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Introduction 
The Bisection method is well known to be the slowest root-seeking method for 

single-variable non-linear functions. Numerical analysis books often cover it for 

historical purposes. Recently I have developed two variants of the Bisection 

method, namely the Bisection Plus and the Bisection++ methods. I have discussed 

the Bisection Plus method is another article[4]. In this article I will present the 

Bisection++ which improves on both of the Bisection and Bisection Plus methods. 

This article discusses the algorithms for the following methods: 

 The Bisection method. This method starts with a root-bracketing interval and 

systematically reduces that interval by half in each iteration. The method 

stops when the interval’s limits are very close to a root. 

 Newton’s method. 

 The Bisection Plus method. This method repeatedly halves the root-

bracketing interval and then performs a linear interpolation to get a better 

guess for the root. 

 The Bisection++ method. This method repeatedly performs the following 

subtasks: 

o Halves the root-bracketing interval. 

o Performs a linear interpolation to get a better guess for the root. 

o Performs additional interpolation to further refine the guess for the 

root. 

Do not worry about the details for the above methods, since I will discuss each one 

and present an accompanying pseudo-code. You can easily use this pseudo-code in 

implementing the algorithms in your favorite programming language. 

The Bisection Algorithm 
There are numerous algorithms that calculate the roots of single-variable nonlinear 

functions. The most popular of such algorithms is Newton’s method. The slowest 
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and simplest root seeking algorithm is the Bisection method. This method has the 

user select an interval that contains the sought root. The method iteratively shrinks 

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code 

for the Bisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], and the 

tolerance for the root of f(x): 

 Calculate Fa = f(A) and Fb=f(B). 

 Exit if Fa*Fb > 0. 

 Repeat  

o X=(A+B)/2 

o Fx = f(X) 

o If Fx*Fa > 0 then 

 A=X 

 Fa=Fx 

o Else 

 B=X 

 Fb=Fx 

o End 

 Until |A-B| < tolerance 

 Return root as (A+B)/2 
 

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest 

converging method. It’s main virtue is that it is guaranteed to work if f(x) is 

continuous in the interval [A, B] and f(A)×f(B) is negative. Unlike Newton’s 

method, the Bisection method is not affected by small slopes near the root. 

Newton’s Method 
I will also compare the new algorithm with Newton’s method. This comparison 

serves as an upper limit test. I am implementing Newton’s method based on the 

following pseudo-code: 

Given f(x)=0, the root-bracketing interval [A,B], and the 

tolerance for the root of f(x): 

 Calculate X = (A+B)/2 

 Repeat  

o h = 0.001 * (|X| + 1) 

o Fx = f(X) 

o Diff = h * Fx / (f(X+h) – Fx) 

o X = X – Diff 

 Until |Diff| < tolerance 
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 Return root as X 
 

The above code shows that the implementation of Newton’s method starts with the 

same interval [A, B] that is already available for the Bisection and Bisection++ 

methods. Thus, the algorithm derives its single initial guess from the midpoint of 

that interval. 

The Bisection Plus Algorithm 
In my effort to enhance the Bisection method, I started with several approaches 

that takes the midpoint in the original Bisection method and enhances it. I initially 

worked with adding some random fluctuation to the midpoint value in [A, B]. This 

effort showed little promise. 

I went back to the proverbial drawing board. The essential part of Bisection 

method is that it limits itself to comparing the signs of f(x) values. A few years 

ago, I developed the Quartile Method[3], which improves on the Bisection method 

by comparing the absolute values of f(A) and f(B) in order to get a better 

“midpoint” value. In designing the Bisection Plus algorithm, I decided to up the 

ante and work with the values of f(A), f(B), and f((A+B/2)). The new algorithm 

has the following steps: 

1. Each iteration of the Bisection Plus method calculates the midpoint, call it 

X1, and its associated function value f(x1).  

2. The new algorithm then calculates the slope and intercept passing through 

X1 and either A or B. The method selects the interval endpoint whose 

function value has the opposite sign of f(X1).   

3. Using this new line, the algorithm calculates X2--a better estimate for the 

root. The choice of using the proper endpoint and X1 ensures that X2 lies in 

the interval [A, B]. The algorithm also calculates f(X2).  

4. Each iteration ends up with the original interval-defining values A and B, 

and two new values, X1 and X2, within that interval. The process of 

shrinking the root-bracketing interval involves two tests: 

a. If the product of f(X1) and f(X2) is negative, then the interval [X1, X2] 

replaces the interval [A, B] causing a quick reduction in the root-

bracketing interval. 

b. If the product of f(X1) and f(X2) is positive, then the method uses the 

value of f(A)×f(X2) to determine which of A or B is replaced by X2. 



The New Bisection++ Algorithm  4 

 

Copyright © 2014 by Namir Clement Shammas 

An additional improvement to the algorithm, inspired by the False-Position 

method, compares the newly calculated X2 value with the one from the previous 

iteration. If the two values are within the tolerance limit, the algorithm stops 

iterating. 

