
Page 1 of 21 Copyright © 2012, 2013 by Namir Shammas

HP 39gII Regression: Part III

The Best Curve Fits in Town!
Namir Shammas

Introduction
In the last two articles I presented various HP 39gII functions that performed regression calculations on

different models. Using these functions assumed that you either knew the regression model suitable for

your data or were willing to try a few different regression models to see which one best fit your data. This

article looks at HP 39gII functions that systematically try a large number of regression models to see

which ones are the best. In this article I discuss the following topics:

1. The best regression models for two variables, fitting up to 81 regression models.

2. The best regression models for three variables, fitting up to 729 regression models.

3. The best regression models for four variables fitting up to 6561 regression models.

4. The best polynomial for two variables.

 In this series of articles, I use the term regression model to mean the equation that is used in the

regression calculations to describe the relationship between a dependent variable and one or more

independent variables.

The Best Regression Model for Two Variables
Given two variables, x and y, what is the best linearized regression model when each variable has a list of

powers used to transform it? Here is a partial list of linearized regression models that can be tested:

y = a + b x

y = a + b/ln(x)

ln(y) = a + b x

ln(y) = a + b ln(x)

y = a + b/x

1/y = a + b x

1/y = a + b/x

ln(y) = a + b/x

1/y = a + b ln(x)

And so on! I can further extend the list by adding more regression models that use combinations of square

root, squared, cubed, reciprocal square root, reciprocal square, and reciprocal cube transformations for

each of x and y. The total number of regression models equals the number of product of the

transformation applied to x and y.

What is my end game here? Rather than selecting just the very best regression model (with the highest

coefficient of determination), I want to apply a more informative approach. I want to find out the best N

regression models. In this article I choose N to be 20. You can easily change that limit to 10, 15, 25, or

any other number you want. In general it’s a good idea to look at the top N regression model and not be

fixated with just the very best regression model.

Page 2 of 21 Copyright © 2012, 2013 by Namir Shammas

Table 1 shows you the source code for function BestLR. This function has the following parameters:

1. The parameter Data is the source data matrix that contains the variables x and y. The matrix must

have at least two columns of data.

2. The parameter lstSel is a list containing two elements. The first element is the index of parameter

Data that selects the variable x. The second list element is the index of parameter Data that selects the

variable y.

3. The parameter lstX is a list that enumerates the set of powers used to transform the variable x. These

powers can be integers and non-integers, and also positive, zero, and negative. The function treats the

zero power as a special case and applies the natural logarithm. If you supply an empty list to this

parameter, the function automatically uses the list {–3, –2, –1, –0.5,0,0.5,1,2,3}. This list allows the

values of x to be transformed into reciprocal cube, reciprocal square, reciprocal, reciprocal square

root, natural logarithm, square root, linear, square, and cube values. You can pass arguments for this

parameter that are subsets of these values to choose fewer transformations. You can also pass

arguments for this parameter that are supersets of these values to choose more transformations. You

can also pick and choose any valid combination of powers. The key point in all these cases is to use

valid powers that lead to error-free transformations. All of the transformation you choose must NOT

GENERATE RUNTIME errors. Otherwise, the function will stop executing.

4. The parameter lstY is a list that enumerates the set of powers used to transform the variable y. It

works just like parameter lstX but on the data for variable y.

The function uses the variable MaxRes to manage the number of best regression models to report back to

you. The function assigns the value of 20 to this variable. You can change this value to alter the number

of best regression models stored in the results matrix.

The function returns a results matrix containing the best 20 results. These results are sorted by the

coefficient of determination of each regression model. The results matrix contains the following columns:

1. The values of the coefficient of determination.

2. The powers used to transform variable y.

3. The powers used to transform variable x.

4. The intercept values.

5. The slope values.

Statement
EXPORT BestLR(Data,lstSel,lstX,lstY)

BEGIN

 LOCAL Tx,Ty,i,j,k;

 LOCAL SelXCol,SelYCol;

 LOCAL PowerX,PowerY;

 LOCAL MatX,VectY,RegCoeff,MatRes;

 LOCAL lstDim,NumRows,ResUpdated;

 LOCAL Sum1,Sum2,Rsqr,YMean,Yhat;

 LOCAL MaxRes,NumColRes;

Page 3 of 21 Copyright © 2012, 2013 by Namir Shammas

 // use the default transformation list

 // for variable x if lstX is empty

 IF SIZE(lstX)==0 THEN

 lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // use the default transformation list

 // for variable y if lstY is empty

 IF SIZE(lstY)==0 THEN

 lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // set the maximum number of results

 MaxRes:=20;

 // set the number of columns in

 // the results matrix

 NumColRes:=5;

