLIP 0

8. FLIP 3

In addition to being able to test individual flags, the CPRCA application allows you to test a

group of contiguous flags for having any combination of set and clear states. The command

GFTEST? accepts an argument which is a string of 1s and 0s (such as 10011). The 0 stands for a

clear flag state and 1 stands for set flag state. This argument defines a logical pattern used in

comparing the states of the targeted flags. If the states match the logical equivalent of the

tested pattern, the test succeeds —the application executes the next program line. The

application also supports the commands GFTEST?C, GFTEST?S, and GFTEST?FLIP that will clear,

set, and toggle, respectively, the flags involved in the test IF the test succeeds. The integer part

of the X stack register provides the index of the first flag involved. The GFTEST?x commands

serve to save you from resorting to using somewhat convoluted code (filled with LBLs and

GTOs) to achieve the same purpose. My guess is that this new group flag test feature finds

application in testing two or three flags.

Console Programmable RPN Calculator 28

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Here is an example of the above group flag test feature. Suppose flags 0, 1, 2, 3, and 4 have the

states clear, set, set, set, and clear, respectively. The logical pattern is equivalent to the test

string of 01110. The command GFTEST? 01110 (with a zero in the X stack register) succeeds

since the string pattern 01110 matches the string equivalent of the logical states of the tested

flags. By contrast, commands such as GFTEST? 01010 and GFTEST? 01001 fail because their

patterns are not equivalent to 01110.

Named Individual Variables
The application dynamically creates named variables when you apply the VSTO. Using named

individual variables enhanced the readability of your source code. This is even more true when

read by others or when you read your code months or years later. The application also supports

register arithmetic with the VSTO and VRCL commands.

Named Individual Registers That Store Text
The application allows you to save and recall the contents of the Alpha register. The XEQ

stringVarName command allows you to evaluate an RPN expression stored in a named string

variable. All by itself, the XEQ command evaluates an RPN expression stored in the Alpha

register. This feature supports a dynamic user–defined function that you can enter and execute

at runtime as a simple subroutine.

Array Variables
The CPRCA application supports numerical arrays that are accessed using names. The array

variables bring with them much power and many features. The next subsections discuss the

various aspects of array variables.

Basic Access

The application requires that your program create each individual array variable by specifying

its name and number of elements. The RSTO and RRCL commands allow you to access elements

of the array variables by specifying the array name, index, and stored value (in the case of the

RSTO set of commands). Attempting to store a value beyond the current array size expands the

array size to accommodate the stored value. The application supports commands that include

register arithmetic with RSTO and the RRCL commands.

Creating Array variables

The application offers you these options to create new arrays:

1. The ARNEW command creates new array variables. All of the elements of the new array

are set to zero.

2. The ARNEWRND command creates new array variables with uniformly–distributed

random values.

3. The ARNEWINTRND command creates new array variables with uniformly–distributed

random integers.

4. The ARNEWNORMRND command creates new array variables with normally–distributed

random values.

5. The ARNEWSEQ command creates new array variables with a sequence of values.

Console Programmable RPN Calculator 29

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

The CPRCA application supports commands to copy data between all or part of the memory

registers and array variables. These commands make it easy to make copies (or backups, if you

like) of the memory registers and then restore them.

You can create local array variables within subroutines and use these array variables as the

repertoire of local values. You can use the ARVARRESET command to clear the memory of an

array variable that store the values local to a subroutine. With the aid of flags, you can choose

to create the array variable the first time a subroutine is called and then maintain the values in

the supporting array variable between subroutine calls. This approach implements static local

values for such subroutines.

Sorting and Searching

The CPRCA application supports commands that allow you to sort and search array variables.

The sort command treats the array variable as a single row or column of values. As for searches,

the application supports sequential forward, sequential backward, middle–first, forward

circular, backward circular, forward heuristic and backward heuristic searching. The latter two

searches allow you to move the matching element forward or backward, in support of

optimistic and pessimistic search schemes. The search commands (except the heuristic ones)

allow you to search for the first memory register that is equal to, less than, or greater than a

searched value. The application also supports the command BINSEARCHA for binary searching

in sorted array variables. This command returns the index of the matching array element AND

the number of duplicate values that may be located both above and below the matching

element!

The circular searching that I mentioned above supports forward and backward search versions.

The forward circular search uses the following algorithm:

1. Start the search in the array at a selected index, call it First.

2. Search in the elements starting with index First and until the end of the array.

3. If step 2 finds a match, return the index of the matching array element, and end the

search.

4. Search from the first array element and up to the element at index First–1.

5. If step 4 finds a match, return the index of the matching array element.

6. If step 4 fails to find a match, return –1.

The backward circular search uses the following algorithm:

1. Start the search in the array at a selected index, call it First.

2. Search in the elements starting with index First and until the beginning of the array.

3. If step 2 finds a match, return the index of the matching array element, and end the

search.

4. Search from the last array element and down to the element at index First+1.

Console Programmable RPN Calculator 30

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

5. If step 4 finds a match, return the index of the matching array element.

6. If step 4 fails to find a match, return –1.

In the pairs of sequential forward and backward searches, the application uses the same

command for each pair. What determines the search direction is the sign of the index of the

first searched element. If that index is zero or positive, the search command performs a

forward search. By contrast, if the index is negative, the search command performs a backward

search.

The Middle–First search is a good statistical search for an unsorted array. The search starts with

the middle element and maintains two search indices. The command uses these indices to

repeatedly alternate searching above and below the middle element. With each iteration, these

two indices gradually point to elements that become further from the middle element and

closer to the first and last array elements.

Efficient Sequential Access of Array Elements

The application supports a special feature to simplify the sequential access of values in an array

variable. Each array variable has two indices that track the sequentially stored and recalled

elements. First, you employ the command SIDX to initialize the storage index of an array

variable. Likewise, you use the command RIDX to initialize the recall index of an array variable.

With either or both indices set, you can use a loop iteration controlled by another variable to

store or recall values in an array variable without the explicit need to use an index. All you need

is the name of the array. The commands that support this feature are:

 The command RST+ stores the value of the X stack register in an array variable using

the array storage index. This command then increments the array storage index by

1. The command is useful especially when you want to access the elements of an

array variable starting with low indices and moving up.

 The command RST– stores the value of the X stack register in an array variable using

the array storage index. This command then decrements the array storage index by

1. The command is useful especially when you want to access the elements of an

array variable starting with high indices and moving down.

 The command RST$ stores the value of the X stack register in an array variable using

the array storage index. This command does not alter the value of the array storage

index.

 The command RRC+ recalls the value in an array variable using the array recall index.

This command then increments the array recall index by 1. This command is useful

especially when you want to access the elements of an array variable starting with

low indices and moving up.

 The command RRC– recalls the value in an array variable using the array recall index.

This command then decrements the array recall index by 1. This command is usefully

Console Programmable RPN Calculator 31

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

especially when you want to access the elements of an array variable starting with

high indices and moving down.

 The command RRC$ recalls the value in an array variable using the array recall index.

This command does not alter the value of the array recall index.

 The command +RIDX allows you to increment or decrement the current value of the

array variable recall index.

 The command +SIDX allows you to increment or decrement the current value of the

array variable storage index.

 The command GETSDIX returns the value of the storage index of an array variable.

 The command GETRDIX returns the value of the recall index of an array variable.

Normally using the commands RST+ with RRC+ or the commands RST– with RRC– will do fine in

sequentially accessing the elements of an array variable in a loop. You can combine using the

RST+, RST–, and RST$ commands if you need to access the array elements in a neo–sequential

method. By neo–sequential I mean that you are generally moving up or down the array

elements but may want to revisit the same or a previous element, or may want to peek at the

next element. The same comments apply for combining the use of the commands RRC+, RRC–,

and RRC$. The program subsection titled Efficient Access of Array Variable Elements has a

program that shows you how to implement this feature using the commands SIDX, RIDX, RST+,

and RRC+.

Array Mathematics

The application supports the commands VCA+, VCA–, VCA*, and VCA/ to add, subtract,

multiply, and divide, respectively, a range of the individual elements of two array variables.

These commands take two array variables and modify the elements of the first array using the

values of the second array. The stack provides information that determines the maximum

number of elements to process and the first indices of the arrays involved. These indices give

you the ability to work with ranges of indices that are different in each of the paired arrays. The

CPRCA application has a scalar/array version of the above commands. They allow you to add,

subtract, multiply, and divide array elements and scalar values. The commands VCAS+ and

VCAS* add and multiply the elements of an array with a scalar value. Since subtraction and

division are not communicative, the application offers two versions for these math operations.

The VCAS– and VCAS/ subtract by and divide by scalar values. The following equations show the

math performed by these commands:

𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖) = 𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖) − 𝑋

𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖) =
𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖)

𝑋

Conversely, the commands VCASA– and VCASA/ subtract by and divide by the array elements.

The following equations show the math performed by these commands:

𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖) = 𝑋 − 𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖)

Console Programmable RPN Calculator 32

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖) =
𝑋

𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑟(𝑖)

In addition to the above VCAxxx commands, the application offers the VCAFX command that

allows you to alter a range of elements in an array variable using an RPN expression. The Alpha

register contains the RPN expression and the stack registers hold the information related to the

location and range of array elements to alter. This command offers much power and flexibility

in manipulating the values in an array variable.

Local Memory Registers for Subroutines
The application supports local numerically–indexed memory registers inside subroutines. The

LSTO n command stores the value of the X stack register in the local memory register at index n.

Likewise, the LRCL n command recalls the value in the local memory register at index n. The

application supports register arithmetic for the commands LSTO and LRCL. How does the local

memory register system work? The application creates an initial number of special array

variables to simulate local registers. Each array variable has an integer–name and has an initial

number of registers. The application can expand both the number of array variables and/or the

memory registers held by each array. As you call each subroutine, the application increments

the subroutine–call counter. The CPRCA uses that counter to access the appropriate array

variable, using the counter’s value as the unique name of the array. The code resets the value in

the array variable when a subroutine is called. You use the commands LSTO and LRCL with only

the index of the local memory register. The application knows which integer–named array

variable stores the targeted register, with the help of the subroutine–call counter.

What happens if you use the commands LSTO and LRCL in a main routine (before calling any

subroutine or after all the subroutine calls have terminated)? The answer may surprise you!

The main routine can also access its own local memory registers that are separate from the

large pool of 10,000 memory registers! The programs localregs1.txt and localregs2.txt that I

present in the programming examples section illustrate the local memory register features in

general and also how the main routine can access its own local memory registers!

Another question you may have concerns recursion. The application supports subroutines that

call itself and allows each call to maintains its own version of local memory registers. This

feature works using the subroutine–call counter as a unique id for each subroutine’s local

memory registers. Please use recursions reasonably, since excessive recursive calls will drain

memory resources and may cause a program crash.

 For this system of local memory registers to work properly you must be disciplined in

calling subroutines using the GSB command and exiting subroutines using the RTN

command. Terminating subroutine execution using a GTO command will confuse the

Console Programmable RPN Calculator 33

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

local memory register system and create chaos, because the system requires a

correct update for the subroutine–call counter. The local memory register system

works correctly as long as the subroutine–call counter is not out of synch or

corrupted by cute programming tricks.

Statistical Regression Calculations

Using the Statistical Registers
The CPRCA application supports two separate sets of commands and approaches to perform

linear regression. The first feature is similar to HP calculators that maintain statistical registers

and perform statistical calculations. These calculations include evaluating the mean, standard

deviation, regression coefficient of determination, regression slope, and regression intercept.

You can use the S+ and S– commands to add or remove pairs of (X, Y) observations,

respectively. Using these commands is basically slow and is meant for relatively small sets of

observations. You can use the DATAS command to accelerate adding statistical data. The

application allows you to recall the individual statistical registers using the commands SUMN,

SUMX, SUMX2, SUMY, SUMY2, and SUMXY.

You can also use the command DATAM to read data into the memory registers and then use

the S++ command to add the pairs of (X, Y) in that block of memory registers to the statistical

registers. If you wish to transform the data just before adding them to the statistical registers,

then use the S+T command. This command places the (X, Y) values in the X and Y stack registers

and allows you to transform these values using an RPN expression in the Alpha register. This

expression can use functions like LN, SQRT, 1/X, as well as the command X<>Y to switch values

back and forth between the X and Y stack registers. Once the transformation is accomplished,

the S+T commands accesses the values in the X and Y registers and adds them to the statistical

registers.

The application also supports calculating the confidence intervals for the means, standard

deviations, regression slope, intercept, coefficient of determination, and the projections of X

onto Y. The commands for these calculations start with the prefix CI.

Using the READDATA Commands
In the case that you have a relatively large set of observations for two or three variables, you

can use the READDATA2 and READDATA3 commands. These commands read values from

comma–delimited files into the memory registers. The application designates the memory

registers that hold these observations as special blocks for statistical calculations. The

application supports a variety of linearized regressions between two and three variables.

Among these commands are BESTLR and BESTMLR which perform the best linearized and best

multiple regression between two and three variables, respectively. Thus, you can reuse the

values in these special memory register blocks for different linearized models.

Console Programmable RPN Calculator 34

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Probability and Cumulative Distribution Functions
The CPRCA application supports the following functions related to common statistical

distributions. When I coded these functions, I checked their results against those given by the

HP–Prime calculator. The functions are by group:

1. The commands Q_PDF, T_PDF, CHI_PDF, and F_PDF calculate the probability

distribution functions for the Normal, Student–t, Chi–Squared, and Fisher–Snedecor

F functions, respectively.

2. The commands Q_CDF, T_CDF, CHI_CDF, and F_CDF calculate the cumulative

distribution functions (CDF) for the Normal, Student–t, Chi–Square, and Fisher–

Snedocor F distributions, respectively.

3. The commands Q_ICDF, T_ICDF, CHI_ICDF, and F_ICDF calculate the inverse CDF

functions for the Normal, Student–t, Chi–Square, and Fisher–Snedocor F

distributions, respectively. These functions help you in carrying out various statistical

testing and calculations for confidence intervals.

File I/O Support
Since file I/O is much easier on computer applications than with the original HP–41C, it would

be a missed opportunity not to use file I/O with the console application. This is true especially

when the application supports a generous number of memory registers that can store different

groups of data. The application supports three types of file I/O:

1. Reading and writing memory registers. You can read and write all or part of the

memory registers. The application ignores the attempt of reading values meant for

indices higher than 9999. It displays a warning message to that effect and proceeds

with program execution.

2. Reading data blocks of two and three variables from comma–delimited files. The

application stores these blocks of data in the memory registers. It uses them to

perform various types of linear and multiple regression. It is very important to point

out that the related regression calculations do not use the block of statistical

registers that I mentioned earlier. Instead, they use internal variables to track the

various statistical summations. The application ignores the attempt of reading values

meant for indices higher than 9999. It displays a warning message to that effect and

proceeds with program execution.

3. Reading and writing the values in array variables. Since these arrays have flexible

sizes, the application will read all the values from the source file. When using this

kind of file I/O, you read/write data from/to different dynamic variables. The only

limitation here, in the case of multiple variables, is that they must have the same

number of elements with file output commands. Reading data that expands the size

of a dynamic array requires additional execution time to resize the dynamic array.

Console Programmable RPN Calculator 35

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Within the regular memory registers, you can load special blocks containing sets of 2 or 3

variables. The READDATA2 and READDATA3 commands allow you to read relatively large

data sets from comma–delimited text files. The application uses these special blocks in

linear regression between 2 or 3 variables. They reside in memory registers, starting at an

index, call it IDX, of your choosing. Table 1 shows the format for storing the special data

blocks used for regression calculations.

Memory Register Content

Mem(IDX) A counter for the number of variables. This is either 2 or 3.

Mem(IDX+1) The number of data points that are stored in subsequent memory

registers.

Mem(IDX+2) The first observation of the first row, call it X(1).

Mem(IDX+3) The second observation of the first row, call it Y(1).

Mem(IDX+4) Other observations on the same row, call it Z(1) in the case of

reading data for three variables, or on the following row, call it X(2)

in the case of reading data for two variables.

Mem(IDX+5) to

Mem(IDX+…)

More data.

Table 1. The format for storing special data blocks used for regression calculations.

As for array variables, you can load data from a comma–delimited text file into several existing

array variables. The READ1VAR, READ2VARS, and other similar commands, allow you to get

data from one source and distribute the values in separate array variables. Using the

WRITE1VAR, WRITE2VARS, and other similar commands, allow you to collect data from

different named variables (with the same number of values) and store them in a single comma–

delimited text file.

Using file I/O allows you to type in data in text files or save Excel data into comma–delimited

text files. Once the data is stored in text files, you can use the appropriate commands to read

them while maintaining relatively short source code.

Program Flow Control
The application supports using labels to direct subroutines and program flow control. The labels

are all stored as text—even those with only digits. You can use leading zeros in declaring labels,

just like with the HP–41C. In fact, the application allows you to use multiple leading zeros, if

your heart so desires! The application internally removes leading zeros in storing labels and in

searching for them. You can reference a label having a leading zero with or without that zero.

For example, the commands GTO 01 and GTO 1 direct program flow control to LBL 1 OR to LBL

01. Keep in mind that the application regards leading zeros as superfluous. Consequently,

declaring labels like LBL 01 and LBL 1 in the same program generate an error since the

application regards these two labels as duplicates. The error message that informs you about

the duplicate numeric labels will refer to that label without the leading zero.

Console Programmable RPN Calculator 36

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

The CPRCA offers the following program flow control constructs:

 The GTO and GTOIND commands that jump to a label. While the GTO can jump to

alphanumeric and numeric labels, the GTOIND can only jump to numeric labels. This

limitation gives you greater flexibility in jumping to any numerical label.

 The GSB and GSBIND that execute a subroutine at designated label. While the GSB

can execute subroutines with alphanumeric and numeric labels, the GSBIND can only

execute subroutines with numeric labels. This limitation gives you greater flexibility

in jumping to any numerical label.

 The JUMP, JUMPIND, JUMPX, JUMPY, JUMPZ, and JUMPT commands support

jumping to program lines by specifying the number of lines to jump. If that number

is positive, the program jumps forward. By contrast, if that number is negative, the

program jumps backward.

 The DSE41 and ISG41 commands control looping, HP–41C style.

 The DSE and ISG commands that offer a wider range of looping.

 The DSL command that controls looping. I added this command to be able to process

memory registers starting at a positive index and moving down to and including 0.

 The DSL41 command that supports and HP–41C version of the DSL command.

 The FOR BASIC-like commands that allows you to perform powerful loop iterations.

Extended Logical Testing
The application supports a complete set of commands to compare the values in the X and Y

stack registers as well as comparing the values of the X stack register with zero. In addition, the

application offers the following sets of testing commands:

 Testing commands that compare the values in the X and Y stack registers AND specify

the number of program lines to skip if the test fails. These commands extend the

standard tests, such as X>Y? And X=Y? by appending a single digit between 2 and 9 right

after the question mark. This digit specifies the number of program lines to skip if that

test fails. For example, the command X=Y?4 causes the runtime system to skip the next

four program lines if the values of the X and Y stack registers are not equal. By

appending the number of program lines to skip, if the test fails, you are able to maintain

good readability of the code. This approach is more readable than using a scheme

where you use a special and separate command to specify, ahead of time, the number

of program lines to skip if the next test fails.

 Testing commands to compare the values in the X stack register with those in a memory

register. For example X?=5 tests if the value in the X stack register equals that in

memory register 5. The other commands have the general syntax

X?LogicalTestMemoryRegisterIndex. Check Table 3 for the complete members of this set

of commands.

Console Programmable RPN Calculator 37

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

 Testing commands to compare the values in the Y stack register with those in a memory

register. For example Y?<>5 tests if the value in the Y stack register does not equal the

value in memory register 5. The other commands have the general syntax

Y?LogicalTestMemoryRegisterIndex. Check Table 3 for the complete members of this set

of commands.

 Testing commands to compare the values in the Z stack register with those in a memory

register. For example Z?<>5 tests if the value in the Z stack register does not equal the

value in memory register 5. The other commands have the general syntax

Z?LogicalTestMemorZRegisterIndex. Check Table 3 for the complete members of this set

of commands.

 Testing commands to compare the values in the T stack register with those in a memory

register. For example T?<>5 tests if the value in the T stack register does not equal the

value in memory register 5. The other commands have the general syntax

T?LogicalTestMemorTRegisterIndex. Check Table 3 for the complete members of this set

of commands.

 The IS_BETWEEN command for testing if the value in the X stack register is at or within a

range defined by the values in the Y and Z stack registers.

 The IS_OUTSIDE command for testing if the value in the X stack register is at or outside a

range defined by the values in the Y and Z stack registers.

 The IS_WITHIN command for testing if the value in the X stack register is strictly inside a

range defined by the values in the Y and Z stack registers.

 The IS_WITHOUT command for testing if the value in the X stack register is strictly

outside a range defined by the values in the Y and Z stack registers.

Solve and Integrate
The CPRCA application supports two versions for both the SOLVE and INTEGrate commands.

The first version allows you to use an RPN expression in the Alpha register as the function to

solve or integrate. Such expressions must be void of labels, GTOs, GSBs, and all other program

flow control constructs. For example, you can store the string “x^2 1 –“ in the Alpha register to

define the simple function f(x)=x2–1 to be solve or integrated.

The second version allow you to use a function defined by a program label (and use other

labels, GTOs, GSBs, and all other program flow control constructs). Simply place in the Alpha

register the keyword GSB, followed by a space, followed by the label that implements the

target function. For example, placing the string “gsb myfx” in the Alpha register tells the

commands SOLVE and INTEG to call the code after label myfx to obtain values of the targeted

function.

The CPRCA offers three flavors of SOLVE:

1. The SOLVE command that uses Newton’s method.

Console Programmable RPN Calculator 38

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

2. The SOLVHAL command that uses Halley’s method, which is in general converges faster

than Newton’s method.

3. The SOLVEBIN method that uses the Bisection method. This method is slow to converge

but is guaranteed to work if the limits A, and B of the rook bracketing range [A, B] have

functions values with opposite signs.

The application offers several commands to perform Gaussian quadrature. The

GAUSSLEGQUAD, GAUSSCHEBQUAD, GAUSSKRONQUAD, GAUSSKRONQUAD2,

GAUSSLAGQUAD, GAUSSHERQUAD, and GAUSSCHEBQUAD perform the Gauss-Legendre

quadrature, Gauss-Laguerre quadrature, Gauss-Kronrod quadrature, Gauss-Hermite

quadrature, and Gauss-Chebyshev quadrature, respectively. The Gaussian-Legendre quadrature

performs a numerical integration for the following integral:

∫ 𝑓(𝑥)𝑑𝑥
1

−1
 = ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with each x(i) root of the Legendre function. The above

integral can be mapped to the range [a, b] using the following equations:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

𝑏−𝑎

2
∫ 𝑓(

(𝑏−𝑎)𝑥

2
+

𝑎+𝑏

2
)𝑑𝑥

1

−1

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

𝑏−𝑎

2
∑ 𝑤(𝑖)𝑓 (

(𝑏−𝑎)𝑥(𝑖)

2
+

𝑎+𝑏

2
)𝑛

𝑖=1

The Gauss-Kronrod quadrature is an enhanced version of the Gaussian-Legendre quadrature

and uses about twice as many weights and nodes. Therefore, it is more accurate than the

Gaussian-Legendre quadrature.

