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Introduction 
This article presents a new variant for the root-bracketing Bisection algorithm. 

This new version injects a lot of punch to the Bisection method which is the 

slowest root-seeking method. 

The Bisection Algorithm 
There are numerous algorithms that calculate the roots of single-variable nonlinear 

functions. The most popular of such algorithms is Newton’s method. The slowest 

and simplest root seeking algorithm is the Bisection method. This method has the 

user select an interval that contains the sought root. The method iteratively shrinks 

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code 

for the Bisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], and the 

tolerance for the root of f(x): 

 Calculate Fa = f(A) and Fb=f(B). 

 Exit if Fa*Fb > 0. 

 Repeat  

o X=(A+B)/2 

o Fx = f(X) 

o If Fx*Fa > 0 then 

 A=X 

 Fa=Fx 

o Else 

 B=X 

 Fb=Fx 

o End 

 Until |A-B| < tolerance 

 Return root as (A+B)/2 
 

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest 
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converging method. It’s main virtue is that it is guaranteed to work if f(x) is 

continuous in the interval [A, B] and f(A)×f(B) is negative. 

Newton’s Method 
I will also compare the new algorithm with Newton’s method. This comparison 

serves as an upper limit test. I am implementing Newton’s method based on the 

following pseudo-code: 

Given f(x)=0, the root-bracketing interval [A,B], and the 

tolerance for the root of f(x): 

 Calculate X = (A+B)/2 

 Repeat  

o h = 0.001 * (|X| + 1) 

o Fx = f(X) 

o Diff = h * Fx / (f(X+h) – Fx) 

o X = X – Diff 

 Until |Diff| < tolerance 

 Return root as X 
 

The above code shows that the implementation of Newton’s method starts with the 

same interval [A, B] that is already available for the Bisection and Bisection Plus 

methods. Thus, the algorithm derives its single initial guess as the midpoint of that 

interval. 

The Bisection Plus Algorithm 
In my effort to enhance the Bisection method, I started with several approaches 

that takes the midpoint in the original Bisection method and enhances it. I initially 

worked with adding some random fluctuation to the midpoint value in [A, B]. This 

effort showed little promise. 

I went back to the proverbial drawing board. The essential part of Bisection 

method is that it limits itself to comparing the signs of f(x) values. A few years 

ago, I developed the Quartile Method[3], which improves on the Bisection method 

by comparing the absolute values of f(A) and f(B) in order to get a better 

“midpoint” value. In designing the Bisection Plus algorithm, I decided to up the 

ante and work with the values of f(A), f(B), and f((A+B/2)). The new algorithm 

has the following steps: 

1. Each iteration of the Bisection Plus method calculates the midpoint, call it 

X1, and its associated function value f(x1).  
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2. The new algorithm then calculates the slope and intercept passing through 

X1 and either A or B. The method selects the interval endpoint whose 

function value has the opposite sign of f(X1).   

3. Using this new line, the algorithm calculates X2--a better estimate for the 

root. The choice of using the proper endpoint and X1 ensures that X2 lies in 

the interval [A, B]. The algorithm also calculates f(X2).  

4. Each iteration ends up with the original interval-defining values A and B, 

and two new values, X1 and X2, within that interval. The process of 

shrinking the root-bracketing interval involves two tests: 

a. If f(X1)×f(X2) is negative, then the interval [X1, X2] replaces the 

interval [A, B] causing a quick reduction in the root-bracketing 

interval. 

b. If f(X1)×f(X2) is positive, then the method uses the value of 

f(A)×f(X2) to determine which of A or B is replaced by X2. 

An additional improvement to the algorithm, inspired by the False-Position 

method, compares the newly calculated X2 value with the one from the previous 

iteration. If the two values are within the tolerance limit, the algorithm stops 

iterating. 

