
The New Bisection Plus Algorithm 1

Copyright © 2014 by Namir Clement Shammas

The New Bisection Plus Algorithm
by

Namir Shammas

Introduction
This article presents a new variant for the root-bracketing Bisection algorithm.

This new version injects a lot of punch to the Bisection method which is the

slowest root-seeking method.

The Bisection Algorithm
There are numerous algorithms that calculate the roots of single-variable nonlinear

functions. The most popular of such algorithms is Newton’s method. The slowest

and simplest root seeking algorithm is the Bisection method. This method has the

user select an interval that contains the sought root. The method iteratively shrinks

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code

for the Bisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], and the

tolerance for the root of f(x):

 Calculate Fa = f(A) and Fb=f(B).

 Exit if Fa*Fb > 0.

 Repeat

o X=(A+B)/2

o Fx = f(X)

o If Fx*Fa > 0 then

 A=X

 Fa=Fx

o Else

 B=X

 Fb=Fx

o End

 Until |A-B| < tolerance

 Return root as (A+B)/2

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest

The New Bisection Plus Algorithm 2

Copyright © 2014 by Namir Clement Shammas

converging method. It’s main virtue is that it is guaranteed to work if f(x) is

continuous in the interval [A, B] and f(A)×f(B) is negative.

Newton’s Method
I will also compare the new algorithm with Newton’s method. This comparison

serves as an upper limit test. I am implementing Newton’s method based on the

following pseudo-code:

Given f(x)=0, the root-bracketing interval [A,B], and the

tolerance for the root of f(x):

 Calculate X = (A+B)/2

 Repeat

o h = 0.001 * (|X| + 1)

o Fx = f(X)

o Diff = h * Fx / (f(X+h) – Fx)

o X = X – Diff

 Until |Diff| < tolerance

 Return root as X

The above code shows that the implementation of Newton’s method starts with the

same interval [A, B] that is already available for the Bisection and Bisection Plus

methods. Thus, the algorithm derives its single initial guess as the midpoint of that

interval.

The Bisection Plus Algorithm
In my effort to enhance the Bisection method, I started with several approaches

that takes the midpoint in the original Bisection method and enhances it. I initially

worked with adding some random fluctuation to the midpoint value in [A, B]. This

effort showed little promise.

I went back to the proverbial drawing board. The essential part of Bisection

method is that it limits itself to comparing the signs of f(x) values. A few years

ago, I developed the Quartile Method[3], which improves on the Bisection method

by comparing the absolute values of f(A) and f(B) in order to get a better

“midpoint” value. In designing the Bisection Plus algorithm, I decided to up the

ante and work with the values of f(A), f(B), and f((A+B/2)). The new algorithm

has the following steps:

1. Each iteration of the Bisection Plus method calculates the midpoint, call it

X1, and its associated function value f(x1).

The New Bisection Plus Algorithm 3

Copyright © 2014 by Namir Clement Shammas

2. The new algorithm then calculates the slope and intercept passing through

X1 and either A or B. The method selects the interval endpoint whose

function value has the opposite sign of f(X1).

3. Using this new line, the algorithm calculates X2--a better estimate for the

root. The choice of using the proper endpoint and X1 ensures that X2 lies in

the interval [A, B]. The algorithm also calculates f(X2).

4. Each iteration ends up with the original interval-defining values A and B,

and two new values, X1 and X2, within that interval. The process of

shrinking the root-bracketing interval involves two tests:

a. If f(X1)×f(X2) is negative, then the interval [X1, X2] replaces the

interval [A, B] causing a quick reduction in the root-bracketing

interval.

b. If f(X1)×f(X2) is positive, then the method uses the value of

f(A)×f(X2) to determine which of A or B is replaced by X2.

An additional improvement to the algorithm, inspired by the False-Position

method, compares the newly calculated X2 value with the one from the previous

iteration. If the two values are within the tolerance limit, the algorithm stops

iterating.