The Gauss-Chebyshev quadrature performs a numerical integration for the following integral:

∫ 𝑓(𝑥)𝑑𝑥
1

−1
 = ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with each x(i) root of the Chebyshev function. The value of

each w(i) is equal to π/n. The value of x(i) is calculated using:

𝑥(𝑖) = cos (
2𝑖 − 1

2𝑛
∗ 𝜋)

The integral is calculated using:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = (

𝑏−𝑎

2
)(

π

n
) ∑ 𝑓 (

(𝑏−𝑎)𝑥(𝑖)

2
+

𝑎+𝑏

2
)𝑛

𝑖=1 ∗ √(1 − 𝑥(𝑖) ∗ 𝑥(𝑖))

It is worth pointing out that the Gauss-Legendre quadrature is more accurate than the Gauss-

Chebyshev quadrature when both methods use the same order of their respective orthogonal

polynomials. Good results are obtained with the Gauss-Chebyshev quadrature when using high

Console Programmable RPN Calculator 39

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

polynomial orders (something like in order of 100). This quadrature method is very easy to

implement in (vintage) programmable calculators and vintage BASIC pocket computers. The

Gauss-Kronrod quadrature is more accurate than the Gauss-Legendre quadrature.

The Gauss-Laguerre quadrature performs a numerical integration for the following integral:

∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥
∞

0
= ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with each x(i) root of the Laguerre function. The Gauss-

Hermite quadrature performs a numerical integration for the following integral:

∫ 𝑒−𝑥^2𝑓(𝑥)𝑑𝑥
∞

−∞
= ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with each x(i) root of the Hermite function. The

GAUSSxxxQUAD commands permit you to specify the order of the associated polynomial used.

The higher the order, the more accurate the calculated integral. I use a special algorithm that I

devised to calculate the roots of the Legendre, Laguerre, and Hermite polynomials for a

polynomial order that your programs specify. This approach is better than using one, two, or a

few different quadrature routines for fixed orders of these orthogonal polynomials.

The Gauss-Laguerre quadrature, and Gauss-Hermite quadrature are able to calculate areas not

(easily) possible with the other numerical integration methods supported by CPRCA. Remember

to include the exponential term (as shown in the above equations) with your own function f(x)

when you supply the commands GAUSSLAGQUAD and GAUSSHERQUAD with the expression to

integrate.

The routines that support the GAUSSKRONQUAD are implemented using several helper

functions and a backup function. The command uses a main function that dynamically

calculates the nodes and weights needed for the quadrature. Should this routine experience a

logical or runtime error, the command invokes a backup version that supplies the weights and

abscissa for 99 points. The code then examines the range for integration and determines if

dividing that range into 1, 10 or 100 smaller parts is necessary to maintain a good accuracy. This

programming scheme guarantees that the command GAUSSKRONQUAD yield a good answer.

The Application also offers the command GAUSSKRONQUAD2 that works just like

GAUSSKRONQUAD. The two commands differ slightly in their internal algorithms. The

difference lies in the way the weights and abscissa are calculated for different integration

ranges. Unlike the command GAUSSKRONQUAD, the command GAUSSKRONQUAD2 does not

divide the integration range into smaller ranges to perform multiple quadratures.

Console Programmable RPN Calculator 40

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Scanning a function for Roots, Minima, and Maxima
The application offers the command SCAN to scan the values of a function in a given range. The

command locates and reports the roots, minima, and maxima in that range. The command

SCAN actually needs the following six input values:

1. The index of the memory block that will store the results. This index, call it K, will store

the number of results obtained by the command SCAN. Following index K, is 3*K

memory registers that store one or more data triplets. The first memory register at

triplet n (stored in index K + 3n-2) stores the root/minimum/maximum. The second

memory register in triplet n (stored in index K + 3n-1) stores the value of the function at

the root/minimum/maximum. The third memory register in the triplet n (stored in index

K + 3n) is an integer code that indicates the type of the locus—0 for a root, 1 for a

maximum, and -1 for a minimum.

2. The function tolerance value.

3. The tolerance for the root/minimum/maximum values.

4. The search step value.

5. The starting point for the range of values scanned.

6. The ending point for the range of values scanned.

The trick used to pass the above six parameters is to enter the first two in the stack, use the

command COPYSTACK to copy these values in the backup stack, and then enter the last four

values in the stack. Once the above parameters are in place you can execute the SCAN

command. This command will display the results for the root/minimum/maximum values and

their function values. The command also stores these results in the memory registers indicated

by the first parameter.

Best Linear and Multiple Regression Models
The CPRCA application supports the BESTLR and BESTMLR commands that use data blocks read

using the READDATA2 and READDATA3 commands, respectively. The BESTLR command

searches for the best model describing the relation between variables X and Y. This is possible,

because the application retains the original observations in the memory registers. This scheme

allows the BESTLR command to reprocess, as many times as needed, the original data with

different transformations. The command applies different powers, to each variable, that range

between –4 and 4, in increments of 0.5. The command interprets the power of 0 as a special

request to calculate the natural logarithm. The command returns, in the stack, the coefficient of

determination, the intercept, and the slope, for the best curve fit. The command places a string

describing the general equation for the best linearized regression model in the Alpha register.

To get the values for the powers associated with the best model use the command

BESTLRPWRS. This command places the best powers for the variables Y and X in the Y and X

stack registers, respectively. What about the runner up regression models and all the other

models? Declaring the best model as the absolute winner and discarding the regression

Console Programmable RPN Calculator 41

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

statistics for the other models is, in most cases, not a wise move. This is true, because random

error/noise in the observations may artificially favor a certain model over other ones. The

command writes the regression results, for each successfully calculated model, to the comma-

delimited file BESTLR_date_stamp.CSV. The application uses the current date stamp as part of

the filename. This approach creates a unique filename and thus avoid writing over files

generated by previous sessions. You can open the .CSV files with Excel. The first row contains

the header for the columns. You can easily sort the data using the values in the first column

(the coefficient of determination) as the key values for sorting the data in a descending order.

Each row contains the following values:

 The coefficient of determination.

 The transformation power for variable Y.

 The transformation power for variable X.

 The intercept.

 The slope.

The BESTMLR command searches for the best model describing the relation between variables

Z, X, and Y. The command applies different powers, to each variable, that range between –4

and 4, in increments of 0.5. The command interprets the power of 0 as a special request to

calculate the natural logarithm. The command returns in the stack the coefficient of

determination, the intercept, the slope for Y, and the slope for X, for the best curve fit. The

command places a string describing the general equation for the best regression model in the

Alpha register. To get the values for the powers associated with the best model use the

command BESTMLRPWRS. This command places the best powers for the variables Z, Y, and X in

the Z, Y, and X stack registers, respectively. What about the runner up regression models and all

the other models? Declaring the best model as the absolute winner and discarding the

regression statistics for the other models is, in most cases, not a wise move. This is true,

because random error/noise in the observations may artificially favor a certain model over

other ones. The command writes the regression results, for each successfully calculated model,

to the comma-delimited file BESTMLR_date_stamp.CSV. The application uses the current date

stamp as part of the filename. This approach creates a unique filename and thus avoid writing

over files generated by previous sessions. You can open the .CSV files with Excel. The first row

contains the header for the columns. You can easily sort the data using the values in the first

column (the coefficient of determination) as the key values for sorting the data in a descending

order. Each row contains the following values:

 The coefficient of determination.

 The transformation power for variable Z.

 The transformation power for variable Y.

 The transformation power for variable X.

 The intercept.

Console Programmable RPN Calculator 42

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

 The slope for variable Y.

 The slope for variable X.

Armed with the above tables of data (for the best 2 or 3 variables), you can then study and

compare the best models. Keep in mind that arbitrary errors in the observations may favor

some models that do not represent the true relationship between the variables. If you process

several sets of data (or have enough observations to organize them into several groups), then

you should (hopefully) see a single model that repeatedly takes its place among the elite

models. That would be the model you seek.

Writing the regression models to a .CSV file simplifies things for the CPRCA application. It shifts

the task for sorting the results to Excel (or other advanced text editors). Excel can sort through

hundreds and thousands of rows almost effortlessly. Thus the CPRCA application is absolved

from storing the regression statistics for all of the hundreds and thousands of models and then

sorting them. Even if we adopt a scheme of writing the regression statistics of, say the top 50

best models, it will still require the application to do a lot of bookkeeping.

The application offers the commands NORMDATA2 and NORMDATA3 that allow you to

normalize the data blocks, read with commands READDATA2 and READATS3, using the

following equations:

Xi = 1 + (Xi – Xmin) / (Xmax – Xmin)

Yi = 1 + (Yi – Ymin) / (Ymax – Ymin)

Zi = 1 + (Zi – Zmin) / (Zmax – Zmin)

The above transformations place the results in the range of [1, 2] and prepare the data for

empirical curve fitting. This range is suitable for all of the transformation available in the

commands BESTLR and BESTMLR. The normalizing commands also provide the option to

transform any or all of the X, Y, and Z variables into their logarithm values as long as all of the

values for the transformed variable are positive. Such transformation can be helpful when the

values for a variable changes several orders of magnitudes. My advice is to use the commands

BESTLR or BESTMLR on the raw data first, then apply command NORMDATA2 or NORMDATA3,

and then reapply commands BESTLR or BESTMLR on the normalized data. You end up with two

sets of best curve fits, giving you more options for better empirical fits.

The DATA Statement is Back!
I enjoyed using the DATA statement in legacy BASIC programs. This statement offered a

convenient way to read constants into arrays and single variables. Even FORTRAN had a similar

construct! I was sad to see the demise of the DATA statement when line numbers were laid to

rest. I decided to bring back the DATA statement, albeit with a different twist, in the CPRCA

application. It supports three types of DATA statements allowing you to concentrate entering

Console Programmable RPN Calculator 43

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

data using fewer lines. The family of DATA commands all include lists of comma–delimited data.

The commands are:

1. The DATAS command allows you to add pairs of (X, Y) values to the statistical registers.

The S after DATA stands for statistics. You can use multiple DATAS commands to

accumulate statistical data in multiple batches. You need not tell the DATAS how many

pairs of (X, Y) are present. The command does the counting for itself. If there are an odd

number of values in the list, the command ignores the last value.

2. The DATAM command permits you to store data in the memory registers. The M after

DATA stands for memory registers. The first value in the list of data is the index of the

first memory register that receives the data. The command ignores values that violate

the indexing limit of the memory registers.

3. The DATAR command empowers you to store values in an array variable. The R after

DATA stands for array variables. The first value in the list of data is the name of the array

that stores the data. This name is optional. When you omit it from the list, the

command uses the contents of the Alpha register to specify the array variable. The

second value in the list is the index where the insertion in the array variable begins. The

remaining list values are the data to be inserted. You can use multiple DATAR

commands to store data, in batches, in an array variable.

The general syntax for using the DATAS command is:

DATAS X(1), Y(1), X(2), Y(2),…, X(n), Y(n)

Here is a simple example of using the DATAS command:

DATAS 10,50,25,77,30,86,35,95,100,212

The general syntax for using the DATAM command is:

DATAM index, value1, value2, value3, …, value_n

It is possible to use the DATAM command to emulate the READDATA2 and READDATA3

commands. This approach allows you to hard code the data inside a program. The list for the

DATAM command involves the following information:

1. The index of the first memory registers that store the rest of the data.

2. The value of 2 or 3 when emulating commands READDATA2 or READDATA3,

respectively.

3. The number of data sets (for 2 or 3 variables).

4. The data sets for 2 or 3 variables.

Here is a simple example of using the DATAM command:

DATAM 11,1,2,3,4,5,6

The above command stores the values 1 through 6 in memory register 11 through 16.

Console Programmable RPN Calculator 44

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Here is a simple example of using the DATAR command:

DATAR Xarr,0,1,2,3,4,5,6

The above example makes the command store, in the array variable Xarr, the values from 1 to

6, starting at index 0. Here is another example for the DATAR command is:

‘Xarr

DATAR 0,1,2,3,4,5,6

The above example first places the identifier for the array variable in the Alpha register then

uses the DATAR command to insert the values from 1 to 6, starting at index 0 of the array

variable Xarr.

Comments in Source Code
You can insert comment lines in your source code. These comments MUST EACH OCCUPY an

entire line. You can use REM or any of the characters !, @, #, $, and % as a comment line

designators. These designators are located the start of a comment line. It is a good idea to use

the same comment line designator, even though you can mix at will between the various

designators.

Use comments to document various steps in your program, the program version, update

history, copyright notice, and so on. Here are examples of comment lines:

REM This is a comment line

! This is also a comment line

and so is this line

$ Same here!

% and here too!

Swapping Between Any Two Stack Registers
The CPRCA application supports swapping between any two stack registers. In addition to the

traditional X<>Y command that swaps the values in the X and Y registers, the application allows

you to swap between the following stack registers:

 The X and Z registers, using the X<>Z command.

 The X and T registers, using the X<>T command.

 The Y and Z registers, using the Y<>Z command.

 The Y and T registers, using the Y<>T command.

 The Z and T registers, using the Z<>T command.

The general format for the reg1<>reg2 command lists the lower stack register first, followed by

the characters <>, followed by the higher stack register. Using these stack register swap

commands saves you from having to roll the stack registers up or down to access the Z and T

stack registers.

Console Programmable RPN Calculator 45

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

The application also supports commands that swap between any stack register and any

memory registers. The general syntax for these commands is stack_register<>nnn, where

stack_register is either X, Y, Z, or T. The entity nnn is the numerical index of the targeted

memory register. For example, the command Z<>10 swaps the value in the Z stack register and

memory register with index 10.

It’s About Time!
The application offers commands that return the current system date, time, and their individual

components. Consult Table 2 and look for commands GETDATE, GETTIME, GETYEAR,

GETMONTH, GETDAY, GETHR, GETMIN, and GETSEC.

The application also supports storing date/time information, located in the Alpha register, in

text variables using the command ASTO. The format used for this storage is:

#mm/dd/yyy hh:mm:ss#

The leading and trailing # characters are important in telling the runtime system that the text

represents date/time information. Moreover, Visual Basic, the language used to create the

CPRCA application, also uses the above syntax to store date/time information in strings.

You can store floating-point representations of the date, yyyy.mmdd, and time, hh.mmss, that

you place in the stack to text variables. The command DSTO takes the floating-point values for

the date and time in the Y and X stack registers, respectively, and store them in the text

variable specified with the DSTO command. The command DRCL reverses this operation. It

takes the name of a text variable that contains date/time information and calculates the

floating-point representation of the date and time. It then places the floating-point

representation of the date and time in the Y and X stack registers, respectively. You can view

the date and time stored in a text variable using the command VIEWDT or the command

DVIEW. The argument for each one of these commands is the name of a text variable.

The CPRCA application also supports adding and subtracting date/time units (i.e. components).

The ADDDT allows you to add either years, months, days, hours, minutes, or seconds to a

date/time stored in a text variable. The Alpha register contains the name of the date/time unit

you wish to add. You can only add one unit of date/time at a time. The command updates the

date/time in the targeted text variable. The application also offers the command DIFFDT that

subtracts date/time units from two dates stored in text variables. The Alpha register contains

the same type of information, regarding the selected date/time unit, that I mentioned earlier.

The DIFFDT command returns in the stack the difference in the date/time units, as selected by

the Alpha register. The DIFFDT does not alter the date/time information in its text variables.

Consult the reference for commands ADDDT and DIFFDT, in Table 3, to learn about the

date/time units used to add or subtract date/time values. To subtract between dates only, use

Console Programmable RPN Calculator 46

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

the same time-of-day in both date/time values subtracted. Conversely, to subtract time only,

use the same date in both date/time values subtracted.

Console Programmable RPN Calculator 47

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Basic Functions
Table 2 shows the functions that work in both RPN calculations and programming modes. Table

3 shows the commands used for programming and include some advanced functions. I chose

the headings of these two tables to have a different color to make it easy to distinguish

between them when scrolling back and forth though the document.

 The list of commands in tables 2 and 3 is extensive. Please take the time to familiarize

yourself with the commands. You will notice the following patterns with commands

that require arguments. You can either include the argument(s) with the command or

omit them and rely on the Alpha register to provide the argument(s). Using the Alpha

register provides you with more runtime flexibility since you are not stuck with

names hard coded with the commands.

Console Programmable RPN Calculator 48

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

+, –, *, /, ^ Perform a basic math operation. The ^

operator is a shorthand for the command

Y^X.

2 5 /

Returns 0.4

–>HMS Convert a real value to H.MS (hours,

minutes, and seconds). The result has the

format hh.mmss.

12.5 –>HMS

Returns 12.3

1/X Calculate the reciprocal value. 10 1/x

Replaces 10 in the X

stack register with 0.1

ABS Replace the value of the X register with its

absolute value.

–10 abs

Replaces –10 in the X

stack register with 10

ASIN, ACOS, ATAN Calculate the common inverse

trigonometric functions. The results are

angles in radians.

0.5 asin

Returns 0.5235987755

ASIND, ACOSD, ATAND Calculate the common inverse

trigonometric functions. The results are

angles in degrees.

2 sqrt 1/x asind

Returns 45.

ASINH, ACOSH, ATANH Calculate the common inverse hyperbolic

functions.

2 asinh

Returns 1.4436354751

BESSELJ0, BESSELJ1,

BESSELJN, BESSELY0,

BESSELY1, BESSELYN.

Calculate the Bessel functions. All

functions use the value of the X register to

supply the value for x in the function call.

The commands BESSELJN and BESSELYN

use the integral value in the Y register to

supply the value of the function’s order n.

4 1.2 BesselJn

Returns 0.0050226662

BETA Calculate the Beta function. The function

uses the values in the X and Y registers as

the first and second arguments,

respectively.

4 5 beta

Returns Beta(5,4) as

0.00357142857142857

CHEBYSHEV, HERMITE,

LEGENDRE, LAGUERRE

Calculate the values for the named

polynomial Pn(x). The Y register supplies

the value for the polynomial order. The X

register supplies the value for the

argument x.

5 2.5 Legendre

Calculates the 5th

order Legendre

function at x=2.5. The

result is 637.0117187.

Console Programmable RPN Calculator 49

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CHI_CDF and CHI_ICDF Calculate the Chi–Squared cumulative

distribution function and its inverse. The

stack provides the following input:

T:

Z:

Y: The degrees of freedom.

X: The argument X.

In the case of the command for the inverse

pdf, the value of the X stack register is the

probability expressed as a fraction.

5 6 chi_cdf

Returns 0.6937810815

5 0.7 chi_icdf

Returns 6.05720105

CHI_PDF Calculate the Chi–Squared probability

distribution function. The stack provides

the following input:

T:

Z:

Y: The degrees of freedom.

X: The argument X.

5 1 chi_pdf

Returns 0.0806569081

CHS Change the sign of the value in the X stack

register.

1 chs

Makes the X stack

register store the

value –1.

CI Calculate the cosine integral function. The

X stack register provides the argument for

this command.

2.3 ci

Returns 0.3471756175

Console Programmable RPN Calculator 50

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CIINTERCEPT Calculate the upper and lower limits of the

confidence interval for the regression

intercept. The value in the X stack register

provides the confidence level as a fraction

(usually 0.95). The command returns the

following values in the stack:

T:

Z: The upper limit of the confidence

interval for the intercept.

Y: The intercept.

X: The lower limit of the confidence

interval for the intercept.

This command assumes that you have

used the command LRXY recently. If not, it

returns the values of 1E+99 in the Z, Y, and

X stack registers.

0.95 ciintercept

Returns, for example,

the following results:

Z: 17.7532966286244

Y: 10.8726619398323

X: 3.04670337137564

CIMEANX, CIMEANY Calculate the confidence intervals for the

mean values of variables X and Y,

respectively. You must have used the S+

command at least twice (actually more to

get reasonable results) for the commands

to display values other than 1E+99. The

value in the X stack register provides the

confidence level as a fraction (usually

0.95). The command returns the following

values in the stack:

T:

Z: The upper limit of the confidence

interval for the mean of X or Y.

Y: The mean value for X or Y.

X: The lower limit of the confidence

interval for the mean of X or Y.

This command assumes that you have

used the command S+ recently. If not, it

returns the values of 1E+99 in the Z, Y, and

X stack registers.

0.95 cimeanx

Returns, for example,

the following values:

T:

Z: 0.75

Y: 0.5

Z: 0.25

Console Programmable RPN Calculator 51

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CIR Calculate the upper and lower limits of the

confidence interval for the correlation

coefficient, r (calculated as

sign(slope)*√R2). This command uses the

inverse normal CDF function to calculate

the confidence interval. The value in the X

stack register provides the confidence

level as a fraction (usually 0.95). The

command returns the following values in

the stack:

T:

Z: The upper limit of the confidence

interval for r.

Y: The value of r.

X: The lower limit of the confidence

interval for r.

This command assumes that you have

used the command LRXY recently. If not, it

returns the values of 1E+99 in the Z, Y, and

X stack registers.

0.95 cir

Returns, for example,

the following results:

Z: 0.995392185251632

Y: 0.955214936062091

X: 0.629724598174932

Console Programmable RPN Calculator 52

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CIR2, CIRSQR Calculate the upper and lower limits of the

confidence interval for the coefficient of

determination, R2. This command uses the

inverse Student–t CDF function to

calculate the confidence interval. The

value in the X stack register provides the

confidence level as a fraction (usually

0.95). The command returns the following

values in the stack:

T:

Z: The upper limit of the confidence

interval for R2.

Y: The value of R2.

X: The lower limit of the confidence

interval for R2.

This command assumes that you have

used the command LRXY recently. If not, it

returns the values of 1E+99 in the Z, Y, and

X stack registers.

0.95 cir2

Returns, for example,

the following results:

Z: 0.970671584877132

Y: 0.912435574076105

X: 0.854199563275077

CISDEVX, CISDEVY Calculate the confidence intervals for the

standard deviation values of variables X

and Y, respectively. You must have used

the S+ command at least twice (actually

more to get reasonable results) for the

commands to display values other than

1E+99. The value in the X stack register

provides the confidence level as a fraction

(usually 0.95). The command returns the

following values in the stack:

T:

Z: The upper limit of the confidence

interval for the standard deviation for X or

Y.

Y: The standard deviation for X or Y.

X: The lower limit of the confidence

interval for the standard deviation for X or

Y.

0.95 cisdevx

Returns, for example,

the following values:

Z: 0.75

Y: 0.5

Z: 0.25

Console Programmable RPN Calculator 53

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CISLOPE Calculate the upper and lower limits of the

confidence interval for the regression

slope. The value in the X stack register

provides the confidence level as a fraction

(usually 0.95). The command returns the

following values in the stack:

T:

Z: The upper limit of the confidence

interval for the slope.

Y: The slope.

X: The lower limit of the confidence

interval for the slope.

This command assumes that you have

used the command LRXY recently. If not, it

returns the values of 1E+99 in the Z, Y, and

X stack registers.

0.95 cislope

Returns, for example,

the following results:

Z: 9.37629910935212

Y: 5.87600014783627

X: 3.50581803398191

Console Programmable RPN Calculator 54

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

CIYHAT, CIYHATFIT The command CIYHAT calculates the upper

and lower limits of the confidence interval

for the projection of an of X onto Y. The

value in the X stack register supplies the

value of X used to calculate Y^. The value in

the Y stack register provides the

confidence level as a fraction (usually

0.95). The command returns the following

values in the stack:

T:

Z: The upper limit of the confidence

interval for Y^.

Y: The value of Y^.

X: The lower limit of the confidence

interval for Y^.

The command CYHATFIT is similar to the

CIYHAT command, except it expects the

projected value X to be part of the original

observations that was used by commands

S+ and LRXY to calculate the regression

statistics. It is your responsibility to use the

commands CIYHAT and CIYHATFIT

correctly, since the application does not

store the original observations processed

by the command S+. The commands

CIYHAT and CIYHATFIT yield slightly

different confidence intervals for Y^.

Keep in mind that if you had transformed

the X values for the regression

calculations, then you need to also

transform the value for X before calling

this command. Likewise, if you had

transformed the Y values for the

regression calculations, you need to

perform inverse transformations for the

two values that define the confidence

interval.

0.95 1 ciyhat

Returns, for example,

the following results:

Z: 18.6952228289432

Y: 15.0909090909091

X:1 1.486595352875

Console Programmable RPN Calculator 55

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

The commands CIYHAT and CIYHATFIT

assume that you have used the command

LRXY recently. If not, it returns the values

of 1E+99 in the Z, Y, and, X stack registers.