It is worth pointing out that while both Newton’s method and the Bisection Plus 

calculate slope values, these values are different in context. Newton’s method 

calculate the tangent of f(X) at X. By contrast, the Bisection Plus method calculate 

the slope of the straight line between X1 and one of the endpoints. Thus, the 

Bisection Plus method is not vulnerable to values of X where the derivative of f(X) 

is near zero, as is the case with Newton’s method. 

Let me present the pseudo-code for the Bisection Plus method: 

Given f(x)=0, the root-bracketing interval [A,B], and the 

tolerance for the root of f(x): 

 Calculate Fa = f(A) and Fb=f(B). 

 Exit if Fa*Fb > 0 

 LastX = A 

 Repeat  

o X1=(A+B)/2 

o Fx1 = f(X1) 

o If Fx1*Fa > 0 then 

 Slope = (Fb – Fx1)/(B – X1) 

 Intercept = Fb – Slope * B 

o Else 

 Slope = (Fa – Fx1)/(A – 1) 

 Intercept = Fa – Slope * A 

o End 

o X2=-Intercept / Slope 

o Fx2 = f(X2) 

o If Fx1*Fx2 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X2 

 Fb = Fx2 

o Else 

 If Fx2*Fa > 0 then 

 A=X2 

 Fa=Fx2 

 Else 

 B=X2 

 Fb=Fx2 
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 End 

o End 

o If |X2 – LastX| < tolerance then exit loop 

o LastX = X2 

 Until |A-B| < tolerance 

 Return X2 
 

Figure 1 depicts an iteration of the Bisection Plus algorithm. 

 

Figure 1. The steps within an iteration of the Bisection Plus Algorithm. 

Figure 1 depicts an iteration that ends up replacing the initial root-bracketing 

interval [A, B] with [X2, B]. If f(X2) was positive, the iteration would have 

replaced the initial root-bracketing interval [A, B] with the narrower interval [X1, 

X2]. From the testing that I have done, the latter occurs frequently and helps to 

quickly narrow the root-bracketing interval around the targeted root value. 

Figure 2 shows a case where some of the values of |f(X)| for X in [A, B] are greater 

than |f(A)| and |f(B)|. The figure illustrates why X2 is calculated using X1 and either 

endpoint whose function value has the opposite sign of f(X1)—in the case of 

Figure 2, using X1 and A. If X2 is calculated using X1 and B, then the value of X2 

lands outside the root-bracketing interval [A, B]. Using the scheme that I suggested 

to calculate X2 simplify matters, because the algorithm needs not check if any X in 
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[A, B] has function values that exceed |f(A)| and/or |f(B)|. 

 

Figure 2. Special cases that dictates calculate X2 using the suggested scheme. 

The Bisection++ Method 
The Bisection++ method picks up where the Bisection Plus leaves off. In the last 

section I discussed how each iteration in the Bisection Plus method calculates two 

refined guesses, X1 and X2. The value of X1 is simply the midpoint of the root-

bracketing interval [A, B]. The value of X2 is calculated as the intersection of a 

straight with the X-axis, drawn between either (A, f(A)) and (X1, f(X1)) or between 

(B, f(B)) and (X1, f(X1)). Each iteration of the Bisection Plus ends up with four 

points at A, B, X1, and X2. The Bisection++ method uses these four points to 

perform an inverse quadratic Lagrangian interpolation to refine X2. Since a 

quadratic interpolation requires three points and we have four, we need to choose 

three points and discard the fourth one. This choice creates two flavors of the 

Bisection++ method, which I will call version 1 and version 2: 

 Version 1 uses the points at X1 and X2, and either at A or B, depending on 

which of these two points has a smaller absolute function value. Thus, 

version 1 is simple to code. 

 Version 2 maps the four points to an array of X and an array of Y=f(X), 

sorts these arrays in ascending order using the absolute values of Y. The 
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method then uses the first three points in the sorted arrays to perform the 

inverse quadratic interpolation. 

Either version calculates an improved value of X2, call it X3. The method ensures 

that the value of X3 lies within the interval [A, B] before replacing X2 with X3. If 

not, the algorithm simply reuses the value of X2. The algorithm also calculates the 

new value of f(X2) and tests if its absolute value is less than a function tolerance 

value. If it is smaller, the iteration stops. 

Let me present the pseudo-code for the Bisection++ version 1 method. I will 

highlight in red the pseudo-code fragment that is specific to version 1: 

Given f(x)=0, the root-bracketing interval [A,B], the root 

tolerance Toler, and function tolerance FxToler: 

 Calculate Fa = f(A) and Fb=f(B). 

