
The New Bisection++ Algorithm 1

Copyright © 2014 by Namir Clement Shammas

The New Bisection++ Algorithm
by

Namir Shammas

Introduction
The Bisection method is well known to be the slowest root-seeking method for

single-variable non-linear functions. Numerical analysis books often cover it for

historical purposes. Recently I have developed two variants of the Bisection

method, namely the Bisection Plus and the Bisection++ methods. I have discussed

the Bisection Plus method is another article[4]. In this article I will present the

Bisection++ which improves on both of the Bisection and Bisection Plus methods.

This article discusses the algorithms for the following methods:

 The Bisection method. This method starts with a root-bracketing interval and

systematically reduces that interval by half in each iteration. The method

stops when the interval’s limits are very close to a root.

 Newton’s method.

 The Bisection Plus method. This method repeatedly halves the root-

bracketing interval and then performs a linear interpolation to get a better

guess for the root.

 The Bisection++ method. This method repeatedly performs the following

subtasks:

o Halves the root-bracketing interval.

o Performs a linear interpolation to get a better guess for the root.

o Performs additional interpolation to further refine the guess for the

root.

Do not worry about the details for the above methods, since I will discuss each one

and present an accompanying pseudo-code. You can easily use this pseudo-code in

implementing the algorithms in your favorite programming language.

The Bisection Algorithm
There are numerous algorithms that calculate the roots of single-variable nonlinear

functions. The most popular of such algorithms is Newton’s method. The slowest

The New Bisection++ Algorithm 2

Copyright © 2014 by Namir Clement Shammas

and simplest root seeking algorithm is the Bisection method. This method has the

user select an interval that contains the sought root. The method iteratively shrinks

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code

for the Bisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], and the

tolerance for the root of f(x):

 Calculate Fa = f(A) and Fb=f(B).

 Exit if Fa*Fb > 0.

 Repeat

o X=(A+B)/2

o Fx = f(X)

o If Fx*Fa > 0 then

 A=X

 Fa=Fx

o Else

 B=X

 Fb=Fx

o End

 Until |A-B| < tolerance

 Return root as (A+B)/2

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest

converging method. It’s main virtue is that it is guaranteed to work if f(x) is

continuous in the interval [A, B] and f(A)×f(B) is negative. Unlike Newton’s

method, the Bisection method is not affected by small slopes near the root.

Newton’s Method
I will also compare the new algorithm with Newton’s method. This comparison

serves as an upper limit test. I am implementing Newton’s method based on the

following pseudo-code:

Given f(x)=0, the root-bracketing interval [A,B], and the

tolerance for the root of f(x):

 Calculate X = (A+B)/2

 Repeat

o h = 0.001 * (|X| + 1)

o Fx = f(X)

o Diff = h * Fx / (f(X+h) – Fx)

o X = X – Diff

 Until |Diff| < tolerance

The New Bisection++ Algorithm 3

Copyright © 2014 by Namir Clement Shammas

 Return root as X

The above code shows that the implementation of Newton’s method starts with the

same interval [A, B] that is already available for the Bisection and Bisection++

methods. Thus, the algorithm derives its single initial guess from the midpoint of

that interval.

The Bisection Plus Algorithm
In my effort to enhance the Bisection method, I started with several approaches

that takes the midpoint in the original Bisection method and enhances it. I initially

worked with adding some random fluctuation to the midpoint value in [A, B]. This

effort showed little promise.

I went back to the proverbial drawing board. The essential part of Bisection

method is that it limits itself to comparing the signs of f(x) values. A few years

ago, I developed the Quartile Method[3], which improves on the Bisection method

by comparing the absolute values of f(A) and f(B) in order to get a better

“midpoint” value. In designing the Bisection Plus algorithm, I decided to up the

ante and work with the values of f(A), f(B), and f((A+B/2)). The new algorithm

has the following steps:

1. Each iteration of the Bisection Plus method calculates the midpoint, call it

X1, and its associated function value f(x1).

2. The new algorithm then calculates the slope and intercept passing through

X1 and either A or B. The method selects the interval endpoint whose

function value has the opposite sign of f(X1).

3. Using this new line, the algorithm calculates X2--a better estimate for the

root. The choice of using the proper endpoint and X1 ensures that X2 lies in

the interval [A, B]. The algorithm also calculates f(X2).

4. Each iteration ends up with the original interval-defining values A and B,

and two new values, X1 and X2, within that interval. The process of

shrinking the root-bracketing interval involves two tests:

a. If the product of f(X1) and f(X2) is negative, then the interval [X1, X2]

replaces the interval [A, B] causing a quick reduction in the root-

bracketing interval.

b. If the product of f(X1) and f(X2) is positive, then the method uses the

value of f(A)×f(X2) to determine which of A or B is replaced by X2.

The New Bisection++ Algorithm 4

Copyright © 2014 by Namir Clement Shammas

An additional improvement to the algorithm, inspired by the False-Position

method, compares the newly calculated X2 value with the one from the previous

iteration. If the two values are within the tolerance limit, the algorithm stops

iterating.