Console Programmable RPN Calculator 56

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CLEARSIGMA Clear the statistical registers. clearsigma

CLRDSP Clear the display format. Subsequent

output appears unformatted.

clrdsp

CLREG Clear the memory registers. clreg

CLREGX, CLREGY,

CLREGZ, CLREGT

Clear a range of the memory registers

using one of the four stack registers. The

value of the range is aaaa.bbbb.cc. A value

of 0 or less clears all of the memory

registers and ends up doing the same task

as command CLREG.

0.001002 clregt

Clear the memory

registers 0, 2, 4, 6, 8,

and 10 using the range

defined in the T stack

register.

CLST, CLSTK, CLRSTK Clear the stack registers. clst

COMB, PERM Calculate the combination and

permutation for arguments in the X and Y

registers.

4 6 comb

Returns Comb(6,4) as

15.

COPYRIGHT Display the application’s copyright.

COPYSTACK Copy the values of the regular stack into

the backup stack. This command is used

with the SCAN command.

COV Calculates the covariance of the X and Y

variables using values in the satirical

registers This command returns the result

calculated as:

∑ 𝑥𝑦 − [∑ 𝑥 ∙ ∑ 𝑦]/𝑛

cov

Returns something like

2.345982.

D–>R Convert degrees to radians. 60 d–>r

Returns 1.047197551

DSP Set the display format. See Appendix A for

the display formats. The command checks

that the format starts with a valid format

character followed by one or more digits.

If the specified format is valid, the

command places 1 in the X stack register.

Otherwise, it places 0 in the X stack

register.

Dsp f3

Sets the display format

to fixed with three

decimal places.

DSP? Show the current display format.

Console Programmable RPN Calculator 57

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ENTER Push the value of the X register up the

stack. Unlike with the physical HP RPN

calculators, you need not use the

command ENTER to separate the input of

a sequence of multiple numbers. In

calculation mode, an RPN expression can

separate a sequence of numbers using

single spaces. In program mode, the

separate lines are able to input a sequence

of values.

3 enter enter enter

Fill the stack with the

number 3.

ERF, ERFC Calculate the error and complementary

error functions. The X stack register

provides the argument for this command.

2 erf

Returns 0.99532226

EULER Push the Euler constant in the stack.

EXP, 10^ Calculate the exponential and power of 10,

respectively. The X stack register provides

the argument for these commands.

0 exp

Returns 1.

EXPOINTEG Calculate the exponential integral

function. The X stack register provides the

argument for this command.

1.4 expointeg

Returns 3.00720746

F_CDF and F_ICDF Calculate the Fisher–Snedecor F

cumulative distribution function and its

inverse. The X stack register provides the

argument for this command. The stack

provides the following input:

T:

Z: The degrees of freedom df1.

Y: The degrees of freedom df2.

X: The argument X.

In the case of the command for the inverse

pdf, the value of the X stack register is the

probability expressed as a fraction.

8 6 0.6 f_cdf

Returns the value for

F(8,6,0.6) which equals

0.2461533829

8 6 0.24615 f_icdf

Returns Finv(8, 6,

0.24615) which equals

0.599999

Console Programmable RPN Calculator 58

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

F_PDF Calculate the Fisher–Snedecor F

probability distribution function. The stack

provides the following input:

T:

Z: The degrees of freedom df1.

Y: The degrees of freedom df2.

X: The argument X.

7 4 2 f_pdf

Returns 0.1613689198

FACT Calculate the factorial. The integer part of

the value in the X stack register provides

the argument for this command.

6 fact

Returns 120.

FIB Calculate the Fibonacci number. The

integer value in the X register provides the

sequence number for the Fibonacci

number.

10 fib

Returns 55 which is

the 10th Fibonacci

number.

FIX Set the display format to be fixed with a

specific number of decimal places.

fix 3

FLIP Toggle the logical value of a flag, without

testing the state of that flag.

flip 1

Flips flag(1)

FRC, FRAC Return the fractional part of the value in

the X register.

Pi frac

Returns 0.1415926535

GAMMA Calculate the Gamma function. The X

register provides the argument for the

Gamma function.

5.5 gamma

Returns 52.3427777.

GETDATE Return the current system date in the

stack calculated as yyyy.mmdd using:

Year + Month/100 + Day/10000

getdate

Returns the current

system date.

GETHR, GETMIN,

GETSEC

Return the current system hour, minute,

and second in the stack.

GETMAXMEM Return the maximum number of memory

registers in the X stack register. The

highest memory register index would be

that number minus one.

Getmaxmem

Returns 10000.

Console Programmable RPN Calculator 59

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GETNOW Return the current system date and time

in the Y and X stack registers, respectively.

Getnow

-stk-

Display the stack

showing the current

date and time in the Y

and X stack registers,

respectively.

GETTIME Return the current system time in the

stack calculated as hh.mmss using:

Hour + Minute/100 + Second/10000

gettime

Returns the current

system time.

GETYEAR, GETMONTH,

GETDAY

Return the current system year, month,

and day, respectively, in the stack.

getyear

Returns 2016

HMS– Subtract H.MS values located in the Y and

X registers.

12.3 4.25 hms–

Returns 8.056

HMS+ Add H.MS values located in the Y and X

registers.

2.3 4.25 hms+

Returns 16.536

HMS–> Convert an H.MS value to a decimal value. 12.3012 hms–>

Returns 12.503333333

IERF, IERFC Calculate the inverse error and inverse

complementary error functions. The X

stack register provides the argument for

this command.

0.5 ierf

Returns 0.4766780021

IFACT Calculate the product of integers between

n to m. This is equal to m!/n!. The integer

parts of the values in the Y and X stack

registers supply the values for n and m,

respectively.

5 6 ifact

Returns 30.

IGAMMA Calculate the incomplete Gamma function

P(a, x). The X and Y stack registers provide

the values for parameter x and a,

respectively.

Note: P(a, x)= 𝛾(𝑎, 𝑥)/𝛤(𝑎)

= 1/𝛤(𝑎) ∫ 𝑒−𝑡𝑡𝑎−1𝑑𝑡
𝑥

0

 𝑤ℎ𝑒𝑟𝑒 𝑎 > 0

2 1 igamma

Returns 0.264241117.

Console Programmable RPN Calculator 60

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

IICGAMMA Calculate the inverse incomplete Gamma

function invP(a, x). The X and Y stack

registers provide the values for parameter

x and a, respectively.

Note: P(a, x)= 𝛾(𝑎, 𝑥)/𝛤(𝑎)

= 1/𝛤(𝑎) ∫ 𝑒−𝑡𝑡𝑎−1𝑑𝑡
𝑥

0

 𝑤ℎ𝑒𝑟𝑒 𝑎 > 0

2 0.26 iigamma

Returns 0.999095857.

INT Return the integer part of the value in the

X register.

pi int

Returns 3.

LASTX, LASTY, LASTZ,

LASTT

Recall the last X, last Y, last Z, and last T

registers, respectively.

355 113 / lastx *

Returns 355.

LN, LOG Calculate the natural and common

logarithms, respectively. The value in the X

register provides the argument for the

logarithms.

100 ln

Returns 4.605170185

LNFACT Calculate the natural logarithm of the

factorial. The X register provides the

argument for the factorial.

If the argument is zero, the command

returns –1 in the X stack register.

1000 lnfact

Returns 5912.128178.

LNGAMMA Calculate the natural logarithm of the

Gamma function. The X register provides

the argument for the logarithm of the

Gamma function.

If the command encounters a runtime

error, it returns –1 in the X stack register.

1000 lngamma

Returns 5905.220423.

LRXY Perform a simple linear regression

between X and Y, using the data already in

the statistical summations. This command

returns the following values in the stack:

T:

Z: The coefficient of determination (R2).

Y: The intercept.

X: The slope.

clearsigma 2.5 1 S+ 4 2

S+ 5.5 3 S+ lrxy

showstk

Returns the following

stack values:

Z:

T: 1

Y: 1

X: 1.5

Console Programmable RPN Calculator 61

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

MEAN Calculate the means of Y and X variables

based on the values in the statistical

registers and store them in the Y and X

registers, respectively.

Mean

Returns the mean

value based on the

data in the statistical

registers.

MEANSDEV Calculate the mean and standard deviation

for values in the memory registers. The X

register defines the indices of the first and

last memory register using aaaa.bbbbcc

format. Here aaaa and bbbb are the

indices of the first and last memory

registers to process, respectively. The

value of cc is the increment (a zero

increment is translated into an increment

of 1).

1.002002 MEANSDEV

Finds the mean and

standard deviation for

values in register 1

through 20, skipping

every other register.

MEMCOPY Copy values from one block in the memory

registers to another. The value of the X

register, aaaa.bbbb, defines the first

indices of source and target memory

registers. The integer value of the Y

register specifies the number of registers

to copy.

The command returns the number of

elements that were actually copied, in the

X stack register.

10 0.0050 MEMCOPY

Copies 10 values from

Mem(0)…Mem(9) to

Mem(50)…Mem(59).

MEMSWAP Swap values between two blocks in the

memory registers. The value of the X

register, aaaa.bbbb, defines the first

indices of the two blocks of memory

registers to swap. The integer value of the

Y register specifies the number of registers

to swap.

The command returns the number of

elements that were actually swapped, in

the X stack register.

10 0.0050 MEMSWAP

Swaps 10 values

between

Mem(0)…Mem(9) and

Mem(50)…Mem(59).

Console Programmable RPN Calculator 62

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

MFILL Fill a range of memory registers with a

fixed value. The stack provides the

following information:

T:

Z:

Y: The range of registers affected. This

value has the format aaaa.bbbbcc.

X: The value to fill in the range of memory

registers.

.0010 1 mfill

Fills the memory

registers Mem(0) to

Mem(10) with the

value of 1.

MFILLINTRND Fill a range of memory registers with

uniformly-distributed random integers.

The stack provides the following

information:

T:

Z: The range of registers affected. This

value has the format aaaa.bbbbcc.

Y: The high integer limit.

X: The low integer limit.

.0010 10 1 mfillintrnd

Fills the memory

registers Mem(0) to

Mem(10) with the

random integers in the

range of [1, 10].

MFILLNORMRND Fill a range of memory registers with

normally-distributed random values. The

stack provides the following information:

T:

Z: The range of registers affected. This

value has the format aaaa.bbbbcc.

Y: The standard deviation for the random

numbers generated.

X: The mean value for the random

numbers generated.

.0010 10 1

mfillnormrnd

Fills the memory

registers Mem(0) to

Mem(10) with the

normally-distributed

random values with a

mean of 1 and

standard deviation of

10.

MFILLRND Fill a range of memory registers with

uniformly-distributed random values. The

stack provides the following information:

T:

Z: The range of registers affected. This

value has the format aaaa.bbbbcc.

Y: The high limit.

X: The low limit.

.0010 10 1 mfillrnd

Fills the memory

registers Mem(0) to

Mem(10) with the

random values in the

range of [1, 10].

Console Programmable RPN Calculator 63

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

MFILLSEQ Fill a range of memory registers with a

sequence of values. The stack provides the

following information:

T:

Z: The range of registers affected. This

value has the format aaaa.bbbbcc.

Y: The increment value. Can be positive,

zero, or negative.

X: The initial value. Can be positive, zero,

or negative.

This command fills the sequence of values

expressed by:

𝑉𝑎𝑙𝑢𝑒(𝑖) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒 + 𝑖

∙ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

For i =0, 1, 2, 3, …

.0010 10 1 mfillrnd

Fills the memory

registers Mem(0) to

Mem(10) with the

values thathave the

sequence of 1, 11, 21,

31, and so on.

MOD Perform the modulus operation. 113 13 mod

Returns 9.

NEXTPRIME,

PREVPRIME

Calculate the next and previous prime,

respectively. The integer value in the X

register specifies the starting integer

which may or may not be a prime itself.

5 nextprime

Returns 7.

11 prevprime

Returns 7.

P–>R Perform a polar–to–rectangular

conversion. The command obtains the

values for the radian-angle and radius

from the Y and X stack registers,

respectively. The command places the Y

and X values in the Y and X stack registers,

respectively.

Pi 4 / 25 p–>r showstk

Displays:

Y: 17.6776695

X: 17.6776695

PI Insert the value of pi into the X register

and push up the stack.

Pi 4 /

Returns 0.78539816

Console Programmable RPN Calculator 64

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

Q_CDF and Q_ICDF Calculate the Normal cumulative

distribution function and its inverse. The X

stack register provides the argument for

this command. In the case of the inverse

Normal pdf, the value of the X stack

register is the probability expressed as a

fraction.

0.6 q_cdf

Returns 0.7257469354

0.75 q_icdf

Returns 0.67418914

Q_PDF, Q_STD Calculate the normal probability

distribution function. The stack provides

the following input:

T:

Z: The standard deviation.

Y: The mean.

X: The argument X.

The Q_STD command calculates the

standard normal pdf with a mean of 0 and

a standard deviation of 1. This command

only requires a value from the X stack

register.

1 0 .6 q_pdf

Returns 0.333224602

.6 q_std

Returns 0.333224602

R–>D Convert radians to degrees. Pi 4 / r–>d

Returns 45.

R–>P Perform a rectangular–to–polar

conversion. The command obtains Y and X

values from the Y and X stack registers,

respectively. The command places the

values for the radian-angle and radius in

the Y and X stack registers, respectively.

3 4 r–>p showstk

Displays:

Y: 0.64350110

X: 5

RAND Return a uniform random value between 0

and 1 (exclusive).

Rand

RANDNORM Return a normally–distributed random

number. This function uses the values in

the X and Y registers to represent the

mean and standard deviation,

respectively. The command uses these

values to calculate the random number.

1.0 0.0 randnorm

Generates a standard

normal N(0, 1) random

number.

Console Programmable RPN Calculator 65

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

RCL, RCL+, RCL–, RCL*,

RCL/

Recall the value from the specified

memory register. This command offers

options for register arithmetic.

rcl 03

rcl+ 44

RCLIND, RCLIND+,

RCLIND–, RCLIND*,

RCLIND/

Indirectly recall the value from the

specified memory register. This command

offers options for register arithmetic.

rclind 03

rclind+ 44

RCLSTX, RCLSTY,

RCLSTZ, RCLSTT.

RCLSTINDX,

RCLSTINDY,

RCLSTINDZ,

RCLSTINDT.

Recall the value in a stack register and

push it in the X register. The application

also supports using indirect address with

the various stack recall commands.

RCLSTZ

RDN Roll down the stack registers. Rdn rdn rdn

Uses the RDN

command, the long

way, to display the T

stack register.

RUP Roll up the stack registers. Rup

Uses the command

RUP to display the T

stack register.

Console Programmable RPN Calculator 66

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SCALE Return the value 10000. Use this constant

in preparing loop control variables that

work with the commands ISG, DSE, and

DSL.

1

2000

SCALE

/

+

Sto 0

…

Lbl 0

…

Isg 0

Gto 0

Prepares the memory

register 0 to be a loop

control variable. This

loop control variable

iterates between the

values of 1 to 2000.

SCALE41 Return the value 1000. Use this constant in

preparing loop control variables that work

with the commands ISG41, DSE41, and

DSL41.

1

100

SCALE41

/

+

Sto 0

…

Lbl 0

…

Isg41 0

Gto 0

Prepares the memory

register 0 to be a loop

control variable. This

loop control variable

iterates between the

values of 1 to 100.

SCI Set the display format to a scientific

notation with a specific number of decimal

places.

sci 3

Sets the output to a

SCI 3 format mode.

Console Programmable RPN Calculator 67

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SDEV Calculate the standard deviations of the Y

and X variables, using the values in the

statistical registers, and store them in the

Y and X registers, respectively.

SHOWSTK Display the values of the stack registers.

SI Calculate the sine integral function. The X

stack register provides the argument for

this command.

2.4 si

Returns 1.7524855

SIGMA–, S– Subtract the values of the Y and X registers

from the statistical registers. This

command assumes that the data you are

removing matches one that you previously

entered using the command SIGMA+ or

S+. The application has no way to verify

the truth of this assumption.

Clearsigma 1 1 S+ 2 2

S+ 3 3 S+ 3 3 S– 4 4 S+

LRXY showstk

Returns the following

stack values:

Z:

T: 1

Y: 0

X: 1

SIGMA+, S+ Add the values of the Y and X registers to

the statistical registers.

clearsigma 1 1 S+ 2 2

S+ 3 3 S+ LRXY showstk

Returns the following

stack values:

Z:

T: 1

Y: 0

X: 1

Console Programmable RPN Calculator 68

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SIGMA++, S++ Add values from the memory registers to

the statistical registers. The X stack

register contains the value aaaa.bbbb that

defines the range of memory registers

aaaa to bbbb where the pairs of (X, Y)

values reside. This command does not

support transforming the pairs of (X, Y)

values. If you wish to transform the data

use the command S+T in Table 3.

This command does not clear the

statistical registers before adding the data.

You are responsible for separately

initializing the statistical registers. This

feature allows you to add values from

different areas of the memory registers

using multiple calls to this command.

1.0012 S++

Adds the data in

memory registers

Mem(1) to Mem(12)

as pairs of (X, Y) values

to the statistical

registers.

SIGN Return the sign of the value in the X stack

register. The command returns 1, 0,

and -1, for positive values, zero, and

negative values, respectively, in the X stack

register.

3 sign

Returns 1.

SIN, COS, TAN Calculate the common trigonometric

functions. The arguments are angles in

radians.

PI 4 / sin

Returns 0.7071067811

SIND, COSD, TAND Calculate the common trigonometric

functions. The arguments are angles in

degrees.

45 sind

Returns 0.7071067811

SINH, COSH, TANH Calculate the common hyperbolic

functions.

1 sinh

Retiurns 1.175201193

SQRT Calculate the square root value. 144 sqrt

Returns 12.

STO, STO+, STO–,

STO*, STO/

Store with optional arithmetic operations.

The X register contains the value to store.

sto 04

sto+ 05

sto– 10

Console Programmable RPN Calculator 69

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

STOIND, STOIND+,

STOIND–, STOIND*,

STOIND/

Perform an indirect store with optional

arithmetic operations. The X register

contains the value to store. The argument

contains the memory register number to

use for indirect addressing.

stoind 10

stoind+ 43

STOSTX, STOSTY,

STOSTZ, and STOSTT

STOSTINDX,

STOSTINDY,

STOSTINDZ, and

STOSTINDT

Store the value of the X register in the X, Y,

Z, or T registers. The STOSTX is practically a

NOP (no operation) command. The

application also supports register

arithmetic with these commands.

Examples are STOSTY+, STOSTZ*, and

STOSTT/. In addition, the application

supports indirect addressing for the

STOSTX, STOSTY, STOSTZ, and STOSTT

commands. Examples are STOINDX+,

STOSTINDY, STOSTINDY/, and STOSTINDT/.

stostz*

SUMNEGPWR Calculate the following summation:

∑ 1/𝑥^𝑖

𝑛

𝑖=𝑗

The stack provides the following

information:

T:

Z: The (positive) value for the upper

summation limit n.

Y: The (positive) value for the lower

summation limit j.

X: The value for x.

10 1 1.1 sumnegpwr

Returns 6.144567105.

10 1 –1.1 sumnegpwr

Returns –0.29259843.

Console Programmable RPN Calculator 70

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SUMNEGPWRTOL Calculate the following summation until

the absolute value of an added term

reaches or falls below a tolerance limit:

∑
1

𝑥𝑖

|
1

𝑥𝑖|<𝑇𝑜𝑙𝑒𝑟

𝑖=𝑗,𝑥>1

The stack provides the following

information:

T:

Z: The tolerance value.

Y: The (positive) value for the lower

summation limit j.

X: The value for x which must be greater

than 1.

If the argument for x is 1 or less, the

command returns a large value.

1e-8 1 1.1

sumnegpwrtol

Returns 9.999999906.

SUMPWR Calculate the following summation:

∑ 𝑥^𝑖

𝑛

𝑖=𝑗

The stack provides the following

information:

T:

Z: The (positive) value for the upper

summation limit n.

Y: The (positive) value for the lower

summation limit j.

X: The value for x.

10 1 1.1 sumpwr

Returns 17.53116706.

10 1 –1.1 sumpwr

Returns 0.834817479.

Console Programmable RPN Calculator 71

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SUMPWRTOL Calculate the following summation until

the absolute value of an added term

reaches or falls below a tolerance limit:

∑ 𝑥^𝑖

|𝑥^𝑖|<𝑇𝑜𝑙𝑒𝑟

𝑖=𝑗,𝑥<1

The stack provides the following

information:

T:

Z: The tolerance value.

Y: The (positive) value for the lower

summation limit j.

X: The value for x which must be less than

1.

If the argument x is 1 or greater, the

command returns a large value.

1e-8 1 .9 sumpwrtol

Returns 8.999999911.

SUMX, SUMX2, SUMY,

SUMY2, SUMXY,

SUMN

Push the sum of X, sum of X squared, sum

of Y, sum of Y squared, sum of X*Y, and

the number of statistical observations,

respectively, in the stack.

Sumn

X>0?

Gto there

Returns the number of

observations in the

stack and test its value

for being positive.

T_CDF and T_ICDF Calculate the Student–t cumulative

distribution function and its inverse. The

stack provides the following input:

T:

Z:

Y: The degrees of freedom.

X: The argument X.

In the case of the command for the inverse

pdf, the value of the X stack register is the

probability expressed as a fraction.

5 0.5 t_cdf

Returns 0.6808505641

5 0.7 t_icdf

Returns 0.5589837309

Console Programmable RPN Calculator 72

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

T_PDF Calculate the Student–t probability

distribution function. The stack provides

the following input:

T:

Z:

Y: The degrees of freedom.

X: The argument X.

10 1 t_pdf

Returns 0.2303619892

VERSION Display the application’s version.

X^2 Calculate the squared value. 12 x^2

Returns 144.

X<>nnn, Y<>nnn,

Z<>nnn, T<>nnn

Swap the value in the X, Y, Z, or T stack

register with a memory register at index

nnn. The index of the memory register is

part of the command.

X<>10

Swaps the X register

with the memory

register Mem(10).

T<>55

Swaps the T register

with the memory

register Mem(55).

X<>Y, X<>Z, X<> Z,

Y<>Z, Y<>T, Z<>T

Swap values between various stack

registers.

Console Programmable RPN Calculator 73

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

XHAT Project the value of the Y on X using the

value in the X register and the results of a

recent invocation of the LRXY command. If

the application Is unable to provide you

with the correct projected value of X, it

places a number higher than 1E99 in the X

register.

Please keep in mind that if you

transformed the original X and/or Y data,

then you need to transform the projected

Y value before using this command. In

addition, if you transformed the original

values for variable X, then you need to

apply an inverse transformation to the

result of the XHAT command. Failing to

observe these rules yield meaningless

results!

12

Xhat

1E99

X<>Y

X>Y?

Gto err

Y^X Raise the value of the Y register to power

found in the X register

2 3 y^3

Returns 8.

YHAT Project the value of the X on Y using the

value in the X register and the results of a

recent invocation of the LRXY command. If

the application Is unable to provide you

with the correct projected value of Y, it

places a number higher than 1E99 in the X

register.

Please keep in mind that if you

transformed the original X and/or Y data,

then you need to transform the projected

X value before using this command. In

addition, if you transformed the original

values for variable Y, then you need to

apply an inverse transformation to the

result of the YHAT command. Failing to

observe these rules yield meaningless

results!

12

Yhat

1E99

X<>Y

X>Y?

Gto err

Console Programmable RPN Calculator 74

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ZETA Calculate the Riemann Zeta function. The X

register contains the argument for the

function and the Y register contains the

tolerance value. If this value is less than

1E-8, the command uses 1E-8 as the

working tolerance value.