 Exit if Fa*Fb > 0 

 LastX = A 

 Repeat  

o X1=(A+B)/2 

o Fx1 = f(X1) 

o If Fx1*Fa > 0 then 

 Slope = (Fb – Fx1)/(B – X1) 

 Intercept = Fb – Slope * B 

o Else 

 Slope = (Fa – Fx1)/(A – 1) 

 Intercept = Fa – Slope * A 

o End 

o X2=-Intercept / Slope 

o Fx2 = f(X2) 

o If |Fa| < |Fb|then 

 Calculate X3 using an inverse quadratic 

Lagrangian interpolation involving (A, Fa), (X1, 

Fx1), and (X2, FX2) 

o Else 

 Calculate X3 using an inverse quadratic 

Lagrangian interpolation involving (B, Fb), (X1, 

Fx1), and (X2, FX2) 

o End 

o If X3>=A and X3<=B Then  

 X2=X3 

 Fx2=f(X2) 

o End 

o If |Fx2| < FxToler Then Exit Repeat loop 

o If Fx1*Fx2 < 0 then 

 A = X1 
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 Fa = Fx1 

 B = X2 

 Fb = Fx2 

o Else 

 If Fx2*Fa > 0 then 

 A=X2 

 Fa=Fx2 

 Else 

 B=X2 

 Fb=Fx2 

 End 

o End 

o If |X2 – LastX| < tolerance then exit loop 

o LastX = X2 

 Until |A-B| < tolerance 

 Return X2 
 

Here is the pseudo-code for the Bisection++ version 2 method. I will highlight in 

red the pseudo-code fragment that is specific to version 2: 

Given f(x)=0, the root-bracketing interval [A,B], the root 

tolerance Toler, and function tolerance FxToler: 

 Calculate Fa = f(A) and Fb=f(B). 

 Exit if Fa*Fb > 0 

 LastX = A 

 Repeat  

o X1=(A+B)/2 

o Fx1 = f(X1) 

o If Fx1*Fa > 0 then 

 Slope = (Fb – Fx1)/(B – X1) 

 Intercept = Fb – Slope * B 

o Else 

 Slope = (Fa – Fx1)/(A – 1) 

 Intercept = Fa – Slope * A 

o End 

o X2=-Intercept / Slope 

o Fx2 = f(X2) 

o Map points (A,Fa),(B,Fb),(X1,Fx1), and (X2,Fx2) into 

an array of X and Y. 

o Sort the arrays of X and Y values in ascending order 

using the absolute values of Y. 

o Using the first three elements in the arrays X and Y, 

calculate X3 with an inverse quadratic Lagrangian 

interpolation.  

o If X3>=A and X3<=B Then  
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 X2=X3 

 Fx2=f(X2) 

o End 

o If |Fx2| < FxToler Then Exit Repeat loop 

o If Fx1*Fx2 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X2 

 Fb = Fx2 

o Else 

 If Fx2*Fa > 0 then 

 A=X2 

 Fa=Fx2 

 Else 

 B=X2 

 Fb=Fx2 

 End 

o End 

o If |X2 – LastX| < tolerance then exit loop 

o LastX = X2 

 Until |A-B| < tolerance 

 Return X2 

Testing with Excel VBA Code 
I tested the new algorithm using Excel taking advantage of the application’s 

worksheet for easy input and the display of intermediate calculations. The 

following listing shows the Excel VBA code used for testing: 

Option Explicit 

 

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double 

  sFx = UCase(Trim(sFx)) 

  sFx = Replace(sFx, "$X", "(" & X & ")") 

  MyFx = Evaluate(sFx) 

End Function 

 

Function QuadInterpolate(ByVal X1 As Double, ByVal X2 As Double, 

ByVal X3 As Double, ByVal Y1 As Double, ByVal Y2 As Double, 

ByVal Y3 As Double) As Double 

  Dim Sum As Double 

   

  Sum = X1 * (0 - Y2) * (0 - Y3) / (Y1 - Y2) / (Y1 - Y3) 

  Sum = Sum + X2 * (0 - Y1) * (0 - Y3) / (Y2 - Y1) / (Y2 - Y3) 

  Sum = Sum + X3 * (0 - Y1) * (0 - Y2) / (Y3 - Y1) / (Y3 - Y2) 

  QuadInterpolate = Sum 
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End Function 

 

 

Sub BisectionPlusPlusVer1() 

  ' Bisection Plus Plus algorithm 

  ' Version 2.00A  1/12/2014 

  ' Copyright (c) 2014 Namir Clement Shammas 

  ' 

  ' Perform: 

  ' 1) Mid interval selection yo calculate X1 

  ' 2) Linear interpolation between (X1,f(X1) and 

  '    either end point to calculate X2 

  ' 3) Quadratic interpolation involving points at 

  '    X1, X2, and either A, or B to calculate 

  '    a new X2. 

  ' 

  Dim R As Integer, Count As Long, NumFxCalls As Integer 

  Dim A As Double, B As Double, X As Double, LastX As Double, X3 

As Double 

  Dim X1 As Double, X2 As Double, FX1 As Double, FX2 As Double 

  Dim FA As Double, FB As Double, FX As Double, Toler As Double 

  Dim Slope As Double, Intercept As Double, FxToler As Double 

  Dim h As Double, Diff As Double 

  Dim sFx As String 

   

  Range("B3:Z1000").Value = "" 

  A = [A2].Value 

  B = [A4].Value 

  Toler = [A6].Value 

  FxToler = [A8].Value 

  sFx = [A10].Value 

   

  FA = MyFx(sFx, A) 

  FB = MyFx(sFx, B) 

  If FA * FB > 0 Then 

    MsgBox "F(A) & F(B) have the same signs" 

    Exit Sub 

  End If 

   