It is worth pointing out that while both Newton’s method and the Bisection Plus

calculate slope values, these values are different in context. Newton’s method

calculate the tangent of f(X) at X. By contrast, the Bisection Plus method calculate

the slope of the straight line between X1 and one of the endpoints. Thus, the

Bisection Plus method is not vulnerable to values of X where the derivative of f(X)

is near zero, as is the case with Newton’s method.

Let me present the pseudo-code for the Bisection Plus method:

Given f(x)=0, the root-bracketing interval [A,B], and the

tolerance for the root of f(x):

 Calculate Fa = f(A) and Fb=f(B).

 Exit if Fa*Fb > 0

 LastX = A

 Repeat

o X1=(A+B)/2

o Fx1 = f(X1)

o If Fx1*Fa > 0 then

 Slope = (Fb – Fx1)/(B – X1)

 Intercept = Fb – Slope * B

o Else

 Slope = (Fa – Fx1)/(A – 1)

 Intercept = Fa – Slope * A

o End

o X2=-Intercept / Slope

o Fx2 = f(X2)

o If Fx1*Fx2 < 0 then

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

o Else

 If Fx2*Fa > 0 then

 A=X2

 Fa=Fx2

 Else

 B=X2

 Fb=Fx2

The New Bisection++ Algorithm 5

Copyright © 2014 by Namir Clement Shammas

 End

o End

o If |X2 – LastX| < tolerance then exit loop

o LastX = X2

 Until |A-B| < tolerance

 Return X2

Figure 1 depicts an iteration of the Bisection Plus algorithm.

Figure 1. The steps within an iteration of the Bisection Plus Algorithm.

Figure 1 depicts an iteration that ends up replacing the initial root-bracketing

interval [A, B] with [X2, B]. If f(X2) was positive, the iteration would have

replaced the initial root-bracketing interval [A, B] with the narrower interval [X1,

X2]. From the testing that I have done, the latter occurs frequently and helps to

quickly narrow the root-bracketing interval around the targeted root value.

Figure 2 shows a case where some of the values of |f(X)| for X in [A, B] are greater

than |f(A)| and |f(B)|. The figure illustrates why X2 is calculated using X1 and either

endpoint whose function value has the opposite sign of f(X1)—in the case of

Figure 2, using X1 and A. If X2 is calculated using X1 and B, then the value of X2

lands outside the root-bracketing interval [A, B]. Using the scheme that I suggested

to calculate X2 simplify matters, because the algorithm needs not check if any X in

The New Bisection++ Algorithm 6

Copyright © 2014 by Namir Clement Shammas

[A, B] has function values that exceed |f(A)| and/or |f(B)|.

Figure 2. Special cases that dictates calculate X2 using the suggested scheme.

The Bisection++ Method
The Bisection++ method picks up where the Bisection Plus leaves off. In the last

section I discussed how each iteration in the Bisection Plus method calculates two

refined guesses, X1 and X2. The value of X1 is simply the midpoint of the root-

bracketing interval [A, B]. The value of X2 is calculated as the intersection of a

straight with the X-axis, drawn between either (A, f(A)) and (X1, f(X1)) or between

(B, f(B)) and (X1, f(X1)). Each iteration of the Bisection Plus ends up with four

points at A, B, X1, and X2. The Bisection++ method uses these four points to

perform an inverse quadratic Lagrangian interpolation to refine X2. Since a

quadratic interpolation requires three points and we have four, we need to choose

three points and discard the fourth one. This choice creates two flavors of the

Bisection++ method, which I will call version 1 and version 2:

 Version 1 uses the points at X1 and X2, and either at A or B, depending on

which of these two points has a smaller absolute function value. Thus,

version 1 is simple to code.

 Version 2 maps the four points to an array of X and an array of Y=f(X),

sorts these arrays in ascending order using the absolute values of Y. The

The New Bisection++ Algorithm 7

Copyright © 2014 by Namir Clement Shammas

method then uses the first three points in the sorted arrays to perform the

inverse quadratic interpolation.

Either version calculates an improved value of X2, call it X3. The method ensures

that the value of X3 lies within the interval [A, B] before replacing X2 with X3. If

not, the algorithm simply reuses the value of X2. The algorithm also calculates the

new value of f(X2) and tests if its absolute value is less than a function tolerance

value. If it is smaller, the iteration stops.

Let me present the pseudo-code for the Bisection++ version 1 method. I will

highlight in red the pseudo-code fragment that is specific to version 1:

Given f(x)=0, the root-bracketing interval [A,B], the root

tolerance Toler, and function tolerance FxToler:

 Calculate Fa = f(A) and Fb=f(B).