 // get the indices for variable x and y

 SelXCol:=lstSel(1);

 SelYCol:=lstSel(2);

 // get the number of rows of data

 lstDim:=SIZE(Data);

 NumRows:=lstDim(1);

 // create the result and regression matrices

 MatX:=MAKEMAT(1,NumRows,2);

 VectY:=MAKEMAT(1,NumRows,1);

 MatRes:=MAKEMAT(0,MaxRes,NumColRes);

 // iterate for each transformation in x

 FOR Tx FROM 1 TO SIZE(lstX) DO

 // get the current power of x

 PowerX:=lstX(Tx);

 // transform x

 IF PowerX==0 THEN

 FOR i FROM 1 TO NumRows DO

 MatX(i,2):=LN(Data(i,SelXCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 MatX(i,2):=Data(i,SelXCol)^PowerX;

 END;

 END;

 // iterate for each transformation in y

 FOR Ty FROM 1 TO SIZE(lstY) DO

 // get the current power of y

 PowerY:=lstY(Ty);

Page 4 of 21 Copyright © 2012, 2013 by Namir Shammas

 // transform y

 IF PowerY==0 THEN

 FOR i FROM 1 TO NumRows DO

 VectY(i,1):=LN(Data(i,SelYCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 VectY(i,1):=Data(i,SelYCol)^PowerY;

 END;

 END;

 // calculate regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate ymean

 Sum1:= 0;

 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+VectY(i,1);

 END;

 YMean:=Sum1/NumRows;

 // calculate coefficient of determination

 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(VectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 // Rsqr is better than last entry

 // in the results matrix?

 IF Rsqr>MatRes(MaxRes,1) THEN

 ResUpdated:=0;

 // loop for each row in the

 // results matrix

 FOR i FROM 1 TO MaxRes DO

 // compare with other Rsqr values

 IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN

 // found better Rsqr for row i

 // push rows below?

 IF i<MaxRes THEN

 j:=MaxRes-1;

 REPEAT

 // FOR j FROM MaxRes-1 TO n STEP -1 DO

 FOR k FROM 1 TO NumColRes DO

Page 5 of 21 Copyright © 2012, 2013 by Namir Shammas

 MatRes(j+1,k):=MatRes(j,k);

 END;

 j:=j-1;

 //END;

 UNTIL j<i;

 END;

 // store new best results

 MatRes(i,1):=Rsqr;

 MatRes(i,2):=PowerY;

 MatRes(i,3):=PowerX;

 MatRes(i,4):=RegCoeff(1,1);

 MatRes(i,5):=RegCoeff(2,1);

 ResUpdated:=1;

 END;

 END;

 END;

 END; // FOR Ty

 END; // FOR Tx

 RETURN MatRes;

END;

Table 1 – The source code for function BestLR.

The source code for function BestLR uses two nested FOR loops to go through each transformation for

the variables x and y. Inside the nested loops, the function calculates the regression coefficients and the

coefficient of determination. The next phase compares the newly calculated coefficient of determination

with similar values stored in the first column of the results matrix. If the newly calculated coefficient of

determination is better than any value in the first column of the results matrix, the function inserts the data

from the newly calculated regression into the results matrix. The function determines which row will store

the new data. Then, the insertion process copies old data from the insertion row downward in the results

matrix. The last row in the results matrix has its data overwritten by the ones in the row above it, or

possibly by the newly calculated regression data.

Let’s test the function BestLR using the data in Table 2. The values in the table come from the equation:

y = 3 + 2 x
2

x y

1 5

2 11

3 21

4 35

5 53

6 75

7 101

8 131

9 165

Page 6 of 21 Copyright © 2012, 2013 by Namir Shammas

x y

10 203

Table 2 – Sample data used to test the function BestLR.

Enter the values of Table 2 in the global matrix M1 and then execute the following command:

BestLR(M1,{1,2},{},{})M2

The above call for function BestLR uses the default transformations for both variables x and y. Since the

function uses 9 transformations (including the linear one) on each variable, the total number of regression

models tested is 81. Figure 1 shows the contents of matrix M2 which stores the results of the best model

selection. Table 3 shows the best five regression models. The best model in that table is indeed the one

used to create the data in Table 2. Keep in mind that if the values of y included an error component, the

function BestLR may not specify the equation y = 3 + 2 x
2
 as the best model. That model may be

superseded by other models depending on the error components associated with the values of variable y.

Fig. 1 – The values in matrix M2.