  ' Bisection 

  R = 3 

  NumFxCalls = 2 

  Do While Abs(A - B) > Toler 

    NumFxCalls = NumFxCalls + 1 

    X = (A + B) / 2 

    FX = MyFx(sFx, X) 
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    If FX * FA > 0 Then 

      A = X 

      FA = FX 

    Else 

      B = X 

      FB = FX 

    End If 

    Cells(R, 2) = A 

    Cells(R, 3) = B 

    R = R + 1 

  Loop 

  Cells(R, 2) = (A + B) / 2 

  Cells(R, 3) = "FX Calls=" & NumFxCalls 

   

  ' Bisection Plus Plus 

  A = [A2].Value 

  B = [A4].Value 

  FA = MyFx(sFx, A) 

  FB = MyFx(sFx, B) 

  R = 3 

  LastX = A 

  NumFxCalls = 2 

  Do 

    X1 = (A + B) / 2 

    FX1 = MyFx(sFx, X1) 

    NumFxCalls = NumFxCalls + 1 

    If FA * FX1 > 0 Then 

      Slope = (FB - FX1) / (B - X1) 

      Intercept = FB - Slope * B 

    Else 

      Slope = (FA - FX1) / (A - X1) 

      Intercept = FA - Slope * A 

    End If 

    X2 = -Intercept / Slope 

    FX2 = MyFx(sFx, X2) 

    NumFxCalls = NumFxCalls + 1 

     

    ' perform quadratic interpolation 

    If Abs(FA) < Abs(FB) Then 

      X3 = QuadInterpolate(A, X1, X2, FA, FX1, FX2) 

    Else 

      X3 = QuadInterpolate(B, X1, X2, FB, FX1, FX2) 

    End If 

    ' display intermediate values10 

    Cells(R, 6) = X1 

    Cells(R, 7) = X2 

    Cells(R, 8) = X3 
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    ' make sure X3 is in the interval [A, B] 

    If X3 >= A And X3 <= B Then 

      X2 = X3 

      FX2 = MyFx(sFx, X2) 

    NumFxCalls = NumFxCalls + 1 

    End If 

    If Abs(FX2) < FxToler Then 

      Cells(R, 4) = A 

      Cells(R, 5) = B 

      Cells(R, 9) = "FxToler Exit" 

      R = R + 1 

      Exit Do 

    End If 

         

    ' does [X1,X2] define a new root-bracketing interval? 

    If FX1 * FX2 < 0 Then 

      A = X1 

      FA = FX1 

      B = X2 

      FB = FX2 

      Cells(R, 9) = "New interval" 

    Else 

      If FA * FX2 > 0 Then 

        A = X2 

        FA = FX2 

      Else 

        B = X2 

        FB = FX2 

      End If 

    End If 

    Cells(R, 4) = A 

    Cells(R, 5) = B 

    If Abs(LastX - X2) < Toler Then Exit Do 

    LastX = X2 

    R = R + 1 

  Loop Until Abs(A - B) < Toler 

  Cells(R, 4) = X2 

  Cells(R, 5) = "FX Calls=" & NumFxCalls 

   

  ' Newton's method 

  A = [A2].Value 

  B = [A4].Value 

  X = (A + B) / 2 

  R = 3 

  NumFxCalls = 2 

  Diff = 10 * Toler 

  Do 
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    h = 0.001 * (Abs(X) + 1) 

    FX = MyFx(sFx, X) 

    Diff = h * FX / (MyFx(sFx, X + h) - FX) 

    X = X - Diff 

    NumFxCalls = NumFxCalls + 2 

    Cells(R, 10) = X 

    Cells(R, 11) = Diff 

    R = R + 1 

  Loop Until Abs(Diff) <= Toler 

  Cells(R, 10) = X 

  Cells(R, 11) = "FX Calls=" & NumFxCalls 

End Sub 

 

Function QuadInterp(ByVal X1 As Double, ByVal X2 As Double, 

ByVal X3 As Double, ByVal X4 As Double, ByVal Y1 As Double, 

ByVal Y2 As Double, ByVal Y3 As Double, ByVal Y4 As Double) As 

Double 

  Const MAX = 4 

  Dim X(MAX) As Double, Y(MAX) As Double, Xint As Double, Yint 

As Double 

  Dim I As Integer, J As Integer, Prod As Double, Buffer As 

Double 

  Dim bInOrder As Boolean 

   

  ' map parameters to local arrays X() and Y() 

  X(1) = X1 

  X(2) = X2 

  X(3) = X3 

  X(4) = X4 

  Y(1) = Y1 

  Y(2) = Y2 

  Y(3) = Y3 

  Y(4) = Y4 

   

  ' perform a simple Bubble sort 

  For I = 1 To MAX - 1 

    bInOrder = True 

    For J = I + 1 To MAX 

      If Abs(Y(I)) > Abs(Y(J)) Then 

        Buffer = Y(I) 

        Y(I) = Y(J) 

        Y(J) = Buffer 

        Buffer = X(I) 

        X(I) = X(J) 

        X(J) = Buffer 

        bInOrder = False 

      End If 
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    Next J 

    ' exit outer For loop if all elements were in order 

    If bInOrder Then Exit For 

  Next I 

   