 Exit if Fa*Fb > 0

 LastX = A

 Repeat

o X1=(A+B)/2

o Fx1 = f(X1)

o If Fx1*Fa > 0 then

 Slope = (Fb – Fx1)/(B – X1)

 Intercept = Fb – Slope * B

o Else

 Slope = (Fa – Fx1)/(A – 1)

 Intercept = Fa – Slope * A

o End

o X2=-Intercept / Slope

o Fx2 = f(X2)

o If |Fa| < |Fb|then

 Calculate X3 using an inverse quadratic

Lagrangian interpolation involving (A, Fa), (X1,

Fx1), and (X2, FX2)

o Else

 Calculate X3 using an inverse quadratic

Lagrangian interpolation involving (B, Fb), (X1,

Fx1), and (X2, FX2)

o End

o If X3>=A and X3<=B Then

 X2=X3

 Fx2=f(X2)

o End

o If |Fx2| < FxToler Then Exit Repeat loop

o If Fx1*Fx2 < 0 then

 A = X1

The New Bisection++ Algorithm 8

Copyright © 2014 by Namir Clement Shammas

 Fa = Fx1

 B = X2

 Fb = Fx2

o Else

 If Fx2*Fa > 0 then

 A=X2

 Fa=Fx2

 Else

 B=X2

 Fb=Fx2

 End

o End

o If |X2 – LastX| < tolerance then exit loop

o LastX = X2

 Until |A-B| < tolerance

 Return X2

Here is the pseudo-code for the Bisection++ version 2 method. I will highlight in

red the pseudo-code fragment that is specific to version 2:

Given f(x)=0, the root-bracketing interval [A,B], the root

tolerance Toler, and function tolerance FxToler:

 Calculate Fa = f(A) and Fb=f(B).

 Exit if Fa*Fb > 0

 LastX = A

 Repeat

o X1=(A+B)/2

o Fx1 = f(X1)

o If Fx1*Fa > 0 then

 Slope = (Fb – Fx1)/(B – X1)

 Intercept = Fb – Slope * B

o Else

 Slope = (Fa – Fx1)/(A – 1)

 Intercept = Fa – Slope * A

o End

o X2=-Intercept / Slope

o Fx2 = f(X2)

o Map points (A,Fa),(B,Fb),(X1,Fx1), and (X2,Fx2) into

an array of X and Y.

o Sort the arrays of X and Y values in ascending order

using the absolute values of Y.

o Using the first three elements in the arrays X and Y,

calculate X3 with an inverse quadratic Lagrangian

interpolation.

o If X3>=A and X3<=B Then

The New Bisection++ Algorithm 9

Copyright © 2014 by Namir Clement Shammas

 X2=X3

 Fx2=f(X2)

o End

o If |Fx2| < FxToler Then Exit Repeat loop

o If Fx1*Fx2 < 0 then

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

o Else

 If Fx2*Fa > 0 then

 A=X2

 Fa=Fx2

 Else

 B=X2

 Fb=Fx2

 End

o End

o If |X2 – LastX| < tolerance then exit loop

o LastX = X2

 Until |A-B| < tolerance

 Return X2

Testing with Excel VBA Code
I tested the new algorithm using Excel taking advantage of the application’s

worksheet for easy input and the display of intermediate calculations. The

following listing shows the Excel VBA code used for testing:

Option Explicit

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = UCase(Trim(sFx))

 sFx = Replace(sFx, "$X", "(" & X & ")")

 MyFx = Evaluate(sFx)

End Function

Function QuadInterpolate(ByVal X1 As Double, ByVal X2 As Double,

ByVal X3 As Double, ByVal Y1 As Double, ByVal Y2 As Double,

ByVal Y3 As Double) As Double

 Dim Sum As Double

 Sum = X1 * (0 - Y2) * (0 - Y3) / (Y1 - Y2) / (Y1 - Y3)

 Sum = Sum + X2 * (0 - Y1) * (0 - Y3) / (Y2 - Y1) / (Y2 - Y3)

 Sum = Sum + X3 * (0 - Y1) * (0 - Y2) / (Y3 - Y1) / (Y3 - Y2)

 QuadInterpolate = Sum

The New Bisection++ Algorithm 10

Copyright © 2014 by Namir Clement Shammas

End Function

Sub BisectionPlusPlusVer1()

 ' Bisection Plus Plus algorithm

 ' Version 2.00A 1/12/2014

 ' Copyright (c) 2014 Namir Clement Shammas

 '

 ' Perform:

 ' 1) Mid interval selection yo calculate X1

 ' 2) Linear interpolation between (X1,f(X1) and

 ' either end point to calculate X2

 ' 3) Quadratic interpolation involving points at

 ' X1, X2, and either A, or B to calculate

 ' a new X2.

 '

 Dim R As Integer, Count As Long, NumFxCalls As Integer

 Dim A As Double, B As Double, X As Double, LastX As Double, X3

As Double

 Dim X1 As Double, X2 As Double, FX1 As Double, FX2 As Double

 Dim FA As Double, FB As Double, FX As Double, Toler As Double

 Dim Slope As Double, Intercept As Double, FxToler As Double

 Dim h As Double, Diff As Double

 Dim sFx As String

 Range("B3:Z1000").Value = ""

 A = [A2].Value

 B = [A4].Value

 Toler = [A6].Value

 FxToler = [A8].Value

 sFx = [A10].Value

 FA = MyFx(sFx, A)

 FB = MyFx(sFx, B)

 If FA * FB > 0 Then

 MsgBox "F(A) & F(B) have the same signs"

 Exit Sub

 End If

 ' Bisection

 R = 3

 NumFxCalls = 2

 Do While Abs(A - B) > Toler

 NumFxCalls = NumFxCalls + 1

 X = (A + B) / 2

 FX = MyFx(sFx, X)