The Riemann Zeta function is defined by

the following equation:

𝜁(𝑠) = ∑ 1/(𝑛 + 1)^𝑠

∞

𝑛=0

1e-8 2 1e-8

zeta

Returns 1.644834071.

ZETA2 Calculate the Hurwitz Zeta function, ζ(s, q),

(a generalized form of the Riemann Zeta

function, ζ(s, 1)). The Hurwitz Zeta function

is defined by the following equation:

𝜁(𝑠, 𝑞) = ∑ 1/(𝑛 + 𝑞)^𝑠

∞

𝑛=0

The stack provides the following input

data:

T:

Z: The q factor.

Y: The tolerance value.

X: The argument s.

1 1e-8 2 1e-8

zeta2

Returns 1.644834071.

Table 2. Functions used in calculation and programming modes.

Programming and Advanced Functions
Table 3 shows the list of commands that support programming and advanced functions and

operations. Appendices B and C contain summaries for the various types of store and recall

commands that you can use in writing your programs that run under the CPRCA application.

Console Programmable RPN Calculator 75

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

' (single quote)

" (double quote)

Copy text after the single or double

quote to the Alpha register. You can

optionally end the text with a matching

single or double quote to insert trailing

spaces in the Alpha register.

Otherwise, the trailing single or double

quote character is not needed.

'Hello

"Hello World "

|– (bar and

dash/minus

characters)

Append text to the alpha register. You

can optionally end the text with a

single or double quote to insert trailing

spaces in the Alpha register.

Otherwise, the trailing single or double

quote character is not needed

|– world!

+RIDX, +SIDX Increment or decrement the value of

the recall or storage index. The integer

value of the X stack register (which can

be positive or negative) specifies the

shift in the index value. The command

may include the name of the array. If

omitted, the command uses the Alpha

register to select the array variable.

‘Xarr
0

Sidx

…

4

+sidx

ADDDT Add a date unit stored in a text

variable. The name of the text variable

is the argument for this command. The

integer value of the X register contains

the value to add. The Alpha register

contains the unit of time to add. These

units are:

 Year to add years.

 Month to add months.

 Day to add days.

 Hour to add hours.

 Minute to add minutes.

 Second to add seconds.

 Week to add week days.

 Weekofyear to add weeks.

'#1/1/2016 2:00:00 PM#"

asto dt1

1

'Day

adddt dt1

viewdt dt1

Adds 1 day to the date

1/1/2016 stored in text

variable dt1. The last

command displays

“1/2/2016 2:00:00 PM”

that is currently stored in

text variable dt1.

Console Programmable RPN Calculator 76

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

AINPUT Display the contents of the Alpha

register as a prompt message and

replace the content of the Alpha

register with the user’s input.

'Enter filename

ainput

asto filename

ARCL Copy text from a named text register

into the Alpha register.

Arcl Hi

Copies text stored in text

variable Hi to the Alpha

register.

ARCL– Prepend text from a named text

register to the Alpha register.

Arcl– Hi

Prepends text stored in

text variable Hi to the

Alpha register.

ARCL+ Append text from a named text

register to the Alpha register.

Arcl+ Hi

Appends text stored in text

variable Hi to the Alpha

register.

ARCLIX, ARCLIY,

ARCLIZ, ARCLIT

Append the integer part of the

selected stack register to the Alpha

register.

Pi

sqrt

‘X=

ARCLIX

AVIEW

Displays “X=3”.

ARCLS– Prepend text from a named text

register to the Alpha register. The

command inserts a space between the

two merged strings.

Arcls– Hi

Prepends text stored in

text variable Hi to the

Alpha register.

ARCLS+ Append text from a named text

register to the Alpha register. The

command inserts a space between the

two merged strings.

Arcls+ Hi

Appends text stored in text

variable Hi to the Alpha

register.

Console Programmable RPN Calculator 77

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARCLX, ARCLY, ARCLZ,

ARCLT

Append the value in the selected stack

register to the Alpha register.

Pi

sqrt

'X=

ARCLX

AVIEW

Appends the square root of

pi (located in the X stack

register) to the text “X=” in

the Alpha register, and

then displays the result.

Console Programmable RPN Calculator 78

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARCOPY Copy one array variable into another.

The target array variable may or may

not already exist. In the latter case, the

command creates the target array

variable. This command copies the

data and other information (such as

the array size, sorted–elements status,

and recall/storage index), making an

exact replica (except for the name) of

the array variable. The command can

have four types of arguments:

1. Two arguments separated by a

comma. The first argument is

the name of the source array

variable. The second argument

is the name of the target array

variable.

2. One argument (the source

array variable). The command

uses the contents of the Alpha

register to obtain the name of

the target array variable.

3. One argument that starts with

a comma to indicate that it is

the target array variable. The

command uses the contents of

the Alpha register to obtain the

name of the source array

variable.

4. No arguments. The command

expects the Alpha register to

contain the names of the two

array variables, separated by a

comma.

Option 1

Arcopy xarr,yarr

Option 2

'yarr

Arcopy xarr

Option 3

‘Xarr
Arcopy ,yarr

Option 4

‘Xarr,yarr

arcopy

Each of the four examples

copies the data from the

array Xarr into the array

Yarr.

Console Programmable RPN Calculator 79

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARDEL Delete an array variable. This

command may include the name of the

array to be removed. If omitted, the

command uses the Alpha register to

obtain the name of the targeted array.

Ardel xarr

Deletes the array Xarr.

ARFILLINTRND Fill an array variable with random

integers. The command can include the

name of the array. Otherwise, the

command uses the contents of the

Alpha register to obtain the name of

the array variable. The Y and X stack

registers provide the high and low

integer limits, respectively, for the

uniformly distributed random

numbers.

‘Xarr
100

1000

ARFILLINTRND

Fills the elements of array

Xarr with uniformly

distributed random

numbers in the range of

100 to 1000.

ARFILLNORMRND Fill an array variable with normally–

distributed random numbers. The

command can include the name of the

array variable. Otherwise, the

command uses the contents of the

Alpha register to obtain the name of

the array variable. The Y and X stack

registers provide the standard

deviation and mean values,

respectively, for the normally–

distributed random numbers.

‘Xarr
1

0

ARFILLNORMRND

Fills the elements of array

Xarr with normally–

distributed random

numbers with a mean of 0

and a standard deviation of

1.

ARFILLRND Fill an array variable with uniformly–

distributed random values. The

command can include the name of the

array variable. Otherwise, the

command uses the contents of the

Alpha register to obtain the name of

the array variable. The Y and X stack

registers provide the high and low

limits, respectively, for the uniformly

distributed random numbers.

‘Xarr

1

10

ARFILLRND

Fills the elements or array

Xarr with uniformly–

distributed random

numbers in the range of 1

to 10.

Console Programmable RPN Calculator 80

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARFILLSEQ Fill the elements of an array variable

with a sequence of values. The

command can include the name of the

array variable. Otherwise, the

command uses the contents of the

Alpha register to obtain the name of

the array variable. The Y and X stack

registers provide the increment in

values and the initial value,

respectively, for the sequence of

numbers. The initial values and the

increment in values can be zero,

negative values, positive values, or any

combination of these values.

‘Xarr
1

10

ARFILLRND

Fills the array Xarr with a

sequence of numbers that

starts with 10 and

increases by 1.

ARGETSIZE Return the number of array elements

in an array variable. The command can

include the name of the array variable.

Otherwise, the command uses the

contents of the Alpha register to

obtain the name of the array variable.

The command stores the array size in

the X stack register.

‘Xarr

Argetsize

Returns the number of

elements in array Xarr.

ARNEW Create a new array variable. The

command can include the name of the

array variable. Otherwise, the

command uses the contents of the

Alpha register to obtain the name of

the array variable. The X register

specifies the number of array

elements. These elements are

numbered from 0 and up to the size of

the array minus one. The command

stores zeros in the array elements.

If the array variable already exists, the

command resizes and reinitializes the

array variable.

100

‘Xarr

ARNEW

Creates an array of 100

elements and name it

Xaerr.

Console Programmable RPN Calculator 81

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARNEWINTRND Create a new array variable and fill it

with uniformly–distributed random

integers. The command can include the

name of the array variable. Otherwise,

the command uses the contents of the

Alpha register to obtain the name of

the array variable. The X register

specifies the number of array

elements. The Z and Y stack registers

provide the high and low integers,

respectively, for the uniformly–

distributed random numbers.

If the array variable already exists, the

command resizes and reinitializes the

array variable.

‘Xarr
1000

100

50

ARNEWINTRND

Creates an array of 50

elements and name it Xarr.

Fills the array with

uniformly–distributed

random numbers in the

range of 100 to 1000.

ARNEWNORMINTRND Create a new array variable and fill it

with normally–distributed random

integers. The command can include the

name of the array variable. Otherwise,

the command uses the contents of the

Alpha register to obtain the name of

the array variable. The X register

specifies the number of array

elements. The Z and Y stack registers

provide the standard deviation and

mean, respectively, for the normally–

distributed random integers.

If the array variable already exists, the

command resizes and reinitializes the

array variable.

‘Xarr
10

0

50

ARNEWNORMINTRND

Creates an array of 50

elements and name it Xarr.

Fills the array with

normally–distributed

random integers with a

mean of 0 and a standard

deviation of 10.

Console Programmable RPN Calculator 82

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARNEWNORMRND Create a new array variable and fill it

with normally–distributed random

numbers. The command can include

the name of the array variable.

Otherwise, the command uses the

contents of the Alpha register to

obtain the name of the array variable.

The X register specifies the number of

array elements. The Z and Y stack

registers provide the standard

deviation and mean, respectively, for

the normally–distributed random

numbers.

If the array variable already exists, the

command resizes and reinitializes the

array variable.

‘Xarr
1

0

50

ARNEWNORMRND

Creates an array of 50

elements and name it Xarr.

Fills the array with

normally–distributed

random numbers with a

mean of 0 and a standard

deviation of 1.

ARNEWRND Create a new array variable and fill it

with uniformly–distributed random

values. The command can include the

name of the array variable. Otherwise,

the command uses the contents of the

Alpha register to obtain the name of

the array variable. The X register

specifies the number of array

elements. The Z and Y stack registers

provide the high and low limits,

respectively, for the uniformly–

distributed random numbers.

If the array variable already exists, the

command possibly resizes and

reinitializes the array variable.

‘Xarr

10

1

100

ARNEWRND

Creates an array of 100

elements and name it Xarr.

Fills the array with

uniformly–distributed

random numbers in the

range of 1 to 10.

Console Programmable RPN Calculator 83

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARNEWSEQ Create a new array variable and fill it

with a sequence of values. The

command can include the name of the

array variable. Otherwise, the

command uses the contents of the

Alpha register to obtain the name of

the array variable. The stack provides

the following information:

T:

Z: The increment value for the

sequence.

Y: The initial value for the sequence.

X: The number of array elements.

The initial values and the increment in

values can be 0, negative values,

positive values, or any combination of

these values.

If the array variable already exists, the

command possibly resizes and

reinitializes the array variable.

‘Xarr
1

10

100

arnewseq

Creates an array of 100

elements and name it Xarr.

Fills the array with a

sequence of numbers that

starts with 10 and

increases by 1. The

sequence stored would be

10, 11, …, 109.

ARRESET Clear the memory associated with an

array variable. The command can

specify the array variable or use the

contents of the Alpha register to

obtain the array variable.

arrreset Xarr

Resets the memory of the

array variable Xarr.

ARSWAP Swap the data of two array variables.

The command takes two space–

delimited array names. If the

command has no arguments, it expects

the Alpha register to contain the

names of the two arrays. Including just

one array name or no names generates

a runtime error.

This command simply swaps the names

of the array objects. As such, there is

no need to swap the values in the

targeted arrays.

Arswap Xarr Yarr

Swaps the data associated

with the array variables

Xarr and Yarr.

Console Programmable RPN Calculator 84

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ARVAR2MEM Copy values from an array variable to

the memory registers. The command

can specify the array variable or use

the contents of the Alpha register to

select the array variable. The stack

contains the following parameters:

T:

Z: The index of the first array variable

element that is copied from.

Y: The index of the last memory

registers that is copied into.

X: The index of the first memory

registers that is copied into.

The command does it’s best to comply

with the number and location of the

copied data. The command stores the

number of actual values copied in the

X register.

‘Xarr

0

22

0

arvar2mem

Copies values from the

array variable Xarr, starting

with the first array

element, into memory

registers Mem(0) to

Mem(22).

ASTO Store the content of the Alpha register

in a named text register.

'Hello World

asto Hi

ATOX Convert the number stored in the

Alpha register into a number and store

it in the X register.

'1.234

Atox

Returns 1.234.

AVIEW Display the content of named variable

that stores text. If you omit this

argument, the command displays the

contents of the Alpha register. The

program resumes execution after

displaying text.

'Hello

Aview

Displays

Hello

AVIEW2 Display the content of named variable

that stores text. If you omit this

argument, the command displays the

contents of the Alpha register. This

command prompts the user to press

Enter to continue program execution.

'Hello

Aview2

Displays:

Hello

Press Enter to resume …

Console Programmable RPN Calculator 85

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

BESTLR Search for the best linearized

regression model for X and Y in powers

ranging from –4 to 4, in increments of

0.5 for each variable. The command

interprets the power of zero as a

request to take the logarithm of the

variable. This command uses a block of

data read using the READDATA2

command. The stack provides the

following input data:

T:

Z:

Y:

X: Index for the first register in the

block read using READDATA2.

The program returns the following

values:

T:

Z: Coefficient of determination, R2, for

the best curve fit.

Y: Intercept for the best curve fit.

X: Slope for the best curve fit.

The Alpha register contains a string

that describes the best model. Use the

BESTLRPWRS to obtain the powers of

variables X and Y for the best curve fit.

The command writes the regression

results for each model to the comma-

delimited file BESTLR_date_stamp.CSV.

The application uses the current date

stamp as part of the filename. This

approach creates a unique filename

and thus avoid writing over files

generated by previous sessions. You

can open the .CSV files with Excel. The

first row contains the header for the

columns. You can easily sort the data

See examples.

Console Programmable RPN Calculator 86

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

using the values in the first column

(the coefficient of determination) as

the key values for sorting the data in a

descending order. Each row contains

the following values:

 The coefficient of determination.

 The transformation power for

variable Y.

 The transformation power for

variable X.

 The intercept.

 The slope.

Console Programmable RPN Calculator 87

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

BESTLRPWRS Return the best powers for the

regression variables Y and X in the Y

and X registers, respectively.

See examples.

Console Programmable RPN Calculator 88

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

BESTMLR Search for the best multiple regression

model for variables X, Y and Z in

powers ranging from –4 to 4, in

increments of 0.5 for each variable.

The command interprets the power of

zero as a request to take the logarithm

of the variable. This command uses a

block of data read using the

READDATA3 command. The stack

provides the following input data:

T:

Z:

Y:

X: Index for the first register in the

block read using READDATA3.

The program returns the following

values:

T: Coefficient of determination, R2, for

the best curve fit.

Z: Intercept for the best curve fit.

Y: Slope for Y for the best curve fit.

X: Slope for X for the best curve fit.

The Alpha register contains a string

that describes the best model. Use the

BESTMLRPWRS to obtain the powers of

variables X, Y and Z for the best curve

fit.

The command writes the regression

results for each model to the comma-

delimited file

BESTMLR_date_stamp.CSV. The

application uses the current date

stamp as part of the filename. This

approach creates a unique filename

and thus avoid writing over files

generated by previous sessions. You

can open the .CSV files with Excel. The

See examples.

Console Programmable RPN Calculator 89

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

first row contains the header for the

columns. You can easily sort the data

using the values in the first column

(the coefficient of determination) as

the key values for sorting the data in a

descending order. Each row contains

the following values:

 The coefficient of determination.

 The transformation power for

variable Y.

 The transformation power for

variable X.

 The intercept.

 The slope.

Console Programmable RPN Calculator 90

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

BESTMLRPWRS Return the best powers for the

regression variables Z, Y and X in the Z,

Y and X registers, respectively.

See examples.

Console Programmable RPN Calculator 91

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

BINSEARCHA Perform an efficient binary search for a

value in a sorted array variable. The

command may include the name of the

array. If this argument is omitted, the

command uses the Alpha register to

specify the array variable to search.

The Stack provides the following

search parameters:

T:

Z:

Y: Tolerance value.

X: The search value.

This command will sort the array

variable if its elements are not already

sorted. The supporting software keeps

track of the in–order state of each

array variable, as you manipulate its

elements.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The command returns the following

results in the stack registers:

T:

Z: The number of equal (within the

specified tolerance value) values

located above the matching element.

Y: The number of equal (within the

specified tolerance value) values

located below the matching element.

X: The index of the searched value.

The command returns the array index

of the matching element in register X.

Since this index does not necessarily

‘Xarr
1E-6

1.5

binsearcha

X<0?

Gto notFound

Performs a binary searche

in the array Xarr for the

element that stores 1.5.

The tolerance for the

search is 1E-6.

Console Programmable RPN Calculator 92

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

point to the first matching item (when

duplicates exists) it returns additional

information in the other stack

registers. Registers Y and Z contain the

number of duplicates (if any), that are

located below and above the matching

array elements, respectively. If there is

no matching element in the array

variables, then registers Y and Z will

contain zeros. If the matching element

is unique in the array variable, you also

get zeros in the Y and Z stack registers.

Otherwise, the values in registers Y and

Z depend on the number of duplicates

in the array and their location in the

array with respect to the matching

element.

If the supplied array name is valid but

the searched value is not found, the

command returns –1. If the supplied

array name does not exist in the

collection of array names, the

command returns –2.

Console Programmable RPN Calculator 93

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

CLA Clear the Alpha register.

CLRFLGS Clear all flags.

Console Programmable RPN Calculator 94

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

CSEARCH Search for a value in the memory

registers, using a forward or backward

circular search scheme. The search

begins at a chosen element and moves

to either ends of the memory registers.

If the search does not find a match, it

resumes at the other end of the

memory registers until it reaches the

point where the search started. The

Stack provides the following search

parameters:

T: Search mode.

Z: Tolerance value.

Y: Index of the first memory register to

search.

X: The search value.

The search mode instructs the

command how to compare the search

value with the memory registers:

1. Positive to search for the first

memory register with a value

that is greater than the search

value.

2. Zero to search the first memory

register with a value that is

equal (within the specified

tolerance limit) to the search

value.

3. Negative to search for the first

memory register with a value

that is less than the search

value.

The sign of the Index, of the first

memory register to search, determines

the direction of the circular search. A

zero and positive values move the

search in increasing register indices. By

0

1E-6

9

1.5

cSearch

X<0?

Gto notFound

Searches the memory

registers for the element

that stores 1.5, starting

with the 10th element. The

tolerance for the search is

1E-6.

Console Programmable RPN Calculator 95

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

contrast, negative values direct the

search in decreasing register indices.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The command returns the index of the

matching element in the memory

register. If the searched value is not

found, the command returns –1.

Console Programmable RPN Calculator 96

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

CSEARCHA Search for a value in an array variable,

using a forward or backward circular

search scheme. The search begins at a

chosen element and moves to either

ends of the array. If the search does

not find a match, it resumes at the

other end of the array until it reaches

the point where the search started.

The command may include the name

of the array. If this argument is

omitted, the command uses the Alpha

register to specify the array variable to

search. The Stack provides the

following search parameters:

T: Search mode.

Z: Tolerance value.

Y: Index of the first array variable

element to search.

X: The search value.

The search mode instructs the

command how to compare the search

value with the array variable elements:

1. Positive to search for the first

array variable element with a

value that is greater than the

search value.

2. Zero to search the first array

element with a value that is

equal (within the specified

tolerance limit) to the search

value.

3. Negative to search for the first

array element with a value that

is less than the search value.

The sign of the Index, of first array

element to search, determines the

direction of the circular search. A zero

and positive values direct the search in

‘Xarr
0

1E-6

9

1.5

csearcha

X<0?

Gto notFound

Searches the array Xarr for

the element that stores

1.5, starting with the 10th

element. The tolerance for

the search is 1E-6.

Console Programmable RPN Calculator 97

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

increasing array indices. By contrast,

negative values move the search in

decreasing array indices.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The command returns the index of the

matching element in the array variable.

If the supplied array name is valid but

the searched value is not found, the

command returns –1. If the supplied

array name does not exist in the

collection of array names, the

command returns –2.

Console Programmable RPN Calculator 98

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

DATAM Insert a sequence of values in the

memory registers from a comma–

delimited list of values. The first value

after the DATAM keyword is the index

of the first memory registers that

receives the data. The remaining

values are sequentially stored in the

memory registers.

DATAM 10,1,2,3,4,5

Stores the values 1 to 5

starting at Mem(10).

DATAR Store a sequence of values in an array

variable. The command requires a list

of comma–separated values. The first

value in the list of data is the name of

the array that stores the data. This

argument is optional. When omitted,

the command looks to the Alpha

register to supply the name of the

array. The second value in the list is

the index where the insertion in the

array variable begins. The remaining

list values are the data to be inserted.

‘Xarr
DATAR 0,0,1,2,3,4,5

‘Xarr

DATAR 6,6,7,8,9,10

The above two DATAR

commands store values in

the array variable Xarr at

indices 0 to 10.

DATAS Add pairs of (X, Y) values to the

statistical registers from a comma–

delimited list of values. If the list has an

odd number of values, the command

ignores the last value.

DATAS 1,2,3,4,5,6

Console Programmable RPN Calculator 99

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

DIFFDT Subtract date units stored in two text

variables. The space-delimited names

of the text variables are the arguments

for this command. The command

subtracts the first date from the

second one. The command places in

the X register the difference in the

time units. The Alpha register contains

the unit of time to add. These units

are:

 Year to subtract years.

 Month to subtract months.

 Day to subtract days.

 Hour to subtract hours.

 Minute to subtract minutes.

 Second to subtract seconds.

 Week to subtract week days.

 Weekofyear to subtract weeks.

'#1/1/2016 2:00:00 PM#"

asto dt1

'#1/1/2017 2:00:00 PM#"

asto dt2

1

'Day

diffdt dt1 dt2

viewx

Stores two dates in the

text variables dt1 and dt2,

subtracts the number of

days between these dates,

and displays the difference

which is 366 days.

DRCL Recall the values of the date and time

from to a text variable and into the

stack. The Y register contains the

floating-point value of the date (as

yyyy.mmdd) and the X stack register

contains the floating-point value of

time (hh.mmss). The name of the text

variable is the argument for this

command.

drcl dtVar

Recalls the date and time

from the text variable

dtVar. The Y and X stack

registers will contain the

floating-point format of

the date and time,

respectively.

DSE, DSEIND Implement the Decrement and Skip if

Equal, somewhat like in the HP–41C

calculator, but with an extended range

that handles 0 to 9999. The DSEIND

uses indirect addressing.

lbl 0

….

dse 10

gto 0

DSE41, DSEIND41 Implement the Decrement and Skip if

Equal, just like in the HP–41C

calculator. The DSEIND41 uses indirect

addressing.

lbl 0

….

dse41 10

gto 0

Console Programmable RPN Calculator 100

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

DSL, DSLIND Implement the Decrement and Skip if

Less, which is similar to the DSE

command. The command DSLIND uses

indirect addressing.

lbl 0

….

dsl 10

gto 0

DSL41, DSLIND41 Implement an HP–41C version of the

Decrement and Skip if Less, which is

similar to the DSE41 command. The

command DSLIND41 uses indirect

addressing.

lbl 0

….

dsl41 10

gto 0

DSP? Display the current display format and

also copy it to the Alpha register.

DSTO Store the values of the date and time

found in the stack to a text variable.

The Y register contains the floating-

point value of the date (as yyyy.mmdd)

and the X stack register contains the

floating-point value of time (hh.mmss).

The name of the text variable is the

argument for this command.

2016.0101

6.3000

dsto dtVar

Stores the date and time

values found in the stack to

the text variable dtVar.