  ' Perform (inverse) Lagrangian interpolation using arrays X() 

and Y() 

  Yint = 0 ' target value 

  Xint = 0 

  For I = 1 To MAX - 1 

    Prod = X(I) 

    For J = 1 To MAX - 1 

      If I <> J Then 

        Prod = Prod * (Yint - Y(J)) / (Y(I) - Y(J)) 

      End If 

    Next J 

    Xint = Xint + Prod 

  Next I 

  QuadInterp = Xint 

 

End Function 

 

Sub BisectionPlusPlusVer2() 

  ' Bisection Plus algorithm 

  ' Version 2.00B  1/12/2014 

  ' Copyright (c) 2014 Namir Clement Shammas 

  ' 

  ' Perform: 

  ' 1) Mid interval selection yo calculate X1 

  ' 2) Linear interpolation between (X1,f(X1) and 

  '    either end point to calculate X2 

  ' 3) Sort the four points at A, B, X1, and X2 and 

  '    select the best three to use in quadratic 

  '    interpolation to calculkate new X2. 

  ' 

  Dim R As Integer, Count As Long, NumFxCalls As Integer 

  Dim A As Double, B As Double, X As Double, LastX As Double, X3 

As Double 

  Dim X1 As Double, X2 As Double, FX1 As Double, FX2 As Double 

  Dim FA As Double, FB As Double, FX As Double, Toler As Double 

  Dim Slope As Double, Intercept As Double, FxToler As Double 

  Dim h As Double, Diff As Double 

  Dim sFx As String 

   

  Range("B3:Z1000").Value = "" 

  A = [A2].Value 

  B = [A4].Value 
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  Toler = [A6].Value 

  FxToler = [A8].Value 

  sFx = [A10].Value 

   

  FA = MyFx(sFx, A) 

  FB = MyFx(sFx, B) 

  If FA * FB > 0 Then 

    MsgBox "F(A) & F(B) have the same signs" 

    Exit Sub 

  End If 

   

  ' Bisection 

  R = 3 

  NumFxCalls = 2 

  Do While Abs(A - B) > Toler 

    NumFxCalls = NumFxCalls + 1 

    X = (A + B) / 2 

    FX = MyFx(sFx, X) 

    If FX * FA > 0 Then 

      A = X 

      FA = FX 

    Else 

      B = X 

      FB = FX 

    End If 

    Cells(R, 2) = A 

    Cells(R, 3) = B 

    R = R + 1 

  Loop 

  Cells(R, 2) = (A + B) / 2 

  Cells(R, 3) = "FX Calls=" & NumFxCalls 

   

  ' Bisection Plus Plus 

  A = [A2].Value 

  B = [A4].Value 

  FA = MyFx(sFx, A) 

  FB = MyFx(sFx, B) 

  R = 3 

  LastX = A 

  NumFxCalls = 2 

  Do 

    X1 = (A + B) / 2 

    FX1 = MyFx(sFx, X1) 

    NumFxCalls = NumFxCalls + 1 

    If FA * FX1 > 0 Then 

      Slope = (FB - FX1) / (B - X1) 

      Intercept = FB - Slope * B 
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    Else 

      Slope = (FA - FX1) / (A - X1) 

      Intercept = FA - Slope * A 

    End If 

    X2 = -Intercept / Slope 

    FX2 = MyFx(sFx, X2) 

    NumFxCalls = NumFxCalls + 1 

     

    ' perform quadratic interpolation 

    X3 = QuadInterp(A, B, X1, X2, FA, FB, FX1, FX2) 

    ' display intermediate values10 

    Cells(R, 6) = X1 

    Cells(R, 7) = X2 

    Cells(R, 8) = X3 

    ' make sure X3 is in the interval [A, B] 

    If X3 >= A And X3 <= B Then 

      X2 = X3 

       FX2 = MyFx(sFx, X2) 

        NumFxCalls = NumFxCalls + 1 

    End If 

    If Abs(FX2) < FxToler Then 

      Cells(R, 4) = A 

      Cells(R, 5) = B 

      Cells(R, 9) = "FxToler Exit" 

      R = R + 1 

      Exit Do 

    End If 

 

         

    ' does [X1,X2] define a new root-bracketing interval? 

    If FX1 * FX2 < 0 Then 

      A = X1 

      FA = FX1 

      B = X2 

      FB = FX2 

      Cells(R, 9) = "New interval" 

    Else 

      If FA * FX2 > 0 Then 

        A = X2 

        FA = FX2 

      Else 

        B = X2 

        FB = FX2 

      End If 

    End If 

    Cells(R, 4) = A 

    Cells(R, 5) = B 
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    If Abs(LastX - X2) < Toler Then Exit Do 

    LastX = X2 

    R = R + 1 

  Loop Until Abs(A - B) < Toler 

  Cells(R, 4) = X2 

  Cells(R, 5) = "FX Calls=" & NumFxCalls 

   

  ' Newton's method 

  A = [A2].Value 

  B = [A4].Value 

  X = (A + B) / 2 

  R = 3 

  NumFxCalls = 2 

  Diff = 10 * Toler 

  Do 

    h = 0.001 * (Abs(X) + 1) 