The New Bisection++ Algorithm 11

Copyright © 2014 by Namir Clement Shammas

 If FX * FA > 0 Then

 A = X

 FA = FX

 Else

 B = X

 FB = FX

 End If

 Cells(R, 2) = A

 Cells(R, 3) = B

 R = R + 1

 Loop

 Cells(R, 2) = (A + B) / 2

 Cells(R, 3) = "FX Calls=" & NumFxCalls

 ' Bisection Plus Plus

 A = [A2].Value

 B = [A4].Value

 FA = MyFx(sFx, A)

 FB = MyFx(sFx, B)

 R = 3

 LastX = A

 NumFxCalls = 2

 Do

 X1 = (A + B) / 2

 FX1 = MyFx(sFx, X1)

 NumFxCalls = NumFxCalls + 1

 If FA * FX1 > 0 Then

 Slope = (FB - FX1) / (B - X1)

 Intercept = FB - Slope * B

 Else

 Slope = (FA - FX1) / (A - X1)

 Intercept = FA - Slope * A

 End If

 X2 = -Intercept / Slope

 FX2 = MyFx(sFx, X2)

 NumFxCalls = NumFxCalls + 1

 ' perform quadratic interpolation

 If Abs(FA) < Abs(FB) Then

 X3 = QuadInterpolate(A, X1, X2, FA, FX1, FX2)

 Else

 X3 = QuadInterpolate(B, X1, X2, FB, FX1, FX2)

 End If

 ' display intermediate values10

 Cells(R, 6) = X1

 Cells(R, 7) = X2

 Cells(R, 8) = X3

The New Bisection++ Algorithm 12

Copyright © 2014 by Namir Clement Shammas

 ' make sure X3 is in the interval [A, B]

 If X3 >= A And X3 <= B Then

 X2 = X3

 FX2 = MyFx(sFx, X2)

 NumFxCalls = NumFxCalls + 1

 End If

 If Abs(FX2) < FxToler Then

 Cells(R, 4) = A

 Cells(R, 5) = B

 Cells(R, 9) = "FxToler Exit"

 R = R + 1

 Exit Do

 End If

 ' does [X1,X2] define a new root-bracketing interval?

 If FX1 * FX2 < 0 Then

 A = X1

 FA = FX1

 B = X2

 FB = FX2

 Cells(R, 9) = "New interval"

 Else

 If FA * FX2 > 0 Then

 A = X2

 FA = FX2

 Else

 B = X2

 FB = FX2

 End If

 End If

 Cells(R, 4) = A

 Cells(R, 5) = B

 If Abs(LastX - X2) < Toler Then Exit Do

 LastX = X2

 R = R + 1

 Loop Until Abs(A - B) < Toler

 Cells(R, 4) = X2

 Cells(R, 5) = "FX Calls=" & NumFxCalls

 ' Newton's method

 A = [A2].Value

 B = [A4].Value

 X = (A + B) / 2

 R = 3

 NumFxCalls = 2

 Diff = 10 * Toler

 Do

The New Bisection++ Algorithm 13

Copyright © 2014 by Namir Clement Shammas

 h = 0.001 * (Abs(X) + 1)

 FX = MyFx(sFx, X)

 Diff = h * FX / (MyFx(sFx, X + h) - FX)

 X = X - Diff

 NumFxCalls = NumFxCalls + 2

 Cells(R, 10) = X

 Cells(R, 11) = Diff

 R = R + 1

 Loop Until Abs(Diff) <= Toler

 Cells(R, 10) = X

 Cells(R, 11) = "FX Calls=" & NumFxCalls

End Sub

Function QuadInterp(ByVal X1 As Double, ByVal X2 As Double,

ByVal X3 As Double, ByVal X4 As Double, ByVal Y1 As Double,

ByVal Y2 As Double, ByVal Y3 As Double, ByVal Y4 As Double) As

Double

 Const MAX = 4

 Dim X(MAX) As Double, Y(MAX) As Double, Xint As Double, Yint

As Double

 Dim I As Integer, J As Integer, Prod As Double, Buffer As

Double

 Dim bInOrder As Boolean

 ' map parameters to local arrays X() and Y()

 X(1) = X1

 X(2) = X2

 X(3) = X3

 X(4) = X4

 Y(1) = Y1

 Y(2) = Y2

 Y(3) = Y3

 Y(4) = Y4

 ' perform a simple Bubble sort

 For I = 1 To MAX - 1

 bInOrder = True

 For J = I + 1 To MAX

 If Abs(Y(I)) > Abs(Y(J)) Then

 Buffer = Y(I)

 Y(I) = Y(J)

 Y(J) = Buffer

 Buffer = X(I)

 X(I) = X(J)

 X(J) = Buffer

 bInOrder = False

 End If

The New Bisection++ Algorithm 14

Copyright © 2014 by Namir Clement Shammas

 Next J

 ' exit outer For loop if all elements were in order

 If bInOrder Then Exit For

 Next I

 ' Perform (inverse) Lagrangian interpolation using arrays X()

and Y()

 Yint = 0 ' target value

 Xint = 0

 For I = 1 To MAX - 1

 Prod = X(I)