It is worth pointing out that while both Newton’s method and the Bisection Plus 

calculate slope values, these values are different in context. Newton’s method 

calculate the tangent of f(X) at X. By contrast, the Bisection Plus method calculate 

the slope of the straight line between X1 and one of the endpoints. Thus, the 

Bisection Plus method is not vulnerable to values of X where the derivative of f(X) 

is near zero, as is the case with Newton’s method. 

Let me present the pseudo-code for the Bisection Plus method: 

Given f(x)=0, the root-bracketing interval [A,B], and the 

tolerance for the root of f(x): 

 Calculate Fa = f(A) and Fb=f(B). 

 Exit if Fa*Fb > 0 

 LastX = A 

 Repeat  

o X1=(A+B)/2 

o Fx1 = f(X1) 

o If Fx1*Fa > 0 then 

 Slope = (Fb – Fx1)/(B – X1) 

 Intercept = Fb – Slope * B 

o Else 
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 Slope = (Fa – Fx1)/(A – 1) 

 Intercept = Fa – Slope * A 

o End 

o X2=-Intercept / Slope 

o Fx2 = f(X2) 

o If Fx1*Fx2 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X2 

 Fb = Fx2 

o Else 

 If Fx2*Fa > 0 then 

 A=X2 

 Fa=Fx2 

 Else 

 B=X2 

 Fb=Fx2 

 End 

o End 

o If |X2 – LastX| < tolerance then exit loop 

o LastX = X2 

 Until |A-B| < tolerance 

 Return X2 
 

Figure 1 depicts an iteration of the Bisection Plus algorithm. 
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Figure 1. The steps within an iteration of the Bisection Plus Algorithm. 

Figure 1 depicts an iteration that ends up replacing the initial root-bracketing 

interval [A, B] with [X2, B]. If f(X2) was positive, the iteration would have 

replaced the initial root-bracketing interval [A, B] with the narrower interval [X1, 

X2]. From the testing that I have done, the latter occurs frequently and helps to 

quickly narrow the root-bracketing interval around the targeted root value. 

Figure 2 shows a case where some of the values of |f(X)| for X in [A, B] are greater 

than |f(A)| and |f(B)|. The figure illustrates why X2 is calculated using X1 and either 

endpoint whose function value has the opposite sign of f(X1)—in the case of 

Figure 2, using X1 and A. If X2 is calculated using X1 and B, then the value of X2 

lands outside the root-bracketing interval [A, B]. Using the scheme that I suggested 

to calculate X2 simplify matters, because the algorithm needs not check if any X in 

[A, B] has function values that exceed |f(A)| and |f(B)|. 

 

Figure 2. Special cases that dictates calculate X2 using the suggested scheme. 

Testing with Excel VBA Code 
I tested the new algorithm using Excel taking advantage of the application’s 

worksheet for easy input and the display of intermediate calculations. The 

following listing shows the Excel VBA code used for testing: 

Option Explicit 
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Function MyFx(ByVal sFx As String, ByVal X As Double) As Double 

  sFx = UCase(Trim(sFx)) 

  sFx = Replace(sFx, "$X", "(" & X & ")") 

  MyFx = Evaluate(sFx) 

End Function 

 

Sub Go() 

  ' Bisection Plus algorithm 

  ' Version 1.00  1/9/2014 

  ' Copyright (c) 2014 Namir Clement Shammas 

  Dim R As Integer, Count As Long, NumFxCalls As Integer 

  Dim A As Double, B As Double, X As Double, LastX As Double 

  Dim X1 As Double, X2 As Double, FX1 As Double, FX2 As Double 

  Dim FA As Double, FB As Double, FX As Double, Toler As Double 

  Dim Slope As Double, Intercept As Double 

  Dim h As Double, Diff As Double 

  Dim sFx As String 

   

  Range("B3:Z1000").Value = "" 

  A = [A2].Value 

  B = [A4].Value 

  Toler = [A6].Value 

  sFx = [A8].Value 

   