Rsqr Power y Power x Regression

Model

Intercept Slope

1.000000 1 2 y = a+b x
2
 3 2

 0.999189 0.5 1 √y = a+b x 0.6279425 1.3509222

0.998873 -3 -3 1/y
3
 = a + b/x

3
 -7.441533E-5 8.0478988E-3

0.997834 -0.5 0.5 1/√y = a+b/√x -0.1115322 0.56543287

0.997208 -2 -2 1/y
2
 = a + b/x

2
 -1.1075566E-3 0.0407642

Table 3 – The Best five regression models found by function BestLR.

The Best Regression Model for Three Variables
The last section gave you have a taste of finding the best regression model between one dependent

variable and one independent variable. This section presents a function that finds the best regression

model between the dependent variable, y, and the independent variables x and z.

Table 4 shows you the source code for function BestMLR2. This function has the following parameters:

1. The parameter Data is the source data matrix that contains the variables x, z, and y. The matrix must

have at least two columns of data.

2. The parameter lstSel is a list containing three elements. The first element is the index of parameter

Data that selects the independent variable x. The second list element is the index of parameter Data

Page 7 of 21 Copyright © 2012, 2013 by Namir Shammas

that selects the independent variable z. The third list element is the index of parameter Data that

selects the dependent variable y.

3. The parameter lstX is a list that enumerates the set of powers used to transform the variable x. These

powers can be integers and non-integers, and also positive, zero, and negative. The function treats the

zero power as a special case and applies the natural logarithm. If you supply an empty list to this

parameter, the function automatically uses the list {–3, –2, –1, –0.5,0,0.5,1,2,3}. This list allows the

values of x to be transformed into reciprocal cube, reciprocal square, reciprocal, reciprocal square

root, natural logarithm, square root, linear, square, and cube values. You can pass arguments for this

parameter that are subsets of these values to choose fewer transformations. You can also pass

arguments for this parameter that are supersets of these values to choose more transformations. All of

the transformation you choose must NOT GENERATE RUNTIME errors.

4. The parameter lstZ is a list that enumerates the set of powers used to transform the variable z. It works

just like parameter lstX but on the data for variable z.

5. The parameter lstY is a list that enumerates the set of powers used to transform the variable y. It

works just like parameter lstX but on the data for variable y.

The function uses the variable MaxRes to manage the number of best regression models to store and

report back to you. The function assigns the value of 20 to this variable. You can change this value to alter

the number of best regression models stored in the results matrix.

The function returns a results matrix containing the best 20 results. These results are sorted by the

coefficient of determination of each regression model. The results matrix contains the following columns:

1. The values for the coefficient of determination.

2. The powers used to transform variable y.

3. The powers used to transform variable x.

4. The powers used to transform variable z.

5. The intercept values.

6. The values for the regression coefficient of variable x.

7. The values for the regression coefficient of variable z.

Statement
EXPORT BestMLR2(Data,lstSel,lstX,lstZ,lstY)

BEGIN

 LOCAL Tx,Tz,Ty,i,j,k;

 LOCAL SelXCol,SelZCol,SelYCol;

 LOCAL PowerX,PowerZ,PowerY;

 LOCAL MatX,VectY,RegCoeff,MatRes;

 LOCAL lstDim,NumRows,ResUpdated;

 LOCAL Sum1,Sum2,Rsqr,YMean,Yhat;

 LOCAL MaxRes,NumColRes;

 // use default transformation list

 // if lstX is an empty list

Page 8 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement
 IF SIZE(lstX)==0 THEN

 lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // use default transformation list

 // if lstZ is an empty list

 IF SIZE(lstZ)==0 THEN

 lstZ:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // use default transformation list

 // if lstY is an empty list

 IF SIZE(lstY)==0 THEN

 lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // Set the number of rows and columns in the results matrix

 MaxRes:=20;

 NumColRes:=7;

 // get the variable selectors

 SelXCol:=lstSel(1);

 SelZCol:=lstSel(2);

 SelYCol:=lstSel(3);

 // get the number of rows in matrix Data

 lstDim:=SIZE(Data);

 NumRows:=lstDim(1);

 // create the regression and results matrices

 MatX:=MAKEMAT(1,NumRows,3);

 VectY:=MAKEMAT(1,NumRows,1);

 MatRes:=MAKEMAT(0,MaxRes,NumColRes);

 // start the calculations

 // process transformations for variable x

 FOR Tx FROM 1 TO SIZE(lstX) DO

 PowerX:=lstX(Tx);

 // transform x

 IF PowerX==0 THEN

 FOR i FROM 1 TO NumRows DO

 MatX(i,2):=LN(Data(i,SelXCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 MatX(i,2):=Data(i,SelXCol)^PowerX;

 END;

 END;

Page 9 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement
 // process transformations for variable z

 FOR Tz FROM 1 TO SIZE(lstZ) DO

 PowerZ:=lstZ(Tz);