    FX = MyFx(sFx, X) 

    Diff = h * FX / (MyFx(sFx, X + h) - FX) 

    X = X - Diff 

    NumFxCalls = NumFxCalls + 2 

    Cells(R, 10) = X 

    Cells(R, 11) = Diff 

    R = R + 1 

  Loop Until Abs(Diff) <= Toler 

  Cells(R, 10) = X 

  Cells(R, 11) = "FX Calls=" & NumFxCalls 

End Sub 

 

Function QuadInterp2(ByVal X1 As Double, ByVal X2 As Double, 

ByVal X3 As Double, ByVal X4 As Double, ByVal Y1 As Double, 

ByVal Y2 As Double, ByVal Y3 As Double, ByVal Y4 As Double) As 

Double 

  Const MAX = 4 

  Dim X(MAX) As Double, Y(MAX) As Double, Xint As Double, Yint 

As Double 

  Dim I As Integer, J As Integer, Prod As Double, Buffer As 

Double 

  Dim bInOrder As Boolean 

   

  ' map parameters to local arrays X() and Y() 

  X(1) = X1 

  X(2) = X2 

  X(3) = X3 

  X(4) = X4 

  Y(1) = Y1 

  Y(2) = Y2 

  Y(3) = Y3 
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  Y(4) = Y4 

   

  

  ' Perform (inverse) Lagrangian interpolation using arrays X() 

and Y() 

  Yint = 0 ' target value 

  Xint = 0 

  For I = 1 To MAX 

    Prod = X(I) 

    For J = 1 To MAX 

      If I <> J Then 

        Prod = Prod * (Yint - Y(J)) / (Y(I) - Y(J)) 

      End If 

    Next J 

    Xint = Xint + Prod 

  Next I 

  QuadInterp2 = Xint 

 

End Function 
 

The VBA function MyFX calculates the function value based on a string that 

contains the function’s expression. This expression must use $X as the variable 

name. Using function MyFX allows you to specify the function f(X)=0 in the 

spreadsheet and not hard code it in the VBA program. Granted that this approach 

trades speed of execution with flexibility. However, with most of today’s PCs you 

will hardly notice the difference in execution speeds. 

The subroutine BisectionPlusPlusVer1 performs the root-seeking calculations that 

compare the Bisection method, Bisection++ (version 1) method, and Newton’s 

method. Figure 2 shows a snapshot of the Excel spreadsheet used in the 

calculations for the Bisection, Bisection++, and Newton’s method. 

The function QuadInterpolate performs the inverse quadratic Lagrangian 

interpolation using thee points. 

The subroutine BisectionPlusPlusVer2 performs the root-seeking calculations that 

compare the Bisection method, Bisection++ (version 2) method, and Newton’s 

method. 

The function QuadInterp performs the following tasks: 

 Maps the parameters onto arrays of four X and four Y values. 

 Sort the arrays X and Y in ascending order using the absolute values of Y. 
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 Using the first three elements of arrays X and Y, calculate the interpolated X 

(for a Y=0) using inverse quadratic Lagrangian interpolation. 

 

Figure 2. The Excel spreadsheet used to comparing the Bisection, Bisection++, 

and Newton’s method. 

The Input Cells 

The VBA code relies on the following cells to obtain data: 

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B]. 

 Cell A6 contains the root tolerance value. 

 Cell A8 contains the function tolerance value. 

 Cell A10 contains the expression for f(X)=0. Notice that the contents of cell 

A10 use $X as the variable name. The expression is case insensitive. 

Output 

The spreadsheet displays output in the following three sets of columns: 

 Columns B and C display the updated values for the root-bracketing interval 

[A, B] for the Bisection method. This interval shrinks with each iteration 

until the Bisection method zooms on the root. The bottom most value, in 

column B, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

 Columns D, and E display the updated values for the root-bracketing interval 

[A, B] for the Bisection++ method. Columns F, G, and H display the values 

of X1, X2, and X3, respectively. Column I displays comments made by the 
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code that point out when X1 and X2 form a new root-bracketing interval.  

The column also displays a message when the iteration stops because |f(X2)| 

is less than the function tolerance value. The bottom most value, in column 

D, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

 Columns J and K display the refined guess for the root and the refinement 

value, respectively, using Newton’s method. The bottom most value, in 

column J, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

The Results 
My aim is to significantly accelerate the Bisection++ method compared to the 

Bisection method. Table 1 shows a summary of the results for version 1 of the 

Bisection++. The metrics for comparing the algorithms include the number of 

iterations and, perhaps more importantly, the number of function calls. I consider 

the number of function calls as the underlying cost of doing business, so to speak. I 

have come across new root-seeking algorithms that require fewer iterations that 

popular algorithms like Newton’s method and Halley’s method. However, these 

new algorithms require more function calls to zoom in on the root in fewer 

iterations.  