DVIEW View the date text that is stored in a

text variable (minus the leading and

trailing # characters). The name of the

variable is the argument for this

command. This command is the same

as the command VIEWDT.

'#1/1/2016 2:00:00 PM#"

asto dt1

dview dt1

Displays the date in text

variable dt1, which is

“1/1/2016 2:00:00 PM”.

END End program execution.

EXISTALPHAVAR Test if a named text variable exists. The

Alpha register contains the name of

the tested text variable. Register X

contains the index of the flag that

receives the Logical result. The flag will

be set if the text variable exists, and

cleared if it does not.

‘MyText

1

Existalphavar

Tests if there exists a text

variable named MyText.

The command stores the

Boolean result in flag 1.

Console Programmable RPN Calculator 101

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

EXISTARRNAME Test if an array variable exists. The

Alpha register contains the name of

the tested array variable. Register X

contains the index of the flag that

receives the Logical result. The flag will

be set if the array variable exists, and

cleared if it does not.

‘MyX

0

Existarrname

Tests if MyX is an existing

array variable. The

command stores the

Boolean result in flag 0.

FILTER Filter out (remove) characters in Alpha

register. The argument for this

command specifies the name of a text

variable that contains the set of

characters to filter.

‘!@#$%^&*

Asto myFilterStr

‘He$l!lo Wo&rld

Filter myFilterStr

Updates the Alpha register

with the string “Hello

World”.

Console Programmable RPN Calculator 102

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

FOR Offer a command that supports BASIC–

like FOR iterations that can replace the

ISG, DSE, and DSL loop control

commands. The command uses the

name of a text variable. If omitted, the

command uses the Alpha register to

obtain the name of that text variable.

The text variable (which I will also call

the loop control variable) has text that

contains images of numbers organized

using the following format:

Current_Value, Final_Value, Increment

The first parameter is the current value

and also serves as the initial value. The

second parameter specifies the upper

limit for the iterations. The increment

parameter specifies the non–zero

increment in the current value. Each

call to command INC perform the

following tests and updates:

1. Increment the current value.

2. If the increment value is

positive, the command tests if

the current value is less than or

equal to the final value.

3. If the increment value is

negative, the command tests if

the current value is greater

than or equal to the final value.

4. If either condition in steps 2 or

3 is true, the command updates

the text in the loop control

variable. This update reflects

the new current value of the

loop control variable.

5. If both conditions in steps 2 and

3 is false, the command skips

the next program line.

lbl start

'1,100,1

asto incVar

0

lbl 0

forcl incvar

+

for incvar

gto 0

end

Calculate the sum of

integers from 1 to 100 in

increments of 1. The above

code returns the value

5050.

Console Programmable RPN Calculator 103

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

FORCL Recall the current value in a text

variable that is used as a loop control

variable with the command FOR. The

command requires the name of the

loop control variable. If omitted, the

command uses the Alpha register to

obtain the name of the loop control

variable.

lbl start

'1,100,1

asto incVar

0

lbl 0

forcl incvar

+

for incvar

gto 0

end

Calculate the sum of

integers from 1 to 100 in

increments of 1. The above

code returns the value

5050.

FORSET Set the initial, final, and increment

values stored as a string in a text

variable. The name of this variable is

the argument for this command. If

omitted, the command uses the Alpha

register to obtain the name of the text

variable. The stack provides the

following data input:

T:

Z: The increment value.

Y: The final value.

X: The initial value.

1

100

1

Foset loopVar

Sets the text in the variable

loopVar to “1,100,1”.

FRMT Append a formatted value of the X

stack register to the Alpha register. See

Appendix A for a summary of the

formatting strings used by this

command. The command can include

the output format. If omitted, the

command uses the current display

format.

'pi=

pi

FRMT F2

Displays “pi=3.14”.

Console Programmable RPN Calculator 104

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

FS? IND, FS?C IND,

FS?S IND, FS?FLIP

IND, FC? IND, FC?C

IND, FC?S IND,

FC?FLIP IND

Support for indirect versions of the

commands that tests the flags. The

space character that appears between

any flag test (such as FS?C) and the

word IND is optional. Inserting that

space enhances readability.

Fc?c ind 0

Gto there

Test if the flag specified by

memory register 0 is clear

and then set that flag.

FS?, FS?C, FS?S,

FS?FLIP, FC?, FC?C,

FC?S, FC?FLIP

Test if a flag is set or clear. The

command set has the option to set,

clear, or flip the flag after it is tested to

be set or clear.

FC?S 0

Test if flag 0 is clear and

then set that flag.

Console Programmable RPN Calculator 105

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSCHEBQUAD (VER
1)

Integrate the RPN expression in the

Alpha register using the Gauss-

Chebyshev Quadrature. The Gaussian-

Chebyshev quadrature performs a

numerical integration for the following

integral:

∫ 𝑓(𝑥)𝑑𝑥
1

−1
 = ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Chebyshev

function. The value of each w(i) is

equal to π/n. The value of x(i) is

calculated using:

𝑥(𝑖) = cos (
2𝑖 − 1

2𝑛
∗ 𝜋)

The integral is calculated using:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

(
𝑏−𝑎

2
)(

π

n
) ∑ 𝑓 (

(𝑏−𝑎)𝑥(𝑖)

2
+

𝑎+𝑏

2
)𝑛

𝑖=1 ∗

√(1 − 𝑥(𝑖) ∗ 𝑥(𝑖))

The stack provides the following input:

T:

Z: The order of the Chebyshev

polynomial used in the quadrature

Y: The upper limit for the integral.

X: The lower limit for the integral.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

LBL Start

'1/X

100

1

2

gausschebquad

end

Will integrate 1/X from X=1

to X=2 using the roots of

Chebyshev polynomial of

order 100.

Console Programmable RPN Calculator 106

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSCHEBQUAD (VER
2)

Integrate the function defined by a

label in the Alpha register. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the function to be integrated. The

Gaussian- Chebyshev quadrature

performs a numerical integration for

the following integral:

∫ 𝑓(𝑥)𝑑𝑥
1

−1
 = ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Chebyshev

function. The value of each w(i) is

equal to π/n. The value of x(i) is

calculated using:

𝑥(𝑖) = cos (
2𝑖 − 1

2𝑛
∗ 𝜋)

The integral is calculated using:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

(
𝑏−𝑎

2
)(

π

n
) ∑ 𝑓 (

(𝑏−𝑎)𝑥(𝑖)

2
+

𝑎+𝑏

2
)𝑛

𝑖=1 ∗

√(1 − 𝑥(𝑖) ∗ 𝑥(𝑖))

The stack provides the following input:

T:

Z: The order of the Chebyshev

polynomial used in the quadrature

Y: The upper limit for the integral.

X: The lower limit for the integral.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

LBL Start

'gsb reciprocal

100

1

2

gausschebquad

end

lbl reciprocal

1/X

rtn

Will integrate 1/X from X=1

to X=2 using the roots of

Chebyshev polynomial of

order 100.

Console Programmable RPN Calculator 107

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSHERQUAD (VER 1) Integrate the RPN expression in the

Alpha register using the Gauss-Hermite

Quadrature. This quadrature performs

a numerical integration for the

following integral:

∫ 𝑒−𝑥^2𝑓(𝑥)𝑑𝑥
∞

−∞
= ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Hermite function.

The stack provides the following input:

T:

Z: The tolerance value for the result.

Y: The step size used in searching for

the roots of the Hermite polynomial.

X: The order of the Hermite polynomial

used in the quadrature.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

‘cos

1E–6

.01

10

gaussherquad

Will integrate exp(–

x^2)*cos(x) between minus

and plus infinity, using a

tolerance value of 1E–6

and the roots of Hermite

polynomial of order 10.

The result should be close

to the exact integral of

1.38039.

Console Programmable RPN Calculator 108

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSHERQUAD (VER 2) Integrate the function defined by a

label in the Alpha register using the

Gauss-Hermite quadrature. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the function to be integrated. The

Gaussian- Hermite quadrature

performs a numerical integration for

the following integral:

∫ 𝑒−𝑥^2𝑓(𝑥)𝑑𝑥
∞

−∞
= ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Hermite function.

The stack provides the following input:

T:

Z: The tolerance value for the result.

Y: The step size used in searching for

the roots of the Laguerre polynomial.

X: The order of the Laguerre

polynomial used in the quadrature.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

Lbl start

‘gsb fx

1E–6

.01

10

gaussherquad

end

lbl fx

cos

rtn

Will integrate exp(–

x^2)*cos(x) between minus

and plus infinity, using a

tolerance value of 1E–6

and the roots of Hermite

polynomial of order 10.

The result should be close

to the exact integral of

1.38039.

Console Programmable RPN Calculator 109

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSKRONQUAD (VER
1)

Perform a Gauss-Kronrod quadrature

that is similar to the Gauss-Legendre

quadrature, but more accurate.

The stack provides the following input:

T: The order of the Legendre

polynomial used in the quadrature

Z: The tolerance value that may be

needed by helper function of this

commands.

Y: The upper value of the integration

limit.

X: The lower value of the integration

limit.

LBL Start

5

1e–7

100

1

'1/X

gausskronquad

end

Displays the integral of 1/X

between 1 and 2, using a

fifth order polynomial.

GAUSSKRONQUAD (VER
2)

Perform a Gauss-Kronrod quadrature

that is similar to the Gauss-Legendre

quadrature, but more accurate. The

Alpha register must contain the

keyword GSB, followed by a space,

followed by the name of the label that

implements the function to be

integrated.

The stack provides the following input:

T: The order of the Legendre

polynomial used in the quadrature

Z: The tolerance value that may be

needed by helper function of this

commands.

Y: The upper value of the integration

limit.

X: The lower value of the integration

limit.

LBL Start

5

1e–7

100

1

'gsb fx

gausskronquad

end

lbl fx

1/X

rtn

Displays the integral of 1/X

between 1 and 2, using a

fifth order polynomial.

GAUSSKRONQUAD2 (VER
1)

Similar to command

GAUSSKRONQUAD. This command

differs in the algorithm that handles a

wide variety of integration ranges to

calculate the weights and abscissa.

Console Programmable RPN Calculator 110

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSKRONQUAD2 (VER
2)

Similar to command

GAUSSKRONQUAD. This command

differs in the algorithm that handles a

wide variety of integration ranges to

calculate the weights and abscissa.

GAUSSLAGQUAD (VER 1) Integrate the RPN expression in the

Alpha register using the Gauss-

Laguerre Quadrature. The Gaussian-

Laguerre quadrature performs a

numerical integration for the following

integral:

∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥
∞

0
= ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Laguerre function.

The stack provides the following input:

T:

Z: The tolerance value for the result.

Y: The step size used in searching for

the roots of the Laguerre polynomial.

X: The order of the Laguerre

polynomial used in the quadrature.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

LBL Start

'cos

1e–8

0.01

10

gausslagquad

end

Will integrate exp(-

x)*cos(x) from 0 to infinity

using a tolerance value of

1E–8, step search of 0.01

and the roots of Laguerre

polynomial of order 10.

The integral is 0.5.

Console Programmable RPN Calculator 111

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSLAGQUAD (VER 2) Integrate the function defined by a

label in the Alpha register using the

Gauss-Laguerre Quadrature. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the function to be integrated.

The Gaussian- Laguerre quadrature

performs a numerical integration for

the following integral:

∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥
∞

0
= ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Laguerre function.

The stack provides the following input:

T:

Z: The tolerance value for the result.

Y: The step size used in searching for

the roots of the Laguerre polynomial.

X: The order of the Laguerre

polynomial used in the quadrature.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

lbl start

‘gsb one

1e–8

0.01

10

gausslagquad

end

lbl one

cos

rtn

Will integrate exp(-

x)*cos(x) from 0 to infinity

using a tolerance value of

1E–8, step search of 0.01

and the roots of Laguerre

polynomial of order 10.

The integral is 0.5.

Console Programmable RPN Calculator 112

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSLEGQUAD (VER 1) Integrate the RPN expression in the

Alpha register using the Gauss-

Legendre Quadrature. The Gaussian-

Legendre quadrature performs a

numerical integration for the following

integral:

∫ 𝑓(𝑥)𝑑𝑥
1

−1
 = ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Legendre function.

The above integral can be mapped to

the range [a, b} using the following

equations:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

𝑏−𝑎

2
∫ 𝑓(

(𝑏−𝑎)𝑥

2
+

𝑎+𝑏

2
)𝑑𝑥

1

−1

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

𝑏−𝑎

2
∑ 𝑤(𝑖)𝑓 (

(𝑏−𝑎)𝑥(𝑖)

2
+

𝑎+𝑏

2
)𝑛

𝑖=1

The stack provides the following input:

T: The tolerance value for the result.

Z: The order of the Legendre

polynomial used in the quadrature

Y: The upper limit for the integral.

X: The lower limit for the integral.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

‘1/X

1E-6

10

2

1

gausslegquad

Will integrate 1/X from X=1

to X=2 using a tolerance

value of 1E-6 and the roots

of Legendre polynomial of

order 10.

Console Programmable RPN Calculator 113

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GAUSSLEGQUAD (VER 2) Integrate the function defined by a

label in the Alpha register. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the function to be integrated. The

Gaussian-Legendre quadrature

performs a numerical integration for

the following integral:

∫ 𝑓(𝑥)𝑑𝑥
1

−1
 = ∑ 𝑤(𝑖)𝑓(𝑥(𝑖))𝑛

𝑖=1

Where w(i) is a weight associated with

each x(i) root of the Legendre function.

The above integral can be mapped to

the range [a, b} using the following

equations:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

𝑏−𝑎

2
∫ 𝑓(

(𝑏−𝑎)𝑥

2
+

𝑎+𝑏

2
)𝑑𝑥

1

−1

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =

𝑏−𝑎

2
∑ 𝑤(𝑖)𝑓 (

(𝑏−𝑎)𝑥(𝑖)

2
+

𝑎+𝑏

2
)𝑛

𝑖=1

The stack provides the following input:

T: The tolerance value for the result.

Z: The order of the Legendre

polynomial used in the quadrature

Y: The upper limit for the integral.

X: The lower limit for the integral.

The command returns the value of the

integral in the X stack register. If there

is an error in the calculations, the

command displays a warning message

and inserts 0 in the X stack register.

lbl Start

‘gsb Recipocal

1E-6

10

2

1

gausslegquad

end

lbl Reciprocal

1/x

rtn

Will integrate 1/X from X=1

to X=2 using a tolerance

value of 1E-6 and the roots

of Legendre polynomial of

order 10.

Console Programmable RPN Calculator 114

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GETRIDX, GETSIDX Return the value of the recall or

storage indices of an array variable.

The command may include the name

of the array. If omitted, the command

uses the Alpha register to select the

array variable.

‘Xarr

getridx

GETSTAT Read the statistical registers from a

file. The command can include the

input filename. If not, the command

uses the contents of the Alpha register

as the input filename. The filename

must include a full path if it not located

in the same directory as that of the

CPRCA application.

‘C:\MyData\Data.txt

getstat

Reads the statistical

registers from file Data.txt.

Console Programmable RPN Calculator 115

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GFTEST?, GFTEST?C,

GFTEST?S,

GFTEST?FLIP

Perform a logical test on a group of

contiguous flags. The integer value of

the X stack register designates the

index of the first flag involved in the

group test. The argument for this

command is a string of 1s (where 1 is

the set state of a flag) and 0s (0 is the

clear state of a flag) that specify the

state of the subsequent flags. The

number of 1s and 0s also determine

the number of flags involved. If the

command has no argument, the

application uses the Alpha register as

source for the 1s and 0s needed for the

test. If the test fails, the CPRCA

application skips the next program line.

The string pattern must contain 0s and

1s only. Including any other character

causes the tests to fail and to generate

a runtime error.

The command GFTEST?C clears all

involved flags when the test is true.

The command GFTEST?S sets all

involved flags when the test is true.

The command GFTEST?FLIP flips the

logical states of the flags involved

when the test is true. If any one of

these tests fails, the flags involved

retain their current states.

10

GFTEST? 10010

Gto there

Tests the states of the

following flags:

Flag(10): true 1

Flag(11): false 0

Flag(12): false 0

Flag(13): true 1

Flag(14): false 0

If the above flags have

states that match their

expected logical values,

then the command

succeeds and the

application executes the

next program line.

GSB, GSBIND The command GSB executes a

subroutine in a label. The command

GSBIND uses indirection to call a

subroutine. The command GSB can call

a subroutine that uses numeric and

alphanumeric labels. By contrast, the

command GSBIND can only call

subroutines that have numeric labels.

Gsb fx

Gsbind 03

Console Programmable RPN Calculator 116

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

GTO, GTOIND command The GTOIND uses indirection

to jump to a label. The command GTO

can jump to numeric and alphanumeric

labels. By contrast, the command

GTOIND can only jump to numeric

labels.

gto start

gtoind 03

Console Programmable RPN Calculator 117

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

HSEARCH Perform a heuristic search for a value

in the memory registers. The Stack

provides the following search

parameters:

T: Tolerance value.

Z: Index of first array variable element

to search.

Y: Heuristic step (a positive or negative

integer)

X: The search value.

If the index of the memory register to

search is negative, the command

performs a backward search from the

last memory register to the absolute

value of the Z register.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The heuristic step value allows you to

move the matching element up

(pessimistic scheme) using a positive

value, or down (optimistic scheme)

using a negative value. The optimistic

scheme places a matching element in a

lower index in hope that it will be

sought after more often. Placing it at a

lower index would accelerate the

search. The pessimistic scheme

implements the reverse logic. Typical

heuristic step values are –1 and 1 for

the optimistic scheme and the

pessimistic scheme, respectively.

Increasing the magnitude of the

heuristic step accelerates moving

repeated matching elements towards

the front or the back of the array.

1E-6

9

–1

1.5

hSearch

X<0?

Gto notFound

Performs a heuristic search

in the memory registers for

the element that stores

1.5, starting with the 10th

element. The heuristic step

is –1, which enforces an

optimistic scheme. The

tolerance for the search is

1E-6.

Console Programmable RPN Calculator 118

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

The command returns the index of the

matching element in the memory

registers. If the supplied array name is

valid but the searched value is not

found, the command returns –1. If the

supplied array name does not exist in

the collection of array names, the

command returns –2.

Because a successful search may well

move the matching element, the

command returns both the new and

old indices of the matching element in

the stack:

T:

Z:

Y: New index of matching element.

X: Old index of matching element.

If the X register contains –1 (because

the search did not find a matching

element), the Y register will also

contain –1.

Console Programmable RPN Calculator 119

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

HSEARCHA Perform a heuristic search for a value

in an array variable. The command

may include the name of the array. If

this argument is omitted, the

command uses the Alpha register to

specify the array variable to search.

The Stack provides the following

search parameters:

T: Tolerance value.

Z: Index of first array variable element

to search.

Y: Heuristic step (a positive or negative

integer)

X: The search value.

If the index of the memory register to

search is negative, the command

performs a backward search from the

last array element to the absolute

value of the Z register.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The heuristic step value allows you to

move the matching element up

(pessimistic scheme) using a positive

value, or down (optimistic scheme)

using a negative value. The optimistic

scheme places a matching element in a

lower index in hope that it will be

sought after more often. Placing it at a

lower index would accelerate the

search. The pessimistic scheme

implements the reverse logic. Typical

heuristic step values are –1 and 1 for

the optimistic scheme and the

pessimistic scheme, respectively.

‘Xarr

1E-6

9

–1

1.5

hsearcha

X<0?

Gto notFound

Performs a heuristic search

in the array Xarr for the

element that stores 1.5,

starting with the 10th

element. The heuristic step

is –1, which enforces an

optimistic scheme. The

tolerance for the search is

1E-6.

Console Programmable RPN Calculator 120

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

Increasing the magnitude of the

heuristic step accelerates moving

repeated matching elements towards

the front or the back of the array.

The command returns the index of the

matching element in the array variable.

If the supplied array name is valid but

the searched value is not found, the

command returns –1. If the supplied

array name does not exist in the

collection of array names, the

command returns –2.

Because a successful search may well

move the matching element, the

command returns both the new and

old indices of the matching element in

the stack:

T:

Z:

Y: New index of matching element.

X: Old index of matching element.

If the X register contains –1 (because

the search did not find a matching

element), the Y register will also

contain –1.

Console Programmable RPN Calculator 121

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

INTEG (version 1) Integrate the RPN expression in the

Alpha register. The stack provides the

following input:

T:

Z: The tolerance value for the result.

Y: The lower limit for the integral.

X: The upper limit for the integral.

This command uses the Romberg

integration method. The command

returns the value of the integral in the

X stack register.

‘1/X

1E-6

1

2

INTEG

Will integrate 1/X from X=1

to X=2 using a tolerance

value of 1E-6.

INTEG (version 2) Integrate the function defined by a

label in the Alpha register. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the function to be integrated. The

stack provides the following input:

T:

Z: The tolerance value for the result.

Y: The lower limit for the integral.

X: The upper limit for the integral.

This command uses the Romberg

integration method. The command

returns the value of the integral in the

X stack register.

‘gsb Recipocal

1E-6

1

2

INTEG

Will integrate the function

defined by the label

Reciprocal, from X=1 to

X=2 using a tolerance value

of 1E-6.

IS_BETWEEN Test if the value in the X stack register

is in the range defined by the values in

the Y and Z stack registers. This

command uses the following

inequality:

𝑌 ≤ 𝑋 ≤ 𝑍

If the test fails, the program skips a

line.

1

.5

rand

Is_between

Goto there

Tests if the random

number generated is

between 0.5 and 1.

Console Programmable RPN Calculator 122

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

IS_OUTSIDE Test if the value in the X stack register

is outside the range defined by the

values in the Y and Z stack registers.

This command uses the following

inequalities:

𝑌 ≤ 𝑋 𝑂𝑟 𝑋 ≥ 𝑍

If the test fails, the program skips a

line.

0.75

.25

rand

Is_outside

Goto there

Tests if the random

number generated is

outside the range [0.25,

0.75].

IS_WITHIN Test if the value in the X stack register

is strictly inside the range defined by

the values in the Y and Z stack

registers. This command uses the

following inequality:

𝑌 < 𝑋 < 𝑍

If the test fails, the program skips a

line.

1

.5

rand

Is_within

Goto there

Tests if the random

number generated is

between 0.49999 and

0.99999.

IS_WITHOUT Test if the value in the X stack register

is strictly outside the range defined by

the values in the Y and Z stack

registers. This command uses the

following inequalities:

𝑌 < 𝑋 𝑂𝑟 𝑋 > 𝑍

If the test fails, the program skips a

line.

1

.5

rand

Is_without

Goto there

Tests if the random

number generated is

strictly outside the range

[0.5, 1].

ISEVEN Test if the integer part of the X register

is an even value. If not, the program

skips a program line.

2

Iseven

Gto there

Jumps to label “there” if

the integer value in the X

stack register is even.

ISG, ISGIND Implement the Increment and Skip if

Greater, somewhat like in the HP–41C

calculator. The ISGIND uses indirect

addressing.

Console Programmable RPN Calculator 123

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

ISODD Test if the integer part of the X register

is an odd value. If not, the program

skips a program line.

2

Isodd

Gto there

Jumps to label “there” if

the integer value in the X

stack register is odd.

ISPRIME Test if the integer part of the value in

the X register is a prime number. If the

test fails, the program skips a program

line.

5

Isprime

gto 90

*

1

+

IX–>A, IY–>A, IZ–>A,

IT–>A

Same as ARCLIX, ARCLIY, ARCLIZ, and

ARCLIT.

JUMP Jump forward or backward by a

specified number of program lines.

X<>0?

Jump 3

If the value in the X

register is 0, jump 3 steps.

JUMPIND Perform an indirect jump forward or

backward. This command obtains the

number of lines to jump from the value

of a specified memory register. This

command allows you to jump forward

or backward using positive and

negative values, respectively.