 For J = 1 To MAX - 1

 If I <> J Then

 Prod = Prod * (Yint - Y(J)) / (Y(I) - Y(J))

 End If

 Next J

 Xint = Xint + Prod

 Next I

 QuadInterp = Xint

End Function

Sub BisectionPlusPlusVer2()

 ' Bisection Plus algorithm

 ' Version 2.00B 1/12/2014

 ' Copyright (c) 2014 Namir Clement Shammas

 '

 ' Perform:

 ' 1) Mid interval selection yo calculate X1

 ' 2) Linear interpolation between (X1,f(X1) and

 ' either end point to calculate X2

 ' 3) Sort the four points at A, B, X1, and X2 and

 ' select the best three to use in quadratic

 ' interpolation to calculkate new X2.

 '

 Dim R As Integer, Count As Long, NumFxCalls As Integer

 Dim A As Double, B As Double, X As Double, LastX As Double, X3

As Double

 Dim X1 As Double, X2 As Double, FX1 As Double, FX2 As Double

 Dim FA As Double, FB As Double, FX As Double, Toler As Double

 Dim Slope As Double, Intercept As Double, FxToler As Double

 Dim h As Double, Diff As Double

 Dim sFx As String

 Range("B3:Z1000").Value = ""

 A = [A2].Value

 B = [A4].Value

The New Bisection++ Algorithm 15

Copyright © 2014 by Namir Clement Shammas

 Toler = [A6].Value

 FxToler = [A8].Value

 sFx = [A10].Value

 FA = MyFx(sFx, A)

 FB = MyFx(sFx, B)

 If FA * FB > 0 Then

 MsgBox "F(A) & F(B) have the same signs"

 Exit Sub

 End If

 ' Bisection

 R = 3

 NumFxCalls = 2

 Do While Abs(A - B) > Toler

 NumFxCalls = NumFxCalls + 1

 X = (A + B) / 2

 FX = MyFx(sFx, X)

 If FX * FA > 0 Then

 A = X

 FA = FX

 Else

 B = X

 FB = FX

 End If

 Cells(R, 2) = A

 Cells(R, 3) = B

 R = R + 1

 Loop

 Cells(R, 2) = (A + B) / 2

 Cells(R, 3) = "FX Calls=" & NumFxCalls

 ' Bisection Plus Plus

 A = [A2].Value

 B = [A4].Value

 FA = MyFx(sFx, A)

 FB = MyFx(sFx, B)

 R = 3

 LastX = A

 NumFxCalls = 2

 Do

 X1 = (A + B) / 2

 FX1 = MyFx(sFx, X1)

 NumFxCalls = NumFxCalls + 1

 If FA * FX1 > 0 Then

 Slope = (FB - FX1) / (B - X1)

 Intercept = FB - Slope * B

The New Bisection++ Algorithm 16

Copyright © 2014 by Namir Clement Shammas

 Else

 Slope = (FA - FX1) / (A - X1)

 Intercept = FA - Slope * A

 End If

 X2 = -Intercept / Slope

 FX2 = MyFx(sFx, X2)

 NumFxCalls = NumFxCalls + 1

 ' perform quadratic interpolation

 X3 = QuadInterp(A, B, X1, X2, FA, FB, FX1, FX2)

 ' display intermediate values10

 Cells(R, 6) = X1

 Cells(R, 7) = X2

 Cells(R, 8) = X3

 ' make sure X3 is in the interval [A, B]

 If X3 >= A And X3 <= B Then

 X2 = X3

 FX2 = MyFx(sFx, X2)

 NumFxCalls = NumFxCalls + 1

 End If

 If Abs(FX2) < FxToler Then

 Cells(R, 4) = A

 Cells(R, 5) = B

 Cells(R, 9) = "FxToler Exit"

 R = R + 1

 Exit Do

 End If

 ' does [X1,X2] define a new root-bracketing interval?

 If FX1 * FX2 < 0 Then

 A = X1

 FA = FX1

 B = X2

 FB = FX2

 Cells(R, 9) = "New interval"

 Else

 If FA * FX2 > 0 Then

 A = X2

 FA = FX2

 Else

 B = X2

 FB = FX2

 End If

 End If

 Cells(R, 4) = A

 Cells(R, 5) = B

The New Bisection++ Algorithm 17

Copyright © 2014 by Namir Clement Shammas

 If Abs(LastX - X2) < Toler Then Exit Do

 LastX = X2

 R = R + 1

 Loop Until Abs(A - B) < Toler

 Cells(R, 4) = X2

 Cells(R, 5) = "FX Calls=" & NumFxCalls

 ' Newton's method

 A = [A2].Value

 B = [A4].Value

 X = (A + B) / 2

 R = 3

 NumFxCalls = 2

 Diff = 10 * Toler

 Do

 h = 0.001 * (Abs(X) + 1)

 FX = MyFx(sFx, X)

 Diff = h * FX / (MyFx(sFx, X + h) - FX)