Function [A, B] Toler/F

xToler 

Root Iterations Num Fx Calls 

Exp(x)-4*x^2 [3, 5] 1E-8 

1E-8 

 

4.30658 Bisec= 28  

Bisec++ =4 

Newton=6 

Bisec= 30  

Bisec++ = 14 

Newton=14 

Exp(x)-3*x^2 [1, 4] 1E-8 

1E-8 

 

3.73307 Bisec= 29  

Bisec++ = 4 

Newton=13 

Bisec= 31  

Bisec++ = 18 

Newton=22 

Exp(x)-3*x^2 [3, 4] 1E-8 

1E-8 

 

3.73307 Bisec= 27 

Bisec++ = 3 

Newton=6 

Bisec= 29 

Bisec++ = 11 

Newton=14 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[1, 11] 1E-8 

1E-8 

 

2.345 Bisec= 30  

Bisec++ = 4 

Newton=9 

Bisec= 32 

Bisec++ = 12 

Newton=20 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[11, 

22] 

1E-8 

1E-8 

 

12.345 Bisec= 29  

Bisec++ = 4 

Newton=6 

Bisec= 31 

Bisec++ = 11 

Newton=14 
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Function [A, B] Toler/F

xToler 

Root Iterations Num Fx Calls 

LN(X^4)-X [8,9] 1E-8 

1E-8 

 

8.61316

9 

Bisec= 27 

Bisec++ = 2 

Newton=4 

Bisec= 29 

Bisec++ = 8 

Newton=10 

Cos(X)-X [0.5,1] 1E-8 

1E-8 

 

0.73908 Bisec= 26 

Bisec++ = 2 

Newton=4 

Bisec= 28 

Bisec++ = 8 

Newton=10 

Table 1. Summary of the results comparing the Bisection, Bisection++ version 1, 

and Newton’s method, with function tolerance value of 1E-8. 

The above table shows that the Bisection++ method consistently outperforms the 

Bisection and Newton’s methods. The table highlights in red the cases where the 

Bisection++ method performs better than Newton’s method. Of course there is a 

huge number of test cases that vary the tested function and root-bracketing range. 

Due to time limitation, I have chosen the above few test cases which succeeded in 

proving my goals. 

Table 2 shows the same tests but with a function tolerance value of 1E-4. 

Function [A, B] Toler/F

xToler 

Root Iterations Num Fx Calls 

Exp(x)-4*x^2 [3, 5] 1E-8 

1E-8 

 

4.30658 = 28  

Bisec++ =3 

Newton=6 

Bisec= 30  

Bisec++ = 11 

Newton=14 

Exp(x)-3*x^2 [1, 4] 1E-8 

1E-4 

 

3.73307 Bisec= 29  

Bisec++ = 3 

Newton=13 

Bisec= 31  

Bisec++ = 10 

Newton=22 

Exp(x)-3*x^2 [3, 4] 1E-8 

1E-4 

 

3.73307 Bisec= 27 

Bisec++ = 2 

Newton=6 

Bisec= 29 

Bisec++ = 8 

Newton=14 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[1, 11] 1E-8 

1E-4 

 

2.345 Bisec= 30  

Bisec++ = 3 

Newton=9 

Bisec= 32 

Bisec++ = 10 

Newton=20 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[11, 

22] 

1E-8 

1E-4 

 

12.345 Bisec= 29  

Bisec++ = 3 

Newton=6 

Bisec= 31 

Bisec++ = 9 

Newton=14 

LN(X^4)-X [8,9] 1E-8 

1E-4 

 

8.613169 Bisec= 27 

Bisec++ = 1 

Newton=4 

Bisec= 29 

Bisec++ = 5 

Newton=10 



The New Bisection++ Algorithm  22 

 

Copyright © 2014 by Namir Clement Shammas 

Function [A, B] Toler/F

xToler 

Root Iterations Num Fx Calls 

Cos(X)-X [0.5,1] 1E-8 

1E-4 

 

0.73908 Bisec= 26 

Bisec++ = 1 

Newton=4 

Bisec= 28 

Bisec++ = 5 

Newton=10 

Table 2. Summary of the results comparing the Bisection, Bisection++ version 1, 

and Newton’s method, with function tolerance value of 1E-4. 

Table 2 shows a typical reduction of one iteration for the Bisection++ when the 

function tolerance value goes from 1E-8 to its square root value of 1E-4. 

Table 3 shows the tests for version 2 of Bisection++ with a function tolerance 

value of 1E-8. 

Function [A, B] Toler/F

xToler 

Root Iterations Num Fx Calls 

Exp(x)-4*x^2 [3, 5] 1E-8 

1E-8 

 

4.30658 Bisec= 28  

Bisec++ =4 

Newton=6 

Bisec= 30  

Bisec++ = 14 

Newton=14 

Exp(x)-3*x^2 [1, 4] 1E-8 

1E-8 

 

3.73307 Bisec= 29  

Bisec++ = 4 

Newton=13 

Bisec= 31  

Bisec++ = 13 

Newton=22 

Exp(x)-3*x^2 [3, 4] 1E-8 

1E-8 

 

3.73307 Bisec= 27 

Bisec++ = 3 

Newton=6 

Bisec= 29 

Bisec++ = 11 

Newton=14 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[1, 11] 1E-8 

1E-8 

 