It is worth pointing out that while both Newton’s method and the Bisection Plus

calculate slope values, these values are different in context. Newton’s method

calculate the tangent of f(X) at X. By contrast, the Bisection Plus method calculate

the slope of the straight line between X1 and one of the endpoints. Thus, the

Bisection Plus method is not vulnerable to values of X where the derivative of f(X)

is near zero, as is the case with Newton’s method.

Let me present the pseudo-code for the Bisection Plus method:

Given f(x)=0, the root-bracketing interval [A,B], and the

tolerance for the root of f(x):

 Calculate Fa = f(A) and Fb=f(B).

 Exit if Fa*Fb > 0

 LastX = A

 Repeat

o X1=(A+B)/2

o Fx1 = f(X1)

o If Fx1*Fa > 0 then

 Slope = (Fb – Fx1)/(B – X1)

 Intercept = Fb – Slope * B

o Else

The New Bisection Plus Algorithm 4

Copyright © 2014 by Namir Clement Shammas

 Slope = (Fa – Fx1)/(A – 1)

 Intercept = Fa – Slope * A

o End

o X2=-Intercept / Slope

o Fx2 = f(X2)

o If Fx1*Fx2 < 0 then

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

o Else

 If Fx2*Fa > 0 then

 A=X2

 Fa=Fx2

 Else

 B=X2

 Fb=Fx2

 End

o End

o If |X2 – LastX| < tolerance then exit loop

o LastX = X2

 Until |A-B| < tolerance

 Return X2

Figure 1 depicts an iteration of the Bisection Plus algorithm.

The New Bisection Plus Algorithm 5

Copyright © 2014 by Namir Clement Shammas

Figure 1. The steps within an iteration of the Bisection Plus Algorithm.

Figure 1 depicts an iteration that ends up replacing the initial root-bracketing

interval [A, B] with [X2, B]. If f(X2) was positive, the iteration would have

replaced the initial root-bracketing interval [A, B] with the narrower interval [X1,

X2]. From the testing that I have done, the latter occurs frequently and helps to

quickly narrow the root-bracketing interval around the targeted root value.

Figure 2 shows a case where some of the values of |f(X)| for X in [A, B] are greater

than |f(A)| and |f(B)|. The figure illustrates why X2 is calculated using X1 and either

endpoint whose function value has the opposite sign of f(X1)—in the case of

Figure 2, using X1 and A. If X2 is calculated using X1 and B, then the value of X2

lands outside the root-bracketing interval [A, B]. Using the scheme that I suggested

to calculate X2 simplify matters, because the algorithm needs not check if any X in

[A, B] has function values that exceed |f(A)| and |f(B)|.

Figure 2. Special cases that dictates calculate X2 using the suggested scheme.

Testing with Excel VBA Code
I tested the new algorithm using Excel taking advantage of the application’s

worksheet for easy input and the display of intermediate calculations. The

following listing shows the Excel VBA code used for testing:

Option Explicit

The New Bisection Plus Algorithm 6

Copyright © 2014 by Namir Clement Shammas

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = UCase(Trim(sFx))

 sFx = Replace(sFx, "$X", "(" & X & ")")

 MyFx = Evaluate(sFx)

End Function

Sub Go()

 ' Bisection Plus algorithm

 ' Version 1.00 1/9/2014

 ' Copyright (c) 2014 Namir Clement Shammas

 Dim R As Integer, Count As Long, NumFxCalls As Integer

 Dim A As Double, B As Double, X As Double, LastX As Double

 Dim X1 As Double, X2 As Double, FX1 As Double, FX2 As Double

 Dim FA As Double, FB As Double, FX As Double, Toler As Double

 Dim Slope As Double, Intercept As Double

 Dim h As Double, Diff As Double

 Dim sFx As String

 Range("B3:Z1000").Value = ""

 A = [A2].Value

 B = [A4].Value

 Toler = [A6].Value

 sFx = [A8].Value

 FA = MyFx(sFx, A)

 FB = MyFx(sFx, B)

 If FA * FB > 0 Then

 MsgBox "F(A) & F(B) have the same signs"