X<>0?

Jumpind 3

If the value in the X

register is 0, jump the

number of steps specified

by Mem(3).

JUMPX, JUMPY,

JUMPZ, and JUMPT

Jump by the number of program lines

specified by the integer value in the

corresponding stack register. This

command allows you to jump forward

or backward using positive and

negative values, respectively.

X<>0?

Jumpy

If the value in the X

register is 0, jump the

number of steps specified

by the integer value of the

Y stack register.

Console Programmable RPN Calculator 124

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

LASTPOS Search for text in the Alpha register for

the last occurrence of a substring. The

command requires the name of a text

variable that contains the searched

substring. The command returns the

position of the matching string, or –1 if

no match is found or if the search

string is empty.

‘456

ASTO str1

‘123456789

lastpos str1

Returns 3 in the X register.

LBL Define a label which flags how to direct

the GTO, GSB, and other flow–

controlling commands.

LBL Start

lbl 0

Lbl 2

LCASE Convert the characters of the Alpha

register to lowercase.

‘Hello

lcase

Sets the Alpha register to

“hello”.

LEFT Replace the content of the Alpha

register with the N leading characters.

N is the integer value in the stack

register X.

‘1234567

3

left

Sets the Alpha register to

“123”.

LOGXLR and LOGYLR Similar to command POWERFIT where

LOGXLR applies the logarithmic model:

Y= a + b ln(X)

And LOGYLR applies the exponential

model:

ln(Y) = a + b X

The X register value specifies the first

register in the block read using

READDATA2.

10

LOGXLR

Performs a logarithm

regression on the data

block that was read

starting in Mem(10) using

READDATA2

Console Programmable RPN Calculator 125

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

LR Perform a linearized regression using a

block of data read using the

READDATA2 command. The stack

provides the following data:

T:

Z: Index for first register in the block

read using READDATA2.

Y: Power for Y values.

X: Power for X values.

The program returns the following

values:

T:

Z: The coefficient of determination.

Y: The intercept.

X: The slope.

Note: The program uses the real–value

power indices to raise the observed

values to these indices. In case a power

index is 0, the program applies the

natural logarithm.

10

2

–1

LR

Performs a linear

regression on the data

block that was read

starting in Mem(10) using

READDATA2. The model

used is:

Y2 = a + b/X, since the Y

register contains 2 as the

power of Y, and the X

register contains –1 as the

power of X.

LRCL, LRCL+, LRCL–,

LRCL*, LRCL/

Recall the value in a subroutine’s local

memory register. The command set

also supports register arithmetic.

GSB Fx

…

LBL Fx

LRCL 0

…

RTN

Recalls the value in the

local memory register with

the index 0.

Console Programmable RPN Calculator 126

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

LSTO, LSTO+, LSTO–,

LSTO*, ARTSO/

Store the value of the X stack register

in a subroutine’s local memory

register. The command set also

supports register arithmetic.

GSB Fx

…

LBL Fx

LSTO 0

…

RTN

Store the value of the X

stack register in the local

memory register with the

index 0.

MEM2ARVAR Copy values from the memory registers

to an array variable. This command

starts copying to a specified element of

the array variable. The command can

specify the array variable or use the

contents of the Alpha register to

obtain the array variable. The stack

contains the following parameters:

T:

Z: The index of the first array variable

element that is copied into.

Y: The index of the last memory

register that is copied from.

X: The index of the first memory

register that is copied from.

The command does it’s best to comply

with the number and location of the

copied data. The command stores the

number of actual values copied in the

X register.

‘Xarr

0

22

0

MEM2ARVAR

Copies values from the

memory registers Mem(0)

to Mem(22) into the array

variable Xarr, starting at

Xarr(0).

MERGESTAT Merge the statistical registers’ values

that are stored in a file with the

current values in the statistical

registers. The command can include

the input filename. If not, the

command uses the contents of the

Alpha register as the input filename.

‘Data.txt

mergestat

Reads the statistical

registers from file Data.txt

and merges them with the

statistical register in

memory.

Console Programmable RPN Calculator 127

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

MID Replace the content of the Alpha

register with the N trailing characters,

starting at the Ith original character. N

and I are the integer values of the X

and Y registers, respectively.

‘1234567890

1

4

Mid

Sets the Alpha register to

“2345”.

MLR Perform a linearized regression using a

block of data read using the

READDATA3 command. The stack

provides the following data:

T: Index for first register in the block

read using READDATA3.

Z: Power for Z values.

Y: Power for Y values.

X: Power for X values.

The program returns the following

values in the stack registers:

T: The coefficient of determination.

Z: The intercept.

Y: The slope for Y.

X: The slope for X.

Note: The program uses the real–value

power indices to raise the observed

values to these indices. In case a power

index is 0, the program applies the

natural logarithm.

10

0

–1

1

MLR

Performs a multiple linear

regression on the data

block that was read

starting in Mem(10) using

READDATA3. The model

used is:

Ln(Z)=a + bX + c/Y

Since the Z, Y, and X

registers contain 0, –1, and

1 as the powers for

variables Z, Y, and X,

respectively.

Console Programmable RPN Calculator 128

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

MSEARCH Search for a value in the memory

registers, using a middle–first search

scheme. The search begins with the

middle element and alternates in

searching elements above and below

the middle element. The Stack

provides the following search

parameters:

T:

Z: Search mode.

Y: Tolerance value.

X: The search value.

The search mode instructs the

command how to compare the search

element with the memory registers:

1. Positive to search for the first

memory register with a value

that is greater than the search

value.

2. Zero to search the first memory

register with a value that is

equal (within the specified

tolerance value) to the search

value.

3. Negative to search for the first

memory register with a value

that is less than the search

value.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The command returns the index of the

matching element in the memory

register. If the searched value is not

found, the command returns –1.

0

1E-6

1.5

mSearch

X<0?

Gto notFound

Searches the memory

registers for the element

that stores 1.5, starting

with the middle element.

The tolerance for the

search is 1E-6.

Console Programmable RPN Calculator 129

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

MSEARCHA Search for a value in an array variable.

The command performs a middle–first

search. The search begins with the

middle element and alternates in

searching elements above and below

the middle element. The command

may include the name of the array. If

this argument is omitted, the

command uses the Alpha register to

specify the array variable to search.

The Stack provides the following

search parameters:

T:

Z: Search mode.

Y: Tolerance value.

X: The search value.

The search mode instructs the

command how to compare the search

value with the array variable:

1. Positive to search for the first

array variable element with a

value that is greater than the

search value.

2. Zero to search the first array

element with a value that is

equal (within the specified

tolerance value) to the search

value.

3. Negative to search for the first

array element with a value that

is less than the search value.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

‘Xarr

0

1E-6

1.5

msearcha

X<0?

Gto notFound

Searches the array Xarr for

the element that stores

1.5, starting with the

middle element. The

tolerance for the search is

1E-6.

Console Programmable RPN Calculator 130

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

The command returns the index of the

matching element in the array variable.

If the supplied array name is valid but

the searched value is not found, the

command returns –1. If the supplied

array name does not exist in the

collection of array names, the

command returns –2.

Console Programmable RPN Calculator 131

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

NORMDATA2 Normalizes the data in memory

registers read using command

READDATA2. These blocks contain sets

of (X, Y) data. The NORMDATA2

command normalizes the values in

variables X and Y by using these

formulae:

Xi = 1 + (Xi – Xmin) / (Xmax – Xmin)

Yi = 1 + (Yi – Ymin) / (Ymax – Ymin)

The command also allows you to first

transform the X, and/or Y values into

their logarithm values. This kind of

transformation may help if the values

vary in multiple orders of magnitude.

The transformation into logarithmic

values are applied only if the data are

positive!

The stack provides the following input:

T:

Z: The index of the start of the memory

block.

Y: Numeric flag for requesting

logarithmic transformations for Y

values. A positive value signals a

request for such transformation.

X: Numeric flag for requesting

logarithmic transformations for X

values. A positive value signals a

request for such transformation.

If you request to transform a variable

using logarithmic values, the command

checks if all of its values are positive. If

they are not all positive, the command

ignores the request for such

transformation. The command displays

100

0

0

NORMDATA2

The above code normalizes

the (X, Y) data in the

memory block starting at

index 100. The command

will transform the data

WITHOUT applying

logarithmic

transformations.

Console Programmable RPN Calculator 132

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

a warning message that the request

cannot be fulfilled.

If either or both variables X or Y have

an array with the same value in all of

elements, then command will generate

a runtime error.

The command returns an index value,

in the X stack register, that indicates

the status of the command’s

operation:

1. A value of 2 indicates complete

success.

2. A value of 1 indicates that at

least one request for

logarithmic transformation has

failed.

3. A value of zero signals the at

least one variable could not be

normalized.

Console Programmable RPN Calculator 133

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

NORMDATA3 Normalizes the data in memory

registers read using command

READDATA3. These blocks contain sets

of (X, Y, Z) data. The NORMDATA3

command normalizes the values in

variables X, Y and Z by using these

formulae:

Xi = 1 + (Xi – Xmin) / (Xmax – Xmin)

Yi = 1 + (Yi – Ymin) / (Ymax – Ymin)

Zi = 1 + (Zi – Zmin) / (Zmax – Zmin)

The command also allows you to first

transform the X, Y and/or Z values into

their logarithm values. This kind of

transformation may help if the values

vary in multiple orders of magnitude.

The transformation into logarithmic

values are applied only if the data are

positive!

The stack provides the following input:

T: The index of the start of the memory

block.

Z: Numeric flag for requesting

logarithmic transformations for Z

values. A positive value signals a

request for such transformation.

Y: Numeric flag for requesting

logarithmic transformations for Y

values. A positive value signals a

request for such transformation.

X: Numeric flag for requesting

logarithmic transformations for X

values. A positive value signals a

request for such transformation.

If you request to transform a variable

using logarithmic values, the command

100

0

0

1

NORMDATA3

The above code normalizes

the (X, Y, Z) data in the

memory block starting at

index 100. The command

will transform the data for

X by applying logarithmic

transformations.

Console Programmable RPN Calculator 134

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

checks if all of its values are positive. If

they are not all positive, the command

ignores the request for such

transformation. The command displays

a warning message that the request

cannot be fulfilled.

If either or all variables X, Y, and/or Z

have an array with the same value in

all of elements, then command will

generate a runtime error.

The command returns an index value,

in the X stack register, that indicates

the status of the command’s

operation:

1. A value of 2 indicates complete

success.

2. A value of 1 indicates that at

least one request for

logarithmic transformation has

failed.

3. A value of zero signals the at

least one variable could not be

normalized.

Console Programmable RPN Calculator 135

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

NOSTACK Suppress displaying the stack when the

program ends.

ONERRGOTO Set an error handler to jump to a label

if an error occurs.

I recommend that you set a flag in the

error–handling routine to handle to

signal an in–error state.

ONERRGOTO HandleErr

Instructs the application to

jump to label HandeErr in

case of a runtime error.

ONERROFF Display error handling.

ONERRRESUME Ignore a runtime error and resume

execution with the next line.

POS Search for text in the Alpha register for

the first occurrence of a substring. The

command requires the name of a text

variable that contains the searched

substring. The command returns the

position of the matching string, or –1 if

no match is found or if the search

string is empty.

‘456

ASTO str1

‘123456789

pos str1

Returns 3 in the X register.

POWERLR Perform a power fit between two

variables using a block of data read

using the READDATA2 command.

The X register value specifies the first

register in the block read using

READDATA2. The program returns the

following values in the stack registers:

T:

Z: The coefficient of determination.

Y: The intercept.

X: The slope.

10

POWERLR

Performs a power fit using

the data block read into

Mem(10) using

READDATA2.

Console Programmable RPN Calculator 136

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

POWERMLR A version of the MLR command where

the natural logarithm is applied to all

of the observations. The model is:

Ln(Z)= a + b ln(X) + c ln(Y)

The X register value specifies the first

register in the block read using

READDATA3. The program returns the

following values in the stack registers:

T: The coefficient of determination.

Z: The value for coefficient a.

Y: The value for coefficient c.

X: The value for coefficient b.

10

POWERMLR

Performs a multiple

regression power fit using

the data block read into

Mem(10) using

READDATA3.

PROMPT Display the contents of the Alpha

register and then prompts the user to

press the Enter key to resume program

execution.

'Enter X?

Prompt

vsto x

Console Programmable RPN Calculator 137

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

PRTSTK Display the formatted values of the

stack register. The command can

include one or more format strings. If

no format string is included, the

command uses the content of the

Alpha register as the format strings.

See Appendix A for a summary of the

formatting strings used by this

command.

You can use 1 to 4 comma–delimited

format string codes to output

formatted stack values:

1. Using a single format string

causes the command to apply

that format to all stack

registers.

2. Using two format strings causes

the command to apply the first

format to the X register and the

second format to all other stack

registers.

3. Using three format strings

causes the command to apply

the first format string to the X

register, the second string

format to register Y, and the

third format string to both the Z

and T stack registers.

4. Using four format strings

causes the first, second, third,

and fourth format strings to be

applied to the X, Y, Z, and T

registers, respectively.

The above scheme uses the approach

of “work with what you have” by

reapplying the same format string to

multiple registers when there are

fewer format strings than registers.

rand

1000

*

rand

100

*

rand

1000

/

rand

prtstk f5,e5,f3,f5

Displays the stack register,

each with its own format.

Console Programmable RPN Calculator 138

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

If any or all the format strings are

incorrect, the command displays the

targeted stack register value

unformatted. Program execution

resumes since the format error is not

considered critical.

Console Programmable RPN Calculator 139

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

PRTX, PRTY, PRTZ,

PRTT

Display the value of the corresponding

stack register as a formatted number.

The command can include a format

string. If no format string is included,

the command uses the content of the

Alpha register as the format string. See

Appendix A for a summary of the

formatting strings used by this

command.

If the format string is incorrect, the

command displays a warning and

displays the targeted register value

unformatted. Program execution

resumes since the format error is not

considered critical.

Pi

PRTX F2

‘F2

Pi

PRTX

Both commands display

3.14.

PSE Pause the program execution for a

specified duration in milliseconds. The

command may include the pause

duration. If not, it obtains the pause

duration from the X stack register. If

there is an error with obtaining a

correct value for the pause duration,

the command displays a warning

message and resumes program

execution.

PSE 3000

Pauses the program for 3

seconds.

QUADFIT A special version of MLR command

that uses data read with the

READDATA2 command.

The X stack register provides the Index

for first register in the block read using

READDATA2. The program returns the

following values in the stack registers:

T: The coefficient of determination.

Z: The intercept.

Y: The coefficient for the X2 term.

X: The coefficient for the X term.

10

QUADFIT

Performs a quadratic fit

using the data block read

into Mem(10) using

READDATA2.

Console Programmable RPN Calculator 140

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

RCLFLGS Recall all flags from a named text

variable. The command may include

the named text variable. If not, the

command uses the Alpha register to

select the named text variable.

RCLFLGS FlgsSto

READ1VAR,

READ2VARS,

READ3VARS,

READ4VARS

Read the values of one, two, three, and

four array variables from a comma–

delimited text file. In case of multiple

variables, the values MUST BE

COMMA–DELIMITED! The command

returns the of data rows read. If the

filename and/or its path are incorrect,

the command returns 0.

If any or all of the array variables have

not yet been creates, the READ

commands will create them for you.

READ1VAR datafile.tx Xvar

READ2VARS datafile2.txt

Xvar Yvar

READ3VARS datafile3.txt

Xvar Yvar ZVar

READDATA2 Read a text file containing lines of

comma–delimited values of two

variables. The Alpha register contains

the name of the source file. The X

register contains the index for the first

memory register where the data block

begins. The memory registers are

organized as follows:

I=Fix(value in X register)

Mem(I)=2

Mem(I+1)=number of observations

Mem(I+2)=X(1)

Mem(I+3)=Y(1)

Mem(I+4)=X(2)

Mem(I+5)=Y(2)

…

The command places, in the X register,

the number of lines read.

'temp_readings.txt

10

Readdata2

Reads a block of say 20

observations and storing

the results in:

Mem(10)=2

Mem(11)=20

Mem(12)=X(1)

Mem(13)=Y(1)

….

Console Programmable RPN Calculator 141

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

READDATA3 Read a text file containing lines of

comma–delimited values of three

variables. The Alpha register contains

the name of the source file. The X

register contains the index for the first

memory register where the data block

begins. The memory registers are

organized as follows:

I=Fix(value in X register)

Mem(I)=3

Mem(I+1)=number of observations

Mem(I+2)=X(1)

Mem(I+3)=Y(1)

Mem(I+4)=Z(1)

…

The command places, in the X register,

the number of lines read.

'temp_readings.txt

10

Readdata3

Reads a block of say 20

observations and storing

the results in:

Mem(10)=3

Mem(11)=20

Mem(12)=X(1)

Mem(13)=Y(1)

Mem(14)=Z(1)

….

Console Programmable RPN Calculator 142

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

READMEM Read values for the memory registers

from a text file. Each line in that file

contains at least a single value and

may contain multiple comma–

delimited values. The number of

comma–delimited values per line can

vary in an input file. The command

ignores the following items:

 Blank lines.

 Lines with no commas and pure

text or a mix of text and digits.

 Comma–delimited items

containing text.

 Comma–delimited items

containing a mix of text and

digits, like this1is4forme.

The command looks for string images

of valid numbers (integers, reals with

decimals, or numbers in scientific

format) that appear either on an entire

line or as a comma–delimited item.

The command may include the name

of the source file. If not, the command

uses the Alpha register to specify the

name of the source file. The X register

specifies the first memory register that

receives data from the source file. The

command ignores extra input values

that have no place in the memory

registers. The command returns in the

X stack register the number of values

read from the file.

'mydata.txt

1

Readmem

Reads data from the file

mydata.txt and places the

first input value in Mem(1).

The command returns the

number of values read

from the file.

READNVARS A general version of READ1VAR,

READ2VARS, READ3VARS, and

READ4VARS allowing you to read more

than four variables.

Console Programmable RPN Calculator 143

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

REM, !, @, #, $, % Define the start of a commented line. REM Just a comment

% Comment also

@ same here!

REPLACE Replace the contents of the Alpha

register. The command specifies two

comma–delimited text variables. The

first text variable stores the text to

search in the Alpha register. The

second text variable stores the

replacement string.

‘456

Asto s1

‘abc

Asto s2

‘1234567890

replace s1,s2

Replaces the Alpha register

from “1234567890” into

“123abc7890”.

RESIZE Resize an array variable. The command

can include the array variable. If not

the command uses the Alpha register

to specify the array variable. The X

register contains the new size. You can

expand or contract an array variable.

When you shrink an array variable you

may lose some of the data in that

array.

‘Xarr

100

Resize

Resizes the array Xarr to

have 100 elements.

REV Reverse the characters in the Alpha

register.

‘12345

rev

Sets the Alpha register to

“54321”.

RIDX Set the value for the array variable

recall index. The integer value of the X

stack register initializes the index

value. This command may specify the

name of the array. If omitted, the

command uses the Alpha register as

the name of the array.

‘Xarr

1

Sidx

Sets the recall index of

array variable XARR to 1.

RIGHT Replace the content of the Alpha

register with the N trailing characters.

N is the value in the stack register X.

‘1234567

3

right

Sets the Alpha register to

“567”.

Console Programmable RPN Calculator 144

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

RRC+, RRC–, RRC$ Recall an element of a specified array

variable using its current recall index.

The command may include the array

name. If omitted, the command uses

the Alpha register as the name of the

array.

The RRC+ also increments the recall

index of the array variable. By contrast,

RRC– decrements the recall index. The

command RRC$ keeps the recall index

unchanged.

See namarr1.txt program

example and Figure 21.

RRCL, RRCL+, RRCL–,

RRCL*, RRCL/

Recall the value in an element of an

array variable. The command set also

supports register arithmetic. The

command has four possible versions:

1. With no arguments, the

command uses the Alpha

register to select the name of

the array. It also uses the

integer value of the X stack

register as the index of the

recalled element.

2. With just an index. The

command uses that index value

and uses the Alpha register to

select the name of the array.

3. With just the name of the

array. The command uses the

integer value of the X stack

register as the index of the

recalled element.

4. With both the name of the

targeted array and the targeted

index.

1

rrcl Xarr

Recalls the value in the

second element of array

variable Xarr.

Console Programmable RPN Calculator 145

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

RST+, RST–, RST$ Store the value in the X stack register

in an element of a specified array

variable using its current storage index.

The command may include the array

name. If omitted, the command uses

the Alpha register as the name of the

array.

The RST+ also increments the storage

index of the array variable. By contrast,

RST– decrements the storage index.

The command RST$ keeps the storage

index unchanged.

See namarr1.txt program

example and Figure 21.

RSTO, RSTO+, RSTO–,

RSTO*, RTSO/

Store the value in the X register in an

element of an array variable. The

command set also supports register

arithmetic. The command has four

possible versions:

1. With no arguments, the

command uses the Alpha

register to select the name of

the array. It also uses the

integer value of the Y stack

register as the index of the

stored element.

2. With just an index. The

command uses that index value

and uses the Alpha register to

select the name of the array.

3. With just the name of the

array. The command uses the

integer value of the Y stack

register as the index of the

stored element.

4. With both the name of the

targeted array and the targeted

index.

Pi

rsto Xarr 1

Stores the value of pi in the

second element of array

variable Xarr.

Console Programmable RPN Calculator 146

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SAVESTAT Write the statistical registers to a file.

The command can include the output

filename. If not, the command uses the

contents of the Alpha register as the

output filename. The filename must

include a full path if it not located in

the same directory as that of the

CPRCA application.

‘C:\MyData\Data.txt

Savestat

Writes the statistical

registers to file Data.txt.

SCAN Scan a range of values in an RPN

expression to locate roots, minima,

and maxima. The command can specify

the name of a text variable that stores

the RPN expression. If this variable is

not specified, the command expects

the RPN expression to be found in the

Alpha register. The command requires

six parameters. To achieve this, the

command uses the backup stack. To

set up the input, first enter the

following values in the stack:

T:

Z:

Y: Index of the first memory register

that stores the results.

X: The value for the tolerance for the

function value.

Use the COPYSTACK command to copy

the above values into the backup stack,

and then enter the remaining

parameters:

T: The tolerance for the roots, minima,

and maxima.

Z: The step value used to scan the

range of values.

Y: The start of the scanned range.

B: The end of the scanned range.

lbl Start

'exp LastX x^2 3 * –

memIdx

0

FxToler

1e–7

copystack

Toler

1e–8

Step

0.1

from A

–1

to B

4

scan

-x-

nostack

end

Displays the roots, minima,

and maxima in the range of

-1 to 4 for the function ex-

3x2.

Console Programmable RPN Calculator 147

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

SEARCH Search for a value in the memory

registers. The Stack provides the

following search parameters:

T:

Z: Tolerance value.

Y: Index of first memory register to

search.

X: The search value.

The search mode instructs the

command how to compare the search

value with the memory registers:

1. Positive to search for the

first memory register with a

value that is greater than

the search value.

2. Zero to search the first

memory register with a

value that is equal (within

the specified tolerance

value) to the search value.

3. Negative to search for the

first memory register with a

value that is less than the

search value.

If the index of the memory register to

search is negative, the command

performs a backward search from the

last memory register to the absolute

value of the Y register.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

value to match two floating–point

values that are close enough in values.

The command returns the index of the

matching element in the memory

0

1E-6

9

1.5

Search

X<0?

Gto notFound

Searches the memory

registers for the element

that stores 1.5, starting

with the 10th element. The

tolerance for the search is

1E-6.

Console Programmable RPN Calculator 148

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

register. If the searched value is not

found, the command returns –1.

Console Programmable RPN Calculator 149

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

SEARCHA Search for a value in an array variable.

The command may include the name

of the array. If this argument is

omitted, the command uses the Alpha

register to specify the array variable to

search. The Stack provides the

following search parameters:

T: Search mode.