2.345 Bisec= 30  

Bisec++ = 3 

Newton=9 

Bisec= 32 

Bisec++ = 10 

Newton=20 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[11, 

22] 

1E-8 

1E-8 

 

12.345 Bisec= 29  

Bisec++ = 4 

Newton=6 

Bisec= 31 

Bisec++ = 11 

Newton=14 

LN(X^4)-X [8,9] 1E-8 

1E-8 

 

8.613169 Bisec= 27 

Bisec++ = 2 

Newton=4 

Bisec= 29 

Bisec++ = 8 

Newton=10 

Cos(X)-X [0.5,1] 1E-8 

1E-8 

 

0.73908 Bisec= 26 

Bisec++ = 2 

Newton=4 

Bisec= 28 

Bisec++ = 8 

Newton=10 

Table 3. Summary of the results comparing the Bisection, Bisection++ version 2, 

and Newton’s method, with function tolerance value of 1E-8. 
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Table 4 shows the tests for version 2 of Bisection++ with a function tolerance 

value of 1E-4. 

Function [A, B] Toler/F

xToler 

Root Iterations Num Fx Calls 

Exp(x)-4*x^2 [3, 5] 1E-8 

1E-4 

 

4.30658 Bisec= 28  

Bisec++ =3 

Newton=6 

Bisec= 30  

Bisec++ = 11 

Newton=14 

Exp(x)-3*x^2 [1, 4] 1E-8 

1E-4 

 

3.73307 Bisec= 29  

Bisec++ = 3 

Newton=13 

Bisec= 31  

Bisec++ = 10 

Newton=22 

Exp(x)-3*x^2 [3, 4] 1E-8 

1E-4 

 

3.73307 Bisec= 27 

Bisec++ = 2 

Newton=6 

Bisec= 29 

Bisec++ = 8 

Newton=14 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[1, 11] 1E-8 

1E-4 

 

2.345 Bisec= 30  

Bisec++ = 3 

Newton=9 

Bisec= 32 

Bisec++ = 10 

Newton=20 

(X-2.345) * (X-

12.345) * (X-

23.456) 

[11, 

22] 

1E-8 

1E-4 

 

12.345 Bisec= 29  

Bisec++ = 4 

Newton=6 

Bisec= 31 

Bisec++ = 11 

Newton=14 

LN(X^4)-X [8,9] 1E-8 

1E-4 

 

8.61316

9 

Bisec= 27 

Bisec++ = 1 

Newton=4 

Bisec= 29 

Bisec++ = 5 

Newton=10 

Cos(X)-X [0.5,1] 1E-8 

1E-4 

 

0.73908 Bisec= 26 

Bisec++ = 1 

Newton=4 

Bisec= 28 

Bisec++ = 5 

Newton=10 

Table 4. Summary of the results comparing the Bisection, Bisection++ version 2, 

and Newton’s method, with function tolerance value of 1E-4. 

Tables 5 and 6 compare the results of the two versions of Bisection++ with the 

function tolerance value of 1E-8 and 1E-4, respectively. 

  Version 1  Version 2  

Function [A, B] Iterations Fx Calls Iterations Fx Calls 

Exp(x)-4*x^2 [3, 5] 4 14 3 11 

Exp(x)-3*x^2 [1, 4] 4 18 3 10 

Exp(x)-3*x^2 [3, 4] 3 11 2 8 

(X-2.345) * (X-12.345) 

* (X-23.456) 

[1, 11] 4 12 3 10 
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  Version 1  Version 2  

Function [A, B] Iterations Fx Calls Iterations Fx Calls 

(X-2.345) * (X-12.345) 

* (X-23.456) 

[11, 

22] 

4 11 3 9 

LN(X^4)-X [8,9] 2 8 1 5 

Cos(X)-X [0.5,1] 2 8 1 5 

Table 5. Comparing the results of the two versions of Bisection++ with the 

function tolerance value of 1E-8. 

  Version 1  Version 2  

Function [A, B] Iterations Fx Calls Iterations Fx Calls 

Exp(x)-4*x^2 [3, 5] 3 11 3 11 

Exp(x)-3*x^2 [1, 4] 3 10 3 10 

Exp(x)-3*x^2 [3, 4] 2 8 2 8 

(X-2.345) * (X-12.345) 

* (X-23.456) 

[1, 11] 3 10 3 10 

(X-2.345) * (X-12.345) 

* (X-23.456) 

[11, 

22] 

3 9 4 11 

LN(X^4)-X [8,9] 1 5 1 5 

Cos(X)-X [0.5,1] 1 5 1 5 

Table 6. Comparing the results of the two versions of Bisection++ with the 

function tolerance value of 1E-4. 

Looking at Tables 5 and 6, you can draw the conclusion that version 2 of the 

Bisection++ performs better that version 1, when the function tolerance is 1E-8. 

This edge is lost when function tolerance is 1E-4. 

Conclusion 
The Bisection++ algorithm offers significant improvement over the Bisection, 

Bisection Plus, and even Newton’s method.  I recommend version 1 of the 

Bisection++ method since it does not require sorting the interpolation data. The 

price for this approach may add one iteration to version 1, compared to version 2.  
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