 Exit Sub

 End If

 ' Bisection

 R = 3

 NumFxCalls = 2

 Do While Abs(A - B) > Toler

 NumFxCalls = NumFxCalls + 1

 X = (A + B) / 2

 FX = MyFx(sFx, X)

 If FX * FA > 0 Then

 A = X

 FA = FX

 Else

 B = X

 FB = FX

 End If

 Cells(R, 2) = A

The New Bisection Plus Algorithm 7

Copyright © 2014 by Namir Clement Shammas

 Cells(R, 3) = B

 R = R + 1

 Loop

 Cells(R, 2) = (A + B) / 2

 Cells(R, 3) = "FX Calls=" & NumFxCalls

 ' Bisection Plus

 A = [A2].Value

 B = [A4].Value

 FA = MyFx(sFx, A)

 FB = MyFx(sFx, B)

 R = 3

 LastX = A

 NumFxCalls = 2

 Do

 X1 = (A + B) / 2

 FX1 = MyFx(sFx, X1)

 NumFxCalls = NumFxCalls + 1

 If FA * FX1 > 0 Then

 Slope = (FB - FX1) / (B - X1)

 Intercept = FB - Slope * B

 Else

 Slope = (FA - FX1) / (A - X1)

 Intercept = FA - Slope * A

 End If

 X2 = -Intercept / Slope

 FX2 = MyFx(sFx, X2)

 NumFxCalls = NumFxCalls + 1

 ' does [X1,X2] define a new root-bracketing interval?

 If FX1 * FX2 < 0 Then

 A = X1

 FA = FX1

 B = X2

 FB = FX2

 Cells(R, 6) = "New interval"

 Else

 If FA * FX2 > 0 Then

 A = X2

 FA = FX2

 Else

 B = X2

 FB = FX2

 End If

 End If

 Cells(R, 4) = A

 Cells(R, 5) = B

The New Bisection Plus Algorithm 8

Copyright © 2014 by Namir Clement Shammas

 If Abs(LastX - X2) < Toler Then Exit Do

 LastX = X2

 R = R + 1

 Loop Until Abs(A - B) < Toler

 Cells(R, 4) = X2

 Cells(R, 5) = "FX Calls=" & NumFxCalls

 ' Newton's method

 A = [A2].Value

 B = [A4].Value

 X = (A + B) / 2

 R = 3

 NumFxCalls = 2

 Diff = 10 * Toler

 Do

 h = 0.001 * (Abs(X) + 1)

 FX = MyFx(sFx, X)

 Diff = h * FX / (MyFx(sFx, X + h) - FX)

 X = X - Diff

 NumFxCalls = NumFxCalls + 2

 Cells(R, 7) = X

 Cells(R, 8) = Diff

 R = R + 1

 Loop Until Abs(Diff) <= Toler

 Cells(R, 7) = X

 Cells(R, 8) = "FX Calls=" & NumFxCalls

End Sub

The VBA function MyFX calculates the function value based on a string that

contains the function’s expression. This expression must use $X as the variable

name. Using function MyFX allows you to specify the function f(X)=0 in the

spreadsheet and not hard code it in the VBA program. Granted that this approach

trades speed of execution with flexibility. However, with most of today’s PCs you

will hardly notice the difference in execution speeds.

The subroutine Go performs the root-seeking calculations that compare the

Bisection method, Bisection Plus method, and Newton’s method. Figure 2 shows a

snapshot of the Excel spreadsheet used in the calculations for the Bisection,

Bisection Plus, and Newton’s method.

The New Bisection Plus Algorithm 9

Copyright © 2014 by Namir Clement Shammas

Figure 2. The Excel spreadsheet used to comparing the Bisection, Bisetion Plus,

and Newton’s method.

The Input Cells

The VBA code relies on the following cells to obtain data:

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B].

 Cell A6 contains the tolerance value.

 Cell A8 contains the expression for f(X)=0. Notice that the contents of cell

A8 use $X as the variable name. The expression is case insensitive.