Z: Tolerance value.

Y: Index of first array variable element

to search.

X: The search value.

The search mode instructs the

command how to compare the search

value with the array variable element:

1. Positive to search for the

first array element with a

value that is greater than

the search value.

2. Zero to search the first

array element with a value

that is equal (within the

specified tolerance value) to

the search value.

3. Negative to search for the

first array element with a

value that is less than the

search value.

If the index of the memory register to

search is negative, the command

performs a backward search from the

last array element to the absolute

value of the Y register.

Since comparing floating–point values

is not as exact as comparing integers,

the command uses a small tolerance

‘Xarr

0

1E-6

9

1.5

Searcha

X<0?

Gto notFound

Searches the array Xarr for

the element that stores

1.5, starting with the 10th

element. The tolerance for

the search is 1E-6.

Console Programmable RPN Calculator 150

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

value to match two floating–point

values that are close enough in values.

The command returns the index of the

matching element in the array variable.

If the supplied array name is valid but

the searched value is not found, the

command returns –1. If the supplied

array name does not exist in the

collection of array names, the

command returns –2.

Console Programmable RPN Calculator 151

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SIDX Set the value for the array variable

storage index. The integer value of the

X stack register initializes the index

value. This command may specify the

name of the array. If omitted, the

command uses the Alpha register as

the name of the array.

‘Xarr

1

ridx

Sets the storage index of

array variable XARR to 1.

SIGMA+T, S+T Similar to commands SIGMA++ and S++

except it uses the Alpha register as an

RPN expression used to transform the

values for X and/or Y. The expression

can use commands like X<>Y to access

the values.

This command does not clear the

statistical registers before adding the

data. You are responsible for

initializing the statistical registers. This

feature allows you to add transformed

values from different areas of the

memory registers using multiple calls

to this command.

‘ln X<>Y ln X<>Y

1.0112 S+T

Adds the data in memory

registers Mem(1) to

Mem(112) as pairs of (X, Y)

values to the statistical

registers. The RPN

Expression in the Alpha

register tells the command

to transform the original

(X, Y) values into (ln(X),

ln(Y)) values.

Console Programmable RPN Calculator 152

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SOLVE (version 1) Solve the root of the RPN expression in

the Alpha register. The stack provides

the following parameters for seeking

the root:

T:

Z: The tolerance value.

Y: The maximum number of iterations.

Z: The initial guess for the root.

This command uses Newton’s method.

The command places the following

results in the stack registers:

T: The last difference in the refined

guess for the root.

Z: The function value at the best

refined guess for the root.

Y: The number of iterations.

X: The best refined guess for the root.

If the solution fails to converge, the

command SOLVE displays a warning

message for a visual notification.

Programmatically, you can determine

convergence by comparing the number

of iterations (in the Y register) with the

maximum number of iterations that

you specified when invoking command

SOLVE. This comparison will let you

know if the solution converged (when

the number of iterations does not

exceed the maximum limit) or diverged

(when the number of iterations

exceeds the maximum limit).

‘EXP LASTX X^2 3 * –

1E-6

55

4.1

SOLVE

Will solve for the root of

f(x)=exp(x)–3*x^2, using an

initial guess of 4.1, 55

maximum iterations, and a

tolerance value of 1E-6.

Console Programmable RPN Calculator 153

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SOLVE (version 2) Solve the root of a function that is

defined by a program label. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the nonlinear function. The stack

provides the following parameters for

seeking the root:

T:

Z: The tolerance value.

Y: The maximum number of iterations.

Z: The initial guess for the root.

This command uses Newton’s method.

The command places the following

results in the stack registers:

T: The last difference in the refined

guess for the root.

Z: The function value at the best

refined guess for the root.

Y: The number of iterations.

X: The best refined guess for the root.

If the solution fails to converge, the

command SOLVE displays a warning

message for a visual notification.

Programmatically, you can determine

convergence by comparing the number

of iterations (in the Y register) with the

maximum number of iterations that

you specified when invoking command

SOLVE. This comparison will let you

know if the solution converged (when

the number of iterations does not

exceed the maximum limit) or diverged

(when the number of iterations

exceeds the maximum limit).

‘gsb myfx

1E-6

55

4.1

SOLVE

Will solve for the root of

f(x) defined by label myfx,

using an initial guess of 4.1,

55 maximum iterations,

and a tolerance value of

1E-6.

Console Programmable RPN Calculator 154

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SOLVEBIN (version 1) Solve the root of the RPN expression in

the Alpha register. The stack provides

the following parameters for seeking

the root:

T:

Z: The tolerance value.

Y: The guess A.

Z: The guess B.

This command uses the Bisection

method. The command places the

following results in the stack registers:

T:

Z:

Y: The function value at the best

refined guess for the root.

X: The best refined guess for the root.

The values of the function at A and B

must have opposite signs. If not, the

command displays a warning message

and returns a large number.

‘exp lastx x^2 3 * 1

1e-7

3

4

Solvebin

Finds the root of ex-3x2

between x= 3 and x=4,

using a tolerance of 1e-7.

Console Programmable RPN Calculator 155

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SOLVEBIN (version 2) Solve the root of a function that is

defined by a program label. The Alpha

register must contain the keyword

GSB, followed by a space, followed by

the name of the label that implements

the nonlinear function. The stack

provides the following parameters for

seeking the root:

T:

Z: The tolerance value.

Y: The guess A.

Z: The guess B.

This command uses the Bisection

method. The command places the

following results in the stack registers:

T:

Z:

Y: The function value at the best

refined guess for the root.

X: The best refined guess for the root.

The values of the function at A and B

must have opposite signs. If not, the

command displays a warning message

and returns a large number.

Lbl start

‘gsb fx

1e-7

3

4

solvebin

end

Lbl fx

exp

lastx

x^2

3

*

-

Rtn

Finds the root of ex-3x2

between x= 3 and x=4,

using a tolerance of 1e-7.

Console Programmable RPN Calculator 156

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SOLVEHAL (version 1) Solve the root of the RPN expression in

the Alpha register, using Halley’s

algorithm. The stack provides the

following parameters for seeking the

root:

T:

Z: The tolerance value.

Y: The maximum number of iterations.

Z: The initial guess for the root.

This command uses Halley’s method.

The command places the following

results in the stack registers:

T: The last difference in the refined

guess for the root.

Z: The function value at the best

refined guess for the root.

Y: The number of iterations.

X: The best refined guess for the root.

If the solution fails to converge, the

command SOLVEHAL displays a

warning message for a visual

notification. Programmatically, you can

determine convergence by comparing

the number of iterations (in the Y

register) with the maximum number of

iterations that you specified when

invoking command SOLVEHAL. This

comparison will let you know if the

solution converged (when the number

of iterations does not exceed the

maximum limit) or diverged (when the

number of iterations exceeds the

maximum limit).

exp lastx x^2 3 * 1

1e-7

100

4

solvehal

Finds the root of ex-3x2

near x=4, using a tolerance

of 1e-7 and a maximum of

100 iterations.

Console Programmable RPN Calculator 157

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SOLVEHAL (version 2) Solve the root of a function that is

defined by a program label, using

Halley’s algorithm. The Alpha register

must contain the keyword GSB,

followed by a space, followed by the

name of the label that implements the

nonlinear function. The stack provides

the following parameters for seeking

the root:

T:

Z: The tolerance value.

Y: The maximum number of iterations.

Z: The initial guess for the root.

This command uses Halley’s method.

The command places the following

results in the stack registers:

T: The last difference in the refined

guess for the root.

Z: The function value at the best

refined guess for the root.

Y: The number of iterations.

X: The best refined guess for the root.

If the solution fails to converge, the

command SOLVEHAL displays a

warning message for a visual

notification. Programmatically, you can

determine convergence by comparing

the number of iterations (in the Y

register) with the maximum number of

iterations that you specified when

invoking command SOLVEHAL. This

comparison will let you know if the

solution converged (when the number

of iterations does not exceed the

maximum limit) or diverged (when the

number of iterations exceeds the

maximum limit).

lbl start

‘gsb fx

1e-7

100

4

solvehal

end

lbl fx

exp

lastx

x^2

3

*

-

rtn

Finds the root of ex-3x2

near x=4, using a tolerance

of 1e-7 and a maximum of

100 iterations.

Console Programmable RPN Calculator 158

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SORTA Sort the data in the memory register in

an ascending order. This command

treats the memory registers as a virtual

table or matrix. The stack registers

provide the data for the sorting

operation:

T: The index of the first memory

register to sort.

Z: The number of rows.

Y: The number of columns.

X: The index of the column used to sort

the data.

This command treats the memory

registers as a virtual table where the

first element has the row and column

indices of 1.

100

10

5

2

sorta

Sorts the memory registers

starting at Mem(100). The

command sorts the data as

having 10 rows and 5

columns. Column 2 is used

to sort the values of the

virtual table.

SORTARA Sort all of the elements of an array

variable in an ascending order. The

arguments for this command are the

name of the array. If there is no

argument, the command uses the

contents of the Alpha register as the

name of the array.

Sortara Xarr

Sorts the elements of the

array variable Xarr in an

ascending order.

SORTARD Sort the all of elements of an array

variable in a descending order. The

arguments for this command are the

name of the array. If there is no

argument, the command uses the

contents of the Alpha register as the

name of the array.

Sortard Xarr

Sorts the elements of the

array variable Xarr in a

descending order.

Console Programmable RPN Calculator 159

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

SORTD Sort the data in the memory registers

in a descending order. This command

treats the memory registers as a virtual

table or matrix. The stack registers

provide the data for the sorting

operation:

T: The index of the first memory

register to sort.

Z: The number of rows.

Y: The number of columns.

X: The index of the column used to sort

the data.

This command treats the memory

registers as a virtual table where the

first element has the row and column

indices of 1.

0

10

5

2

Sortd

Sorts the memory registers

starting at Mem(0). The

command sorts the data as

having 10 rows and 5

columns. Column 2 is used

to sort the values of the

virtual table.

–STK– Show the stack.

STOFLGS Store all the flags in a named text

variable. The command may include

the named text variable. If not, the

command uses the Alpha register to

select the named text variable.

STOFLGS FlgsSto

STOP and R/S Display the stack and temporarily halt

the program execution. You can

optionally type in a number and press

Enter, or just press Enter. The

application pushes in the stack the

(valid) number that you type in.

SWAPCASE Swap the character case of the text in

the Alpha register.

‘Hello There!

Swapcase

Makes the Alpha register

contain “hELLO tHERE!”

Console Programmable RPN Calculator 160

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

T?=nn, T?<>nn,

T?!=nn, T?>nn,

T?>=nn, T?<nn,

T?>nn, T?<=nn

Compare the value in the T register

with a value in a memory register.

T?<>03

Tests if the value in the T

register differs from the

value in memory register

Mem(3).

TRIM Trim the leading and trailing spaces in

the Alpha register.

‘ 123

trim

Sets the Alpha register to

“123”.

UCASE Convert the characters of the Alpha

register to uppercase.

‘hello

ucase

Sets the Alpha register to

“HELLO”.

Console Programmable RPN Calculator 161

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

VCA+, VCA–, VCA*,

VCA/

Add, subtract, multiply, and divide the

individual values of two array

variables. The command requires two

space–delimited array names. The

command adds the individual values of

the second array to those of the first

one. The X stack registers provide the

contains the following data:

T:

Z: The number of elements to process.

Y: The index of the first element in the

second array (i.e., the target array).

X: The index of the first element in the

first array (i.e., the source array).

The command VCA/ handles division–

by–zero by placing a very large number

in the array element.

Each of the VCAx command returns the

number of elements that were actually

processed. These commands work with

elements within valid ranges and the

requested number of elements to

process.

Arcopy xarr1,xarr3

10

0

0

Vca+ xarr3 xarr2

First copies the values of

array xarr1 into array

xarr3. Then adds the 10

values of array xarr2 to

array xarr3. The net effect

is the following vector

operation:

Xarr3(0..9) =

Xarr1(0..9)+Xarr2(0..9)

Console Programmable RPN Calculator 162

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

VCAFX Evaluate the RPN expression in the

Alpha register for a range of elements

in an array variable. The command

includes the name of the array. The X

stack registers provide the contains the

following data:

T:

Z:

Y: The number of elements to process.

X: The index of the first element in the

array that will have its value altered.

The VCAFX command returns the

number of elements that were actually

processed. The command works with

elements within valid ranges and the

requested number of elements to

process.

‘1/x

10

0

Vcafx xarr

Applies the RPN expression

of 1/x to the elements

Xarr(0) to Xarr(9).

Console Programmable RPN Calculator 163

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

VCAS+, VCAS–,

VCASA–, VCAS*,

VCAS/, VCASA/

Add, subtract, multiply, and divide a

scalar value to the individual values of

an array variable. The command must

contain the name of the array as an

argument. The X stack registers

provide the contains the following

data:

T:

Z: The number of elements to process.

Y: The index of the first element in the

array.

X: The scalar value.

Notice that since subtraction and

division are not communicative

operations, the application offers two

commands for subtraction and two for

division. The VCAS– command

performs Vect(i)=Vect(i)–X. The

VCASA– command performs Vect(i)=X–

Vect(i). The VCAS/ command performs

Vect(i)=Vect(i)/X. The VCASA/

command performs Vect(i)=X/Vect(i).

The commands VCAS/ and VCASA/

handle division–by–zero by placing a

very large number in the array

element.

Each of the VCASx command returns

the number of elements that were

actually processed. These commands

work with elements within valid ranges

and the requested number of elements

to process.

10

0

100

Vcas* Xarr

Multiplies 10 elements in

the array variable Xarr by

100. The elements affected

are Xarr(0) to Xarr(9).

Console Programmable RPN Calculator 164

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

VIEWDT View the date text that is stored in a

text variable (minus the leading and

trailing # characters). The name of the

variable is the argument for this

command.

'#1/1/2016 2:00:00 PM#"

asto dt1

viewdt dt1

Displays the date in text

variable dt1, which is

“1/1/2016 2:00:00 PM”.

VIEWMEM Display the value in the designated

memory register.

Viewmem 03

Displays the value in

Mem(3).

VIEWREGS Display the values the memory

registers. The value of the X registers

contains the value aaaa.bbbb, where

aaaa and bbbb are indices that define

the first and last memory registers to

view, respectively.

0.0010

Viewregs

Views the value in memory

registers Mem(0) to

Mem(10).

VIEWSTK Display the values in the stack.

VIEWVAR Display the value is a named register.

The command can include the name of

the variable. If not, it uses the Alpha

register to specify the named register.

VIEWVAR Guess

Displays the value in the

variable named “Guess”.

VIEWX, VIEWY,

VIEWZ, VIEWT

Display the value in the designated

stack register

VIEWX

VRCL, VRCL+, VRCL–,

VRCL*, VRCL/

Recall the value in a named register.

The command set offers options to

also perform basic math operations

with the X register. The command can

include the named register. If not, it

uses the Alpha register to specify the

named register.

Vrcl piVal

VSTO, VSTO+, VSTO–,

VSTO*, VSTO/

Store the value of the X register in a

named register. The command set

offers options to also perform basic

math operations with the targeted

named variable register. The command

can include the named register. If not,

it uses the Alpha register to specify the

named register.

Pi

Vsto piVal

Console Programmable RPN Calculator 165

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

WRITE1VAR,

WRITE2VARS,

WRITE3VARS,

WRITE4VARS

Write the values of one, two, three,

and four array variables into a comma–

delimited text file. The command

returns the of data rows written.

WRITE1VAR datafile.tx

Xvar

WRITE2VARS datafile2.txt

Xvar Yvar

WRITE3VARS datafile3.txt

Xvar Yvar ZVar

WRITEMEM Write values of the memory registers

to a data file. The command may

include the name of the target file. If

not, the command uses the Alpha

register to specify the name of the

target file. The stack provides the

following information:

T:

Z: The number of comma–delimited

values per line.

Y: The number of memory registers to

save to the output file.

X: The index of the first memory

register to copy.

The command ignores request to write

memory registers beyond what is

available (i.e. index 9999). The

command returns the number of

written memory registers in the X stack

register.

'data.txt

5

100

1

Writemem

Writes 100 values in the

memory registers to the

text file data1.txt. The

output start with Mem(1)

and ends with Mem(100).

The command writes each

five values per line.

WRITENVARS A general version of WRITE1VAR,

WRITE2VARS, WRITE3VARS,

WRITE4VARS allowing you to write

more than four variables.

–X– Same as VIEWX.

Console Programmable RPN Calculator 166

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

X?=nn, X?<>nn,

X?!=nn, X?>nn,

X?>=nn, X?<nn,

X?>nn, X?<=nn

Compare the value in the X register

with a value in a memory register.

X?<>03

Tests if the value in the X

register differs from the

value in memory register

Mem(3).

X=0?, X<>0?, X!=0?,

X>0?, X>=0?, X<0?,

X<=0?

Compare the value in the X with 0. If

the test is true, the program executes

the next line. If not, the program skips

the next line.

X>0?

Gto There

*

+

X=0?n, X<>0?n,

X!=0?n, X>0?n,

X>=0?n, X<0?n,

X<=0?n

Compare the value in the X with 0. If

the test is true, the program executes

the next line. If not, the program skips

the next n lines. The value of n is in the

range of 2 to 9.

Including the number of program lines

to skip if the test fails enhances the

readability of the command.

X>0?2

*

+

Lbl 0

Jumps to LBL 0 if the X

stack register does not

contain a positive value.

X=Y?, X<>Y?, X!=Y?,

X>Y?, X>=Y?, X<Y?,

X<=Y?

Compare the values in the X and Y

registers. If the test is true, the

program executes the next line. If not,

the program skips the next line.

X=Y?

GTO 12

/

+

X=Y?n, X<>Y?n,

X!=Y?n, X>Y?n,

X>=Y?n, X<Y?n,

X<=Y?n

Compare the values in the X and Y

registers. If the test is true, the

program executes the next line. If not,

the program skips the next n lines. The

value of n is in the range of 2 to 9.

Including the number of program lines

to skip if the test fails enhances the

readability of the command.

X=Y?2

/

+

Lbl 0

Jumps to LBL 0 if the values

in the X and Y stack

registers are not equal.

X–>A, Y–>A, Z–>A, T–

>A

Same as ARCLX, ARCLY, ARCLZ, and

ARCLT.

Console Programmable RPN Calculator 167

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Command Purpose Example

XEQ Perform one of the following tasks:

1. Execute a set of simple RPN

commands stored in the Alpha

register. This command uses

the current contents of the

Alpha register when you don’t

specify any argument.

2. Execute a set of simple RPN

commands stored in a named

string register

'355 113 /

ASTO fx1

Xeq fx1

The above commands

evaluate an approximation

for pi store in the string

variable fx1.

Y?=nn, Y?<>nn,

Y?!=nn, Y?>nn,

Y?>=nn, Y?<nn,

Y?>nn, Y?<=nn

Compare the value in the Y register

with a value in a memory register.

Y?<>03

Tests if the value in the Y

register differs from the

value in memory register

Mem(3).

Z?=nn, Z?<>nn,

Z?!=nn, Z?>nn,

Z?>=nn, Z?<nn,

Z?>nn, Z?<=nn

Compare the value in the Z register

with a value in a memory register.

Z?<>03

Tests if the value in the Z

register differs from the

value in memory register

Mem(3).

Table 3. Commands used for programming and advanced functions.

Sample Programs
This section presents a few short sample programs. You will notice that the code is case

insensitive. You can type the names of commands, labels, and variables in upper, lower, or

mixed case. Only the text (starts with single quotes) aimed for the Alpha register is case

sensitive. The application internally translates these names into uppercase.

To avoid including the full (and most likely long) path name when invoking the program names,

place the files for the programs in the same folder as the application’s executable file. You can

alternatively place the program files in a short path such as C:\MyCode.

Sum of Reciprocal Power
This program calculates the sum of 1/X2 for X from 1 to 1000. The code uses memory registers

to store the values. The program displays the result using an AVIEW command. The name of the

file containing the program is sum001.txt. You are welcome to edit the program and change the

upper limit for the summation, 1000, with another value. Figure 3 shows the output of the

program.

LBL Sum

Console Programmable RPN Calculator 168

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

0

sto 1

1000

sto 2

LBL 1

rcl 2

x^2

1/x

sto+ 1

1

sto– 2

rcl 2

x<>0?

gto 1

'Sum = '

rcl 1

ARCLX

AVIEW

Rtn

Figure 3. A sample session with the program in file sum001.txt.

Simple Integral of 1/X
This program calculates the integral of 1/X for X from 1 to 2. The program uses memory

registers to store the data. The code uses a simple trapezoidal method to calculate the integral

of 1/X, which is ln(X). The program is stored in file integ.txt.

LBL Integ

1

Console Programmable RPN Calculator 169

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

sto 1

2

sto 2

.01

sto 3

0

sto 0

rcl 3

2

/

sto+ 1

lbl 0

rcl 1

gsb Fx

sto+ 0

rcl 3

sto+ 1

rcl 2

rcl 1

x<=y?

gto 0

rcl 0

rcl 3

*

end

LBL Fx

1/X

RTN

The label Fx contains the program code that calculates the integrated function. You can change

the code after that label to integrate other functions between X=1 and X=2. You can also

change the values assigned to memory registers 1 and 2 to define a new integration range.

Figure 4 shows a sample session with the program in file integ.txt.

Console Programmable RPN Calculator 170

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 4. A sample session with the program in file integ.txt.

Simple Integral of 1/X Take Two
This program also calculates the integral of 1/X for X from 1 to 2. The program differs from the

previous one in the following ways:

1. Uses named variables.

2. Use the Alpha register to store the expression “1/X” which represents the integrated

function. The code uses the XEQ command to execute the RPN expression in a named

text register.

The filename containing the program is alpha1.txt.

lbl start

'1/X

asto fx

0

vsto sum

1

vsto a

2

vsto b

.001

vsto h

2

/

vsto+ a

lbl 0

vrcl b

vrcl a

x>y?

gto 1

xeq fx

vsto+ sum

vrcl h

vsto+ a

gto 0

lbl 1

vrcl h

vrcl sum

*

rtn

To calculate integral for other functions, such as ln(x)/x, replace the string “’ 1/X” after the label

start with the string “’ln lastx /”. You can store any other valid RPN expression that represents a

custom function. Figure 5 shows a sample session with the program in file alpha1.txt.

Console Programmable RPN Calculator 171

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 5. A sample session with the program in file alpha1.txt.

Newton’s Method
Here is a short program that implements Newton’s method for calculating the root of a

function. The code solves the root for f(x)=ex – 3x2. The program prompts you to enter a guess

for the root and a tolerance value. The program displays the current guess for the root in each

iteration. The code uses named variables instead of the memory registers. As such, the code is

easier to read. The filename containing the program is newton1.txt. The code after label fx

calculates the function f(x). Figure 6 shows a sample session with the program in file

newton1.txt.

Newton's method version 1

LBL NEWTN

'Enter Guess?

PROMPT

VSTO X

'Enter Tolerance?

prompt

vsto toler

lbl 0

vrcl x

viewvar x

abs

1

+

.001

*

vsto h

vrcl x

gsb fx

vsto f0

vrcl x

Console Programmable RPN Calculator 172

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

vrcl h

+

gsb fx

vrcl f0

–

1/x

vrcl f0

*

vrcl h

*

vsto– x

abs

vrcl toler

x<y?

gto 0

vrcl x

end

lbl fx

exp

lastx

x^2

3

*

–

Rtn

Figure 6. A sample session with the program in file newton1.txt.

Console Programmable RPN Calculator 173

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Bisection Method
Here is a short program that implements the Bisection method for calculating the root of a

function. The code solves the root for f(x)= f(x)=ex – 3x2. The program prompts you to enter the

two guesses that surround the root and a tolerance value. The code uses named variables

instead of the memory registers. As such, the code is easier to read. The filename containing

the program is bisection1.txt. The code after label fx calculates the function f(x). Figure 7 shows

a sample session with the program in file bisection1.txt.