  FA = MyFx(sFx, A) 

  FB = MyFx(sFx, B) 

  If FA * FB > 0 Then 

    MsgBox "F(A) & F(B) have the same signs" 

    Exit Sub 

  End If 

   

  ' Bisection 

  R = 3 

  NumFxCalls = 2 

  Do While Abs(A - B) > Toler 

    NumFxCalls = NumFxCalls + 1 

    X = (A + B) / 2 

    FX = MyFx(sFx, X) 

    If FX * FA > 0 Then 

      A = X 

      FA = FX 

    Else 

      B = X 

      FB = FX 

    End If 

    Cells(R, 2) = A 
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    Cells(R, 3) = B 

    R = R + 1 

  Loop 

  Cells(R, 2) = (A + B) / 2 

  Cells(R, 3) = "FX Calls=" & NumFxCalls 

   

  ' Bisection Plus 

  A = [A2].Value 

  B = [A4].Value 

  FA = MyFx(sFx, A) 

  FB = MyFx(sFx, B) 

  R = 3 

  LastX = A 

  NumFxCalls = 2 

  Do 

    X1 = (A + B) / 2 

    FX1 = MyFx(sFx, X1) 

    NumFxCalls = NumFxCalls + 1 

    If FA * FX1 > 0 Then 

      Slope = (FB - FX1) / (B - X1) 

      Intercept = FB - Slope * B 

    Else 

      Slope = (FA - FX1) / (A - X1) 

      Intercept = FA - Slope * A 

    End If 

    X2 = -Intercept / Slope 

    FX2 = MyFx(sFx, X2) 

    NumFxCalls = NumFxCalls + 1 

     

    ' does [X1,X2] define a new root-bracketing interval? 

    If FX1 * FX2 < 0 Then 

      A = X1 

      FA = FX1 

      B = X2 

      FB = FX2 

      Cells(R, 6) = "New interval" 

    Else 

      If FA * FX2 > 0 Then 

        A = X2 

        FA = FX2 

      Else 

        B = X2 

        FB = FX2 

      End If 

    End If 

    Cells(R, 4) = A 

    Cells(R, 5) = B 
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    If Abs(LastX - X2) < Toler Then Exit Do 

    LastX = X2 

    R = R + 1 

  Loop Until Abs(A - B) < Toler 

  Cells(R, 4) = X2 

  Cells(R, 5) = "FX Calls=" & NumFxCalls 

   

  ' Newton's method 

  A = [A2].Value 

  B = [A4].Value 

  X = (A + B) / 2 

  R = 3 

  NumFxCalls = 2 

  Diff = 10 * Toler 

  Do 

    h = 0.001 * (Abs(X) + 1) 

    FX = MyFx(sFx, X) 

    Diff = h * FX / (MyFx(sFx, X + h) - FX) 

    X = X - Diff 

    NumFxCalls = NumFxCalls + 2 

    Cells(R, 7) = X 

    Cells(R, 8) = Diff 

    R = R + 1 

  Loop Until Abs(Diff) <= Toler 

  Cells(R, 7) = X 

  Cells(R, 8) = "FX Calls=" & NumFxCalls 

End Sub 
 

The VBA function MyFX calculates the function value based on a string that 

contains the function’s expression. This expression must use $X as the variable 

name. Using function MyFX allows you to specify the function f(X)=0 in the 

spreadsheet and not hard code it in the VBA program. Granted that this approach 

trades speed of execution with flexibility. However, with most of today’s PCs you 

will hardly notice the difference in execution speeds. 

The subroutine Go performs the root-seeking calculations that compare the 

Bisection method, Bisection Plus method, and Newton’s method. Figure 2 shows a 

snapshot of the Excel spreadsheet used in the calculations for the Bisection, 

Bisection Plus, and Newton’s method. 
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Figure 2. The Excel spreadsheet used to comparing the Bisection, Bisetion Plus, 

and Newton’s method. 