 X = X - Diff

 NumFxCalls = NumFxCalls + 2

 Cells(R, 10) = X

 Cells(R, 11) = Diff

 R = R + 1

 Loop Until Abs(Diff) <= Toler

 Cells(R, 10) = X

 Cells(R, 11) = "FX Calls=" & NumFxCalls

End Sub

Function QuadInterp2(ByVal X1 As Double, ByVal X2 As Double,

ByVal X3 As Double, ByVal X4 As Double, ByVal Y1 As Double,

ByVal Y2 As Double, ByVal Y3 As Double, ByVal Y4 As Double) As

Double

 Const MAX = 4

 Dim X(MAX) As Double, Y(MAX) As Double, Xint As Double, Yint

As Double

 Dim I As Integer, J As Integer, Prod As Double, Buffer As

Double

 Dim bInOrder As Boolean

 ' map parameters to local arrays X() and Y()

 X(1) = X1

 X(2) = X2

 X(3) = X3

 X(4) = X4

 Y(1) = Y1

 Y(2) = Y2

 Y(3) = Y3

The New Bisection++ Algorithm 18

Copyright © 2014 by Namir Clement Shammas

 Y(4) = Y4

 ' Perform (inverse) Lagrangian interpolation using arrays X()

and Y()

 Yint = 0 ' target value

 Xint = 0

 For I = 1 To MAX

 Prod = X(I)

 For J = 1 To MAX

 If I <> J Then

 Prod = Prod * (Yint - Y(J)) / (Y(I) - Y(J))

 End If

 Next J

 Xint = Xint + Prod

 Next I

 QuadInterp2 = Xint

End Function

The VBA function MyFX calculates the function value based on a string that

contains the function’s expression. This expression must use $X as the variable

name. Using function MyFX allows you to specify the function f(X)=0 in the

spreadsheet and not hard code it in the VBA program. Granted that this approach

trades speed of execution with flexibility. However, with most of today’s PCs you

will hardly notice the difference in execution speeds.

The subroutine BisectionPlusPlusVer1 performs the root-seeking calculations that

compare the Bisection method, Bisection++ (version 1) method, and Newton’s

method. Figure 2 shows a snapshot of the Excel spreadsheet used in the

calculations for the Bisection, Bisection++, and Newton’s method.

The function QuadInterpolate performs the inverse quadratic Lagrangian

interpolation using thee points.

The subroutine BisectionPlusPlusVer2 performs the root-seeking calculations that

compare the Bisection method, Bisection++ (version 2) method, and Newton’s

method.

The function QuadInterp performs the following tasks:

 Maps the parameters onto arrays of four X and four Y values.

 Sort the arrays X and Y in ascending order using the absolute values of Y.

The New Bisection++ Algorithm 19

Copyright © 2014 by Namir Clement Shammas

 Using the first three elements of arrays X and Y, calculate the interpolated X

(for a Y=0) using inverse quadratic Lagrangian interpolation.

Figure 2. The Excel spreadsheet used to comparing the Bisection, Bisection++,

and Newton’s method.

The Input Cells

The VBA code relies on the following cells to obtain data:

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B].

 Cell A6 contains the root tolerance value.

 Cell A8 contains the function tolerance value.

 Cell A10 contains the expression for f(X)=0. Notice that the contents of cell

A10 use $X as the variable name. The expression is case insensitive.

Output

The spreadsheet displays output in the following three sets of columns:

 Columns B and C display the updated values for the root-bracketing interval

[A, B] for the Bisection method. This interval shrinks with each iteration

until the Bisection method zooms on the root. The bottom most value, in

column B, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

 Columns D, and E display the updated values for the root-bracketing interval

[A, B] for the Bisection++ method. Columns F, G, and H display the values

of X1, X2, and X3, respectively. Column I displays comments made by the

The New Bisection++ Algorithm 20

Copyright © 2014 by Namir Clement Shammas

code that point out when X1 and X2 form a new root-bracketing interval.

The column also displays a message when the iteration stops because |f(X2)|

is less than the function tolerance value. The bottom most value, in column

D, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

 Columns J and K display the refined guess for the root and the refinement

value, respectively, using Newton’s method. The bottom most value, in

column J, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

The Results
My aim is to significantly accelerate the Bisection++ method compared to the

Bisection method. Table 1 shows a summary of the results for version 1 of the

Bisection++. The metrics for comparing the algorithms include the number of

iterations and, perhaps more importantly, the number of function calls. I consider

the number of function calls as the underlying cost of doing business, so to speak. I

have come across new root-seeking algorithms that require fewer iterations that

popular algorithms like Newton’s method and Halley’s method. However, these

new algorithms require more function calls to zoom in on the root in fewer

iterations.