LBL Bisection

'Enter A?

prompt

vsto a

gsb fx

vsto fa

'Enter B?

prompt

vsto b

gsb fx

vsto fb

'Enter tolerance?

prompt

vsto toler

lbl startLoop

vrcl a

vrcl b

+

2

/

vsto c

gsb fx

vsto fc

vrcl fa

*

x>0?

gto replaceA

vrcl c

vsto b

vrcl fc

vsto fb

gto endLoop

lbl replaceA

vrcl c

vsto a

vrcl fc

vsto fa

lbl endLoop

vrcl a

vrcl b

–

abs

vrcl toler

x<y?

gto startLoop

vrcl a

Console Programmable RPN Calculator 174

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

vrcl b

+

2

/

end

lbl fx

exp

lastx

x^2

3

*

–

Rtn

Figure 7. A sample session with the program in file bisection1.txt.

Program with Duplicate Labels
The next program has a duplicate label, preventing it from running. When you load the

program, the CPRCA application will let you know that it detected a duplicate label. The

application displays the name of the duplicate label and the program line number where the

duplicate occurs. The filename containing the program is dupLbl.txt. Figure 8 shows a sample

session with the program in file dupLbl.txt.

LBL Start

.1

Sto 1

0

sto 0

LBL Start

rcl 1

Console Programmable RPN Calculator 175

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

1000

*

int

sto+ 0

ISG 1

gto Start

rcl 0

end

Figure 8. A sample session with the program in file dupLbl.txt.

Simple Linear Regression Program
The next program illustrates reading a data block for two variables, X, and Y, and then

performing linear regression using the data in that block. The data file data2v1.txt must be

located in the directory C:\MyData. The data file contains the following values:

10,50

25,77

30,86

35,95

40,104

100,212

The program in file reg2.txt performs a linear regression using the above data.

lbl lr

'C:\MyData\data2v1.txt

1

readdata2

1

1

1

lr

rtn

Console Programmable RPN Calculator 176

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

The output displays R2, the intercept, and the slope in stack registers Z, Y, and X, respectively.

Figure 9 shows a sample session with the program in file reg2.txt.

Figure 9. A sample session with the program in file reg2.txt.

Power Fit Program for Two Variables
The next program illustrates reading a data block for two variables, X, and Y, and then

performing a power using the data in that block. The data file data2v2.txt must be located in

the directory C:\MyData. The data file contains the following values:

1,1

2,4

3,9

4,16

5,25

9,81

10,100

12,144

The program in file reg2pwr.txt performs a linear regression using the above data.

Lbl start

'C:\MyData\data2v2.txt

1

readdata2

1

Powerlr

Rtn

The output displays R2, the intercept, and the slope in stack registers Z, Y, and X, respectively.

Figure 10 shows a sample session with the program in file reg2pwr.txt.

Console Programmable RPN Calculator 177

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 10. A sample session with the program in file reg2pwr.txt.

Multiple Linear Regression Program
The next program illustrates reading a data block for three variables, X, Y, and Z, and then

performing multiple linear regression using the data in that block. The data file data3v1.txt

must be located in the directory C:\MyData. The data file contains the following values:

1,10,21

2,22,43

5,10,61

7,30,101

1,1,12

6,40,101

The program in file reg3.txt performs a linear regression using the above data.

Lbl start

'C:\MyData\data3v1.txt

1

Readdata3

1

1

1

1

mlr

rtn

The output displays R2, the intercept, the slope for Y, and the slope for X, in stack registers T, Z,

Y, and X, respectively. Figure 11 shows a sample session with the program in file reg3.txt.

Console Programmable RPN Calculator 178

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

 Figure 11. A sample session with the program in file reg3.txt.

Simple Linear Regression Program, Take 2
The next program uses the commands CLEARSIGMA, SIGMA+, and LRXY to perform a simple

linear regression that does not involve reading data from a text file. The program in file

reg2b.txt performs the simple linear regression. Figure 12 shows a sample session with the

program in file reg2b.txt.

Simple linear regression

LBL LR

clearsigma

50

10

sigma+

77

25

sigma+

86

30

sigma+

212

100

sigma+

lrxy

rtn

The program uses data supplied internally for the sake of demonstration. As such the steps that

insert the data add to the program length. These input steps make the point that using file I/O

is more practical, especially if you are dealing with a sizable number or data sets. The output

shows a perfect linear fit that belongs to the equation that converse degrees Celsius into

degree Fahrenheit:

Console Programmable RPN Calculator 179

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

F = 32 + 1.8 C

Figure 12. A sample session with the program in file reg2b.txt.

Using The SOLVE Command
The programs in file solve1.txt and SOLVE2.txt use the SOLVE command. The first program finds

the roots of f(x)=ex – 3x2, while the second program permits you to specify a non–linear

function, at runtime, by entering it as an RPN expression. Since the second program is more

flexible, I will demonstrate it. The source code for SOLVE2.txt is:

Test Solve command

LBL SolveIt

'Enter RPN expression

ainput

asto RPNexpr

'Enter Guess?

prompt

sto 0

arcl RPNexpr

1e–8

100

rcl 0

SOLVE

Rtn

Figure 13 shows a sample session with SOLVE2.txt that solves f(x)=ex–3x2, using an initial guess

of 4.1. The program internally sets the tolerance to 1e–8 and the maximum number of

iterations to 100.

Console Programmable RPN Calculator 180

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 13. A sample session with SOLVE2.txt

Using The INTEG Command
The program file integ2.txt illustrates using the INTEG command to perform a numerical

integration using the RPN expression in the Alpha register as f(x). Figure 14 shows a sample

session where I integrate f(x)=1/x from x=1 to x=2, using a tolerance value of 1e–8.

Figure 14. A sample session with program integ2.txt.

Console Programmable RPN Calculator 181

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Best Linearized Regression Model
This program tests the BESTLR command. The source code for the bestlr.tx is:

Best LR selection

'C:\MyData\data2v1.txt

1

readdata2

1

bestlr

aview

'Regression coefficients

aview

showstk

'Best powers

aview

bestlrpwrs

rtn

The program uses the data in file data2v1.txt. Figure 15 shows a sample session with program

bestlr.txt. The results confirm that the linear model is the best one. The output displays R2, the

intercept, and the slope. The program also writes all of the regression model statistics to file

BESTLRxxx.CSV. Figure 16 shows using Excel to view that file.

Figure 15. A sample session with program bestlr.txt.

Console Programmable RPN Calculator 182

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 16. Partial view of the contents of file BESTLRxxx.CSV using Excel.

Best Multiple Linearized Regression Model
This program tests the BESTMLR command to find the best multiple linearized regressions

model. The source code for the bestmlr.txtis:

Best MLR selection

'C:\MyData\data3v1.txt

1

readdata3

1

bestmlr

aview

Console Programmable RPN Calculator 183

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

'Regression coefficients

aview

showstk

'Best powers

aview

bestmlrpwrs

rtn

The program uses the data in file data3v1.txt. Figure 17 shows a sample session with program

bestmlr.txt. The results confirm that the multiple linear model is the best one. The output

displays R2, the intercept, the slope for variable Y, and slope for variable X. The program also

writes all of the regression model statistics to file BESTMLRxxx.CSV. Figure 18 shows using Excel

to view that file.

Figure 17. A sample session with program bestmlr.txt.

Console Programmable RPN Calculator 184

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 18. Partial view of the contents of file BESTMLRxxx.CSV using Excel.

Using Local Variables
The next program involves using Newton’s method to calculate the root of a function. It is a

variant of the program newton1.txt that I presented earlier. The label fx defines how the

function f(x) is calculated and uses a single local register to store the argument x passed on the

stack. Figure 19 shows a sample session with the program. The session shows the user’s input

of an initial guess for the root and a tolerance value. The program displays the refinement in

the guess and then the final refinement (along with the other stack registers). The source code

for the file localregs1.txt is:

Console Programmable RPN Calculator 185

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Testing local memory registers

lbl newtn

'Enter guess?

prompt

vsto x

'Enter tolerance?

prompt

vsto toler

lbl 0

vrcl x

viewvar x

abs

1

+

.001

*

vsto h

vrcl x

gsb fx

vsto f0

vrcl x

vrcl h

+

gsb fx

vrcl f0

–

1/x

vrcl f0

*

vrcl h

*

vsto– x

abs

vrcl toler

x<y?

gto 0

vrcl x

end

lbl fx

lsto 0

exp

lrcl 0

x^2

3

*

–

rtn

The code after lbl fx stores the argument x in the local memory register at index 0, using the

command lsto 0. The code later recalls the value of x using the command lrcl 0.

Console Programmable RPN Calculator 186

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 19. A sample session with program localregs1.txt.

Using Local Variables, Take 2
The next program illustrates using local memory registers in subroutines three levels deep.

Figure 20 shows a sample session with the program, where the user has entered 1. The

calculations done by the program are purely arbitrary. The listing for the localregs2.txt program

is:

More advanced example of local registers

lbl start

'Enter x?

prompt

lsto 5

x^2

lrcl 5

sqrt

/

gsb sub1

lrcl 5

+

end

lbl sub1

lsto 0

2

*

gsb sub2

lrcl 0

2

+

/

Console Programmable RPN Calculator 187

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

rtn

lbl sub2

lsto 0

1/x

gsb sub3

lrcl 0

ln

*

rtn

lbl sub3

lsto 1

x^2

lrcl 1

ln

/

Rtn

The above program uses three nested subroutines named sub1, sub2, and sub3. The

subroutines sub1 and sub2 uses a local memory register at index 0. The subroutine sub3 uses a

local memory register at index 1. You can also notice that the main routine (after label Start)

also uses its own local memory register at index 5. It does not use the common memory

registers!

Figure 20. A sample session with program localregs2.txt.

Recursive Calls
The next program illustrates recursive calls to a subroutine that also uses a local memory

register. The file recursion.txt contains a program that calculates the factorial recursively.

Figure 21 shows a sample session with that program. The session shows an input of 15. The

program calculates and displays the value of 15! In two ways. The first method uses the

recursive subroutine. The second uses the command FACT. The second result confirms the

correctness of the first one. The source code for the recursion.txt is:

Console Programmable RPN Calculator 188

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Illustrates recursive calls

lbl start

'Enter N?

prompt

abs

int

lsto 0

1

x<>y

gsb fact

x<>y

lrcl 0

fact

rtn

lbl fact

x=0?

rtn

lsto 0

*

lrcl 0

1

–

gsb fact

rtn

The label fact contains the recursive subroutine. Notice that the last statement before the rtn

command calls the subroutine recursively. Also notice that the first statement in the subroutine

tests the value of the X stack register with 0. If the two values match, the subroutine executes a

rtn command. Otherwise, the subroutine uses a local memory register as part of the recursive

calculation of the factorial. Also notice that the main routine uses a local memory register at

index 0.

Console Programmable RPN Calculator 189

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 21. A sample session with program recursion.txt.

Formatted Output
The next program displays arbitrary values using different formats. The program does not

require any user input. It internally supplies the numbers and the display formats. The listing for

the frmt1.txt program is:

Test formatting

'pi=

pi

FRMT F0

|– using F0 format string

AVIEW

'pi=

pi

FRMT F2

|– using F2 format string

AVIEW

'pi=

pi

FRMT F4

|– using F4 format string

AVIEW

'X=

123456

FRMT E3

|– using E3 format string

AVIEW

'X=

123456

FRMT E6

|– using E6 format string

AVIEW

'X=

123456

FRMT E9

|– using E9 format string

'N=

123456

FRMT D

|– using D format string

AVIEW

'N=

123456

FRMT D4

|– using D4 format string

AVIEW

'N=

123456

FRMT D8

|– using D8 format string

AVIEW

'N=

FRMT X4

|– using X4 format string

AVIEW

Console Programmable RPN Calculator 190

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

NOSTACK

rtn

The program tests the F, E, D, and X formats. Figure 22 shows the output of the program.

Notice how the F and E formats display fewer digits after the decimal place. Also notice the

leading zeros when using the D8 format to display the decimal integer 123456 as 00123456.

Likewise notice the leading zeros when using the X4 format to display the decimal integer 255

as x00FF.

Figure 22. A sample session with program frmt1.txt.

Efficient Access of Array Variable Elements
The program namarr1.txt initializes the XARR array variable with 1000 elements with random

values between 0 and 100. The program then scans the elements of the array variable to

calculate statistical summations. The program uses these summations to calculate the mean

and standard deviation of the random values. Figure 23 shows a sample session with the

namarr1.txt. Here is the source code for the program:

Testing array variable

lbl start

100

vsto xhi

0

vsto xlow

vsto sumx

vsto sumx2

vsto i

‘Xarr

1000

vsto n

ARNEW

Console Programmable RPN Calculator 191

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

0

set the automatic index of RSTO and RRCL

sidx

0

ridx

first loop to store random numbers in array variable

lbl 0

rand

vrcl xhi

vrcl xlow

–

*

vrcl xlow

+

rst+

1

vsto+ i

vrcl n

vrcl i

x<=y?

gto 0

second loop to calculate basic stats

0

vsto i

lbl 1

rrc+

vsto x

vsto+ sumx

x^2

vsto+ sumx2

1

vsto+ i

vrcl n

vrcl i

x<=y?

gto 1

vrcl n

'Num Obs = '

arclx

aview

vrcl sumx

vrcl n

/

'Mean = '

frmt f3

aview

vrcl sumx2

vrcl sumx

x^2

vrcl n

/

–

vrcl n

1

–

/

sqrt

Console Programmable RPN Calculator 192

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

'Sdev = '

frmt f3

aview

nostack

end

The program uses named individual variables as well as the array variable XARR. The program

places the name of this array in the Alpha register until it needs to display tagged results that

use the Alpha register. The program contains two loops located between LBL 0 and GTO 0 and

between LBL 1 and GTO 1. The four executable commands before LBL 0 assign zeros to the

storage and recall indices of array XARR. These statements use the SIDX and RIDX commands.

They use the contents of the Alpha register and the value in the X stack register. The loop after

LBL 0 creates the random values (between 0 and 100) one by one and store them in the array

variable using the command RST+. This command uses the contents of the Alpha register to

obtain the targeted array variable. The second loop, located after LBL 1, recalls the values from

the array variable XARR using the command RRC+. This command also uses the contents of the

Alpha register to obtain the targeted array variable. The storage and recall indices of the array

variable XARR work behind the scene to access the appropriate array elements. The contents of

the Alpha register remain unchanged until the program moves beyond the end of the second

loop. The iterations of both loops are explicitly controlled by the named variable I.

Figure 23. A sample session with program namarr1.txt

Adding Time Units
The next program date1.txt illustrates adding various types of time units to an arbitrary

date/time of January 1, 2016, 2pm. The program displays comments for each use of the

command ADDDT. The program also uses the commands DSTO, DRCL, and VIEWDT to store,

recall, and view date/time values, respectively. Figure 24 shows the output of the program.

Console Programmable RPN Calculator 193

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Test date and time functions

lbl start

'#1/1/2016 2:00:00 PM#

asto dt1

1

'Starting date

aview

viewdt dt1

'Adding 1 day

aview

'Day

adddt dt1

viewdt dt1

'Adding 1 month

aview

'Month

adddt dt1

viewdt dt1

'Adding 1 year

aview

'Year

adddt dt1

viewdt dt1

'Adding 1 hour

aview

'Hour

adddt dt1

viewdt dt1

'Adding 1 minute

aview

'Minute

adddt dt1

viewdt dt1

'Adding 1 second

aview

'Second

adddt dt1

viewdt dt1

'Recalling date/time in variable dt1

drcl dt1

end

You can achieve the same date/time calculations if you replace the string literal for the

date/time value with equivalent floating-point values in the X and Y stack registers. Here is the

following code snippet that uses floating-point values for the date and time:

Test date and time functions

lbl start

The date/time is 1/1/2016 2:00:00 PM

The decimal date goes in the Y stack register

2016.0101

The decimal time goes in the X stack register

14.00000

dsto dt1

1

Console Programmable RPN Calculator 194

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

'Starting date

…

end

Figure 24. A sample session with program date1.txt.

Subtracting Date/Time Units
The next program date2.txt illustrates subtracting various types of time units between the

arbitrary date/time values of January 1, 2017, 2pm and January 1, 2016, 2pm. The program

displays comments for each use of the command DIFFDT. The program also uses the DSTO and

VIEWDT commands to store and view date/time values, respectively. Figure 25 shows the

output of the program.

Test date and time functions

lbl start

'#1/1/2016 2:00:00 PM#"

asto dt1

'#1/1/2017 2:00:00 PM#"

asto dt2

1

'Starting dates

aview

viewdt dt1

viewdt dt2

'Subtracting days

Console Programmable RPN Calculator 195

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

aview

'Day

diffdt dt1 dt2

viewx

'Subtracting months

aview

'Month

diffdt dt1 dt2

viewx

'Subtracting years

aview

'Year

diffdt dt1 dt2

viewx

'Subtracting hours

aview

'Hour

diffdt dt1 dt2

viewx

'Subtracting minutes

aview

'Minute

diffdt dt1 dt2

viewx

'Subtracting seconds

aview

'Second

diffdt dt1 dt2

viewx

nostack

end

You can achieve the same date/time calculations if you replace the string literals for the

date/time with equivalent floating-point values in the X and Y stack registers. Here is the

following code snippet that uses floating-point values for the date and time:

Test date and time functions

lbl start

1/1/2016 2:00:00 PM

The decimal date goes in the Y stack register

2016.0101

The decimal time goes in the X stack register

14.00000

DSTO dt1

1/1/2017 2:00:00 PM

The decimal date goes in the Y stack register

2017.0101

The decimal time goes in the X stack register

14.00000

dsto dt2

1

'Starting dates

…

end

Console Programmable RPN Calculator 196

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Figure 25. A sample session with program date2.txt.

Scanning a Function
The scandemo.txt program illustrates the SCAN command, introduced in version 1.1. This

program provides internal input to scan the function f(x)=ex – 3x2 in the range of [–1, 4] in steps

of 0.1. The command uses a tolerance of 1e–8 and function tolerance of 1e-8. Figure 26 shows

the output of the scandemo.txt program.

Test SCAn command

lbl Start

'Scanning f(x)=exp(x)-3*x^2

aview

'From x=-1 to x=4 in steps of 0.1 and tolerance of 1e-8

aview

'exp lastx x^2 3 * -

memIdx

0

FxToler

1e-8

copystack

Toler

1e-8

Step

0.1

A

-1

B

4

Console Programmable RPN Calculator 197

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

scan

-x-

nostack

end

Figure 26. A sample session with program scandemo.txt.

Gauss-Kronrod Quadrature
The program gausskronquad.txt allows you to perform numerical integration for a function in a

given range. The listing for the program is:

LBL GaussKronrodQuad

'Gauss-Kronrod Quadrature

aview

'Enter RPN Expression

AINPUT

ASTO RPNexpr

'Enter A?

prompt

vsto a

'Enter B?

prompt

vsto b

'Order?

Console Programmable RPN Calculator 198

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

prompt

vsto order

'Enter tolerance?

prompt

vsto toler

vrcl order

vrcl toler

vrcl b

vrcl a

arcl RPNexpr

gausskronquad

end

Figure 27 shows a sample session with the gausskronquad.txt program. The session integrates

f(x)=1/x from x=1 to x=10, which is ln(10). The calculations use a Legendre polynomial order of

10 and tolerance value of 1e–7.

Figure 27. A sample session with program gausskronquad.txt.

Appendix A
This appendix presents the format strings used by the FRMT command. Table 4 shows a

summary of the format strings supported by the application. Consult Microsoft web’s site to

learn more details about the tabulated formatting strings in Visual Basic. The programming

language supports other format strings (for example, for date and time) which the CPRCA

application does not support.

Console Programmable RPN Calculator 199

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Format Name Description Example

D or d Decimal Integer digits with optional
negative sign.

D for 1234 displays 1234.
D6 for 1234 displays 001234.
D4 for 1234.5678 displays 1234.

E or e Scientific Exponential notations. E4 for 123.4567 displays
1.2345E+2.

F or f Fixed–point Integral and decimal digits with
optional negative sign.

F2 for pi displays 3.14.

G or g General The most compact of either
scientific notation or fixed
values.

G for –123.456 displays –123.456.

P or p Percentage The value is multiplied by 100
and displayed with a %
character.

P2 for 2 displays 200%.

X or x Hexadecimal Displays an integer as a
hexadecimal string.

X2 for 255 displays FF.
X2 255.1234 displays FF.

Table 4. The format strings supported by the CPRCA application.

Appendix B
The next table offers a summary of the STO commands in the CPRCA application.

STO Command Source Destination

ASTO Alpha register Text variable

DSTO Stack Text variable (has text as a date/time value)
LSTO Stack Local memory register

RSTO Stack Array variable

STO Stack Memory

STOFLGS Flags Text variable
STOSTX, STOSTY, STOSTZ, STOSTT Stack Stack

VSTO Stack Variable

Appendix C
The next table offers a summary of the RCL commands in the CPRCA application.

RCL Command Source Destination
ARCL Text variable Alpha register

ARCLIX, ARCLIY, ARCLIZ, ARCLIT Integer value of Stack Alpha register

ARCLX, ARCLY, ARCLZ, ARCLT Stack Alpha register

DRCL Text variable (has text as a date/time value) Stack
FORCL Text variable Stack

LRCL Local memory register Stack

RCL Memory Stack

Console Programmable RPN Calculator 200

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

RCL Command Source Destination
RCLFLGS Text variable Flags

RCLSTX, RCLSTY, RCLSTZ,
RCLSTT

Stack Stack

RRCL Array variable Stack

VRCL Variable Stack

Final Remarks
The CPRCA application grew gradually from a simple exercise, then to a more usable simple

programmable calculator application, and then into a versatile application with many features.

As each day came, I added and modified features. It went from a little exercise to a whopping

mammoth! I felt my work exemplified the old saying “A cowboy’s work is never done.” If you

enjoy programming the HP–41C and the HP–42S you will enjoy tinkering with the CPRCA

application. Remember that it is a labor of love and work in progress. There as certainly bugs to

be discovered and typo errors in this manual to be found. I appreciate your bug reports and

patience. I hope you enjoy the new features that I added to the HP-41C programming language.

The application processes the RPN expressions and program statements in two different areas.

As you might expect, the code uses IF–ELSEIF–ELSE statements that examine numerous ELSEIF

clauses to find the right command or function to process. To speed up this process I adopted

the following schemes:

1. Determining if a program line contains a command that is part of the RPN expressions or

belong to the set of programming commands. This distinction speeds up program

execution by avoiding fruitless lookup of RPN expression commands when the current

command is a programing one.

2. Grouping commands and functions that share a common leading (or trailing) set of

characters in their names. The grouping uses an ELSEIF clause to detect the common

part of the command names. It then uses a nested IF–ELSEIF–ELSE statement to process

each command in that group.

3. Offering task-consolidating commands that perform tasks on memory registers, flags,

and the elements of array variables. These commands can be implemented using other

simpler commands. However, the task-consolidating commands significantly reduce the

number of commands processed by CPRCA’s interpreter.

Console Programmable RPN Calculator 201

Copyright © 2015, 2016 by Namir Clement Shammas Version 1.0.0

Document Release and Updates History
Doc

Version

App

Version

Date Released/Updated Comment

0.9.0 1.0.0 January 16, 2016 Initial release of beta version the document.

1.0.0 1.1.0 March 3, 2016 1. Updated the source code to use new

VB 2015 features.

2. Implemented hash tables for faster

access of names for array variables,

named variables, and named text

variables.

3. Fixed a few bugs.

4. Added additional SOLVE commands.

5. Added several Gaussian quadrature

commands.

6. Added two more examples.