Output

The spreadsheet displays output in the following three sets of columns:

 Columns B and C display the updated values for the root-bracketing interval

[A, B] for the Bisection method. This interval shrinks with each iteration

until the Bisection method zooms on the root. The bottom most value, in

column B, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

 Columns D, and E display the updated values for the root-bracketing interval

[A, B] for the Bisection Plus method. Column F displays comments made by

the code that point out when X1 and X2 form a new root-bracketing interval.

The bottom most value, in column D, is the best estimate for the root. To its

right is the total number of function calls made during the iterations.

The New Bisection Plus Algorithm 10

Copyright © 2014 by Namir Clement Shammas

 Columns G and H display the refined guess for the root and the refinement

value, respectively, using Newton’s method. The bottom most value, in

column G, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

The Results
My aim is to significantly accelerate the Bisection Plus method compared to the

Bisection method. I do not expect the Bisection Plus method to outperform

Newton’s method. The results proved me partial wrong regarding the last

statement. Table 1 shows a summary of the results. The metrics for comparing the

algorithms include the number of iterations and, perhaps more importantly, the

number of function calls. I consider the number of function calls as the underlying

cost of doing business, so to speak. I have come across new root-seeking

algorithms that require fewer iterations that popular algorithms like Newton’s

method and Halley’s method. However, these new algorithms require more

function calls to zoom in on the root in fewer iterations.

Function [A, B] Toler Root Iterations Num Fx Calls

Exp(x)-

4*x^2

[3, 5] 1E-8 4.30658 Bisec= 28

Bisec+ = 7

Newton=6

Bisec= 30

Bisec+ = 18

Newton=14

Exp(x)-

3*x^2

[1, 4] 1E-8 3.73307 Bisec= 29

Bisec+ = 7

Newton=10

Bisec= 31

Bisec+ = 18

Newton=22

Exp(x)-

3*x^2

[3, 4] 1E-8 3.73307 Bisec= 27

Bisec+ = 6

Newton=6

Bisec= 29

Bisec+ = 16

Newton=14

(X-2.345) *

(X-12.345) *

(X-23.456)

[1, 11] 1E-8 2.345 Bisec= 30

Bisec+ = 5

Newton=9

Bisec= 32

Bisec+ = 14

Newton=20

(X-2.345) *

(X-12.345) *

(X-23.456)

[11,

22]

1E-8 12.345 Bisec= 29

Bisec+ = 4

Newton=6

Bisec= 31

Bisec+ = 12

Newton=14

LN(X^4)-X [8,9] 1E-8 8.66125 Bisec= 27

Bisec+ = 4

Newton=4

Bisec= 29

Bisec+ = 12

Newton=10

Cos(X)-X [0.5,1] 1E-8 0.73908 Bisec= 26

Bisec+ = 3

Newton=4

Bisec= 28

Bisec+ = 10

Newton=10

The New Bisection Plus Algorithm 11

Copyright © 2014 by Namir Clement Shammas

Table 1. Summary of the results comparing the Bisection, Bisection Plus, and

Newton’s method.

The above table shows that the Bisection Plus method consistently outperforms the

Bisection method. The table also highlights in red the cases where the Bisection

Plus method performs better than Newton’s method. Of course there is a huge

number of test cases that vary the tested function and root-bracketing range. Due to

time limitation, I have chosen the above few test cases which succeeded in proving

my goals.

Conclusion
The Bisection Plus algorithm offers significant improvement over the Bisection

method. The new algorithm has an efficiency that is somewhat comparable to that

of Newton’s method.

References
1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition,

Cambridge University Press; 3rd edition, September 10, 2007.

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage

Learning, 9th edition, August 9, 2010.

3. Namir Shammas, Root-Bracketing Quartile Algorithm,

http://www.namirshammas.com/NEW/quartile.htm.

Document Information
Version Date Comments

1.0.0 1/9/2014 Initial release.

1.0.1 1/10/2014 Edit of general

description of algorithm

http://www.namirshammas.com/NEW/quartile.htm