Function [A, B] Toler/F

xToler

Root Iterations Num Fx Calls

Exp(x)-4*x^2 [3, 5] 1E-8

1E-8

4.30658 Bisec= 28

Bisec++ =4

Newton=6

Bisec= 30

Bisec++ = 14

Newton=14

Exp(x)-3*x^2 [1, 4] 1E-8

1E-8

3.73307 Bisec= 29

Bisec++ = 4

Newton=13

Bisec= 31

Bisec++ = 18

Newton=22

Exp(x)-3*x^2 [3, 4] 1E-8

1E-8

3.73307 Bisec= 27

Bisec++ = 3

Newton=6

Bisec= 29

Bisec++ = 11

Newton=14

(X-2.345) * (X-

12.345) * (X-

23.456)

[1, 11] 1E-8

1E-8

2.345 Bisec= 30

Bisec++ = 4

Newton=9

Bisec= 32

Bisec++ = 12

Newton=20

(X-2.345) * (X-

12.345) * (X-

23.456)

[11,

22]

1E-8

1E-8

12.345 Bisec= 29

Bisec++ = 4

Newton=6

Bisec= 31

Bisec++ = 11

Newton=14

The New Bisection++ Algorithm 21

Copyright © 2014 by Namir Clement Shammas

Function [A, B] Toler/F

xToler

Root Iterations Num Fx Calls

LN(X^4)-X [8,9] 1E-8

1E-8

8.61316

9

Bisec= 27

Bisec++ = 2

Newton=4

Bisec= 29

Bisec++ = 8

Newton=10

Cos(X)-X [0.5,1] 1E-8

1E-8

0.73908 Bisec= 26

Bisec++ = 2

Newton=4

Bisec= 28

Bisec++ = 8

Newton=10

Table 1. Summary of the results comparing the Bisection, Bisection++ version 1,

and Newton’s method, with function tolerance value of 1E-8.

The above table shows that the Bisection++ method consistently outperforms the

Bisection and Newton’s methods. The table highlights in red the cases where the

Bisection++ method performs better than Newton’s method. Of course there is a

huge number of test cases that vary the tested function and root-bracketing range.

Due to time limitation, I have chosen the above few test cases which succeeded in

proving my goals.

Table 2 shows the same tests but with a function tolerance value of 1E-4.

Function [A, B] Toler/F

xToler

Root Iterations Num Fx Calls

Exp(x)-4*x^2 [3, 5] 1E-8

1E-8

4.30658 = 28

Bisec++ =3

Newton=6

Bisec= 30

Bisec++ = 11

Newton=14

Exp(x)-3*x^2 [1, 4] 1E-8

1E-4

3.73307 Bisec= 29

Bisec++ = 3

Newton=13

Bisec= 31

Bisec++ = 10

Newton=22

Exp(x)-3*x^2 [3, 4] 1E-8

1E-4

3.73307 Bisec= 27

Bisec++ = 2

Newton=6

Bisec= 29

Bisec++ = 8

Newton=14

(X-2.345) * (X-

12.345) * (X-

23.456)

[1, 11] 1E-8

1E-4

2.345 Bisec= 30

Bisec++ = 3

Newton=9

Bisec= 32

Bisec++ = 10

Newton=20

(X-2.345) * (X-

12.345) * (X-

23.456)

[11,

22]

1E-8

1E-4

12.345 Bisec= 29

Bisec++ = 3

Newton=6

Bisec= 31

Bisec++ = 9

Newton=14

LN(X^4)-X [8,9] 1E-8

1E-4

8.613169 Bisec= 27

Bisec++ = 1

Newton=4

Bisec= 29

Bisec++ = 5

Newton=10

The New Bisection++ Algorithm 22

Copyright © 2014 by Namir Clement Shammas

Function [A, B] Toler/F

xToler

Root Iterations Num Fx Calls

Cos(X)-X [0.5,1] 1E-8

1E-4

0.73908 Bisec= 26

Bisec++ = 1

Newton=4

Bisec= 28

Bisec++ = 5

Newton=10

Table 2. Summary of the results comparing the Bisection, Bisection++ version 1,

and Newton’s method, with function tolerance value of 1E-4.

Table 2 shows a typical reduction of one iteration for the Bisection++ when the

function tolerance value goes from 1E-8 to its square root value of 1E-4.

Table 3 shows the tests for version 2 of Bisection++ with a function tolerance

value of 1E-8.

Function [A, B] Toler/F

xToler

Root Iterations Num Fx Calls

Exp(x)-4*x^2 [3, 5] 1E-8

1E-8

4.30658 Bisec= 28

Bisec++ =4

Newton=6

Bisec= 30

Bisec++ = 14

Newton=14

Exp(x)-3*x^2 [1, 4] 1E-8

1E-8

3.73307 Bisec= 29

Bisec++ = 4

Newton=13

Bisec= 31

Bisec++ = 13

Newton=22

Exp(x)-3*x^2 [3, 4] 1E-8

1E-8

3.73307 Bisec= 27

Bisec++ = 3

Newton=6

Bisec= 29

Bisec++ = 11

Newton=14

(X-2.345) * (X-

12.345) * (X-

23.456)

[1, 11] 1E-8

1E-8

2.345 Bisec= 30

Bisec++ = 3

Newton=9

Bisec= 32

Bisec++ = 10

Newton=20

(X-2.345) * (X-

12.345) * (X-

23.456)

[11,

22]

1E-8

1E-8

12.345 Bisec= 29

Bisec++ = 4

Newton=6

Bisec= 31

Bisec++ = 11

Newton=14

LN(X^4)-X [8,9] 1E-8

1E-8

8.613169 Bisec= 27

Bisec++ = 2

Newton=4

Bisec= 29

Bisec++ = 8

Newton=10

Cos(X)-X [0.5,1] 1E-8

1E-8

0.73908 Bisec= 26

Bisec++ = 2

Newton=4

Bisec= 28

Bisec++ = 8

Newton=10

Table 3. Summary of the results comparing the Bisection, Bisection++ version 2,

and Newton’s method, with function tolerance value of 1E-8.