The Input Cells 

The VBA code relies on the following cells to obtain data: 

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B]. 

 Cell A6 contains the tolerance value. 

 Cell A8 contains the expression for f(X)=0. Notice that the contents of cell 

A8 use $X as the variable name. The expression is case insensitive. 

Output 

The spreadsheet displays output in the following three sets of columns: 

 Columns B and C display the updated values for the root-bracketing interval 

[A, B] for the Bisection method. This interval shrinks with each iteration 

until the Bisection method zooms on the root. The bottom most value, in 

column B, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

 Columns D, and E display the updated values for the root-bracketing interval 

[A, B] for the Bisection Plus method. Column F displays comments made by 

the code that point out when X1 and X2 form a new root-bracketing interval. 

The bottom most value, in column D, is the best estimate for the root. To its 

right is the total number of function calls made during the iterations. 
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 Columns G and H display the refined guess for the root and the refinement 

value, respectively, using Newton’s method. The bottom most value, in 

column G, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

The Results 
My aim is to significantly accelerate the Bisection Plus method compared to the 

Bisection method. I do not expect the Bisection Plus method to outperform 

Newton’s method. The results proved me partial wrong regarding the last 

statement. Table 1 shows a summary of the results. The metrics for comparing the 

algorithms include the number of iterations and, perhaps more importantly, the 

number of function calls. I consider the number of function calls as the underlying 

cost of doing business, so to speak. I have come across new root-seeking 

algorithms that require fewer iterations that popular algorithms like Newton’s 

method and Halley’s method. However, these new algorithms require more 

function calls to zoom in on the root in fewer iterations.  

Function [A, B] Toler Root Iterations Num Fx Calls 

Exp(x)-

4*x^2 

[3, 5] 1E-8 4.30658 Bisec= 28  

Bisec+ = 7 

Newton=6 

Bisec= 30  

Bisec+ = 18 

Newton=14 

Exp(x)-

3*x^2 

[1, 4] 1E-8 3.73307 Bisec= 29  

Bisec+ = 7 

Newton=10 

Bisec= 31  

Bisec+ = 18 

Newton=22 

Exp(x)-

3*x^2 

[3, 4] 1E-8 3.73307 Bisec= 27 

Bisec+ = 6 

Newton=6 

Bisec= 29 

Bisec+ = 16 

Newton=14 

(X-2.345) * 

(X-12.345) * 

(X-23.456) 

[1, 11] 1E-8 2.345 Bisec= 30  

Bisec+ = 5 

Newton=9 

Bisec= 32 

Bisec+ = 14 

Newton=20 

(X-2.345) * 

(X-12.345) * 

(X-23.456) 

[11, 

22] 

1E-8 12.345 Bisec= 29  

Bisec+ = 4 

Newton=6 

Bisec= 31 

Bisec+ = 12 

Newton=14 

LN(X^4)-X [8,9] 1E-8 8.66125 Bisec= 27 

Bisec+ = 4 

Newton=4 

Bisec= 29 

Bisec+ = 12 

Newton=10 

Cos(X)-X [0.5,1] 1E-8 0.73908 Bisec= 26 

Bisec+ = 3 

Newton=4 

Bisec= 28 

Bisec+ = 10 

Newton=10 
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Table 1. Summary of the results comparing the Bisection, Bisection Plus, and 

Newton’s method. 

The above table shows that the Bisection Plus method consistently outperforms the 

Bisection method. The table also highlights in red the cases where the Bisection 

Plus method performs better than Newton’s method. Of course there is a huge 

number of test cases that vary the tested function and root-bracketing range. Due to 

time limitation, I have chosen the above few test cases which succeeded in proving 

my goals. 

Conclusion 
The Bisection Plus algorithm offers significant improvement over the Bisection 

method. The new algorithm has an efficiency that is somewhat comparable to that 

of Newton’s method. 
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