The New Bisection++ Algorithm 23

Copyright © 2014 by Namir Clement Shammas

Table 4 shows the tests for version 2 of Bisection++ with a function tolerance

value of 1E-4.

Function [A, B] Toler/F

xToler

Root Iterations Num Fx Calls

Exp(x)-4*x^2 [3, 5] 1E-8

1E-4

4.30658 Bisec= 28

Bisec++ =3

Newton=6

Bisec= 30

Bisec++ = 11

Newton=14

Exp(x)-3*x^2 [1, 4] 1E-8

1E-4

3.73307 Bisec= 29

Bisec++ = 3

Newton=13

Bisec= 31

Bisec++ = 10

Newton=22

Exp(x)-3*x^2 [3, 4] 1E-8

1E-4

3.73307 Bisec= 27

Bisec++ = 2

Newton=6

Bisec= 29

Bisec++ = 8

Newton=14

(X-2.345) * (X-

12.345) * (X-

23.456)

[1, 11] 1E-8

1E-4

2.345 Bisec= 30

Bisec++ = 3

Newton=9

Bisec= 32

Bisec++ = 10

Newton=20

(X-2.345) * (X-

12.345) * (X-

23.456)

[11,

22]

1E-8

1E-4

12.345 Bisec= 29

Bisec++ = 4

Newton=6

Bisec= 31

Bisec++ = 11

Newton=14

LN(X^4)-X [8,9] 1E-8

1E-4

8.61316

9

Bisec= 27

Bisec++ = 1

Newton=4

Bisec= 29

Bisec++ = 5

Newton=10

Cos(X)-X [0.5,1] 1E-8

1E-4

0.73908 Bisec= 26

Bisec++ = 1

Newton=4

Bisec= 28

Bisec++ = 5

Newton=10

Table 4. Summary of the results comparing the Bisection, Bisection++ version 2,

and Newton’s method, with function tolerance value of 1E-4.

Tables 5 and 6 compare the results of the two versions of Bisection++ with the

function tolerance value of 1E-8 and 1E-4, respectively.

 Version 1 Version 2

Function [A, B] Iterations Fx Calls Iterations Fx Calls

Exp(x)-4*x^2 [3, 5] 4 14 3 11

Exp(x)-3*x^2 [1, 4] 4 18 3 10

Exp(x)-3*x^2 [3, 4] 3 11 2 8

(X-2.345) * (X-12.345)

* (X-23.456)

[1, 11] 4 12 3 10

The New Bisection++ Algorithm 24

Copyright © 2014 by Namir Clement Shammas

 Version 1 Version 2

Function [A, B] Iterations Fx Calls Iterations Fx Calls

(X-2.345) * (X-12.345)

* (X-23.456)

[11,

22]

4 11 3 9

LN(X^4)-X [8,9] 2 8 1 5

Cos(X)-X [0.5,1] 2 8 1 5

Table 5. Comparing the results of the two versions of Bisection++ with the

function tolerance value of 1E-8.

 Version 1 Version 2

Function [A, B] Iterations Fx Calls Iterations Fx Calls

Exp(x)-4*x^2 [3, 5] 3 11 3 11

Exp(x)-3*x^2 [1, 4] 3 10 3 10

Exp(x)-3*x^2 [3, 4] 2 8 2 8

(X-2.345) * (X-12.345)

* (X-23.456)

[1, 11] 3 10 3 10

(X-2.345) * (X-12.345)

* (X-23.456)

[11,

22]

3 9 4 11

LN(X^4)-X [8,9] 1 5 1 5

Cos(X)-X [0.5,1] 1 5 1 5

Table 6. Comparing the results of the two versions of Bisection++ with the

function tolerance value of 1E-4.

Looking at Tables 5 and 6, you can draw the conclusion that version 2 of the

Bisection++ performs better that version 1, when the function tolerance is 1E-8.

This edge is lost when function tolerance is 1E-4.

Conclusion
The Bisection++ algorithm offers significant improvement over the Bisection,

Bisection Plus, and even Newton’s method. I recommend version 1 of the

Bisection++ method since it does not require sorting the interpolation data. The

price for this approach may add one iteration to version 1, compared to version 2.

References
1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition,

Cambridge University Press; 3rd edition, September 10, 2007.

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage

Learning, 9th edition, August 9, 2010.

The New Bisection++ Algorithm 25

Copyright © 2014 by Namir Clement Shammas

3. Namir Shammas, Root-Bracketing Quartile Algorithm,

http://www.namirshammas.com/NEW/quartile.htm.

4. Namir Shammas, The New Bisection Plus Algorithm,

http://www.namirshammas.com/NEW/BisPls.pdf.

Document Information
Version Date Comments

1.0.0 1/18/2014 Initial release.

http://www.namirshammas.com/NEW/quartile.htm