 // transform z

 IF PowerZ==0 THEN

 FOR i FROM 1 TO NumRows DO

 MatX(i,3):=LN(Data(i,SelZCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 MatX(i,3):=Data(i,SelZCol)^PowerZ;

 END;

 END;

 // process transformations for variable y

 FOR Ty FROM 1 TO SIZE(lstY) DO

 PowerY:=lstY(Ty);

 // transform y

 IF PowerY==0 THEN

 FOR i FROM 1 TO NumRows DO

 VectY(i,1):=LN(Data(i,SelYCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 VectY(i,1):=Data(i,SelYCol)^PowerY;

 END;

 END;

 // calculate regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate ymean

 Sum1:=0;

 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+VectY(i,1);

 END;

 Ymean:=Sum1/NumRows;

 // calculate the coefficient of determination

 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+(Yhat(i,1)-Ymean)^2;

 Sum2:=Sum2+(VectY(i,1)-Ymean)^2;

Page 10 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement
 END;

 Rsqr:=Sum1/Sum2;

 // Rsqr is better than last entry

 // in the results matrix?

 IF Rsqr>MatRes(MaxRes,1) THEN

 ResUpdated:=0;

 // check which row to insert better

 // regression results

 FOR i FROM 1 TO MaxRes DO

 // insert new results in row i?

 IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN

 // inserting inside the results matrix?

 IF i<MaxRes THEN

 // downward copy rows from MaxRes-1 to i

 j:=MaxRes-1;

 REPEAT

 FOR k FROM 1 TO NumColRes DO

 MatRes(j+1,k):=MatRes(j,k);

 END;

 j:=j-1;

 UNTIL j<i;

 END;

 // insert better results in row i

 MatRes(i,1):=Rsqr;

 MatRes(i,2):=PowerY;

 MatRes(i,3):=PowerX;

 MatRes(i,4):=PowerZ;

 FOR k FROM 1 TO 3 DO

 MatRes(i,4+k):=RegCoeff(k,1);

 END;

 ResUpdated:=1;

 END;

 END;

 END;

 END; // FOR Ty

 END; // FOR Tz

 END; // FOR Tx

 RETURN MatRes;

END;

Table 4 – The source code for function BestMLR2.

The source code for function BestMLR2 uses three nested FOR loops to go through each transformation

for the variables x, z, and y. Inside the nested loops, the function calculates the regression coefficients and

the coefficient of determination. The next phase compares the newly calculated coefficient of

Page 11 of 21 Copyright © 2012, 2013 by Namir Shammas

determination with similar values stored in the first column of the results matrix. If the newly calculated

coefficient of determination is better than any value in the first column of the results matrix, the function

inserts the data from the newly calculated regression into the results matrix. The function determines

which row will store the new data. Then, the insertion process copies old data from the insertion row

downward in the results matrix. The last row in the results matrix has its data overwritten by the ones in

the row above it, or possibly by the newly calculated regression data.

Let’s test the function BestMLR2 using the data in Table 5. The values in the table come from to the

equation:

y = 3 + 2 x
2
 + 20/z

x z y

1 1 25

2 1 31

3 2 31

4 2 45

5 4 58

6 5 79

7 2 111

8 4 136

9 5 169

10 5 207

Table 5 – Sample data used to test the function BestMLR2.

Enter the values of Table 5 in the global matrix M1 and then execute the following command:

BestMLR2(M1,{1,2,3},{},{},{})M2

The above call for function BestMLR2 uses the default transformations for variables x, z, and y. Since

the function uses 9 transformations (including the linear one) on each variable, the total number of

regression models tested is 729. Figure 2 shows the contents of matrix M2 which stores the results of the

best model selection. Table 6 shows the best five regression models. The best model is the same one used

to create the data in Table 5.

Fig. 2 – The values in matrix M2.

Rsqr Power y Power z Power z Intercept Slope X Slope Z

1.000000 1 2 -1 3 2 20

 0.999893 1 2 -0.5 -7.371050 2.00917 29.73563

Page 12 of 21 Copyright © 2012, 2013 by Namir Shammas

Rsqr Power y Power z Power z Intercept Slope X Slope Z

0.999772 1 2 -2 8.661370 1.976927 14.78107

0.999542 1 2 0 21.432295 2.011851 -10.008505

0.999459 1 2 -3 10.607556 1.960595 12.795117

Table 6 – The Best five regression models found by function BestMLR2.

The appendix contains the listing for function BestML3 which obtains the best regression models for the

independent variables x, z, and t, and the dependent variable y. This function performs tasks that are

similar to functions BestLR and BetMLR2.

The Best Polynomial Fit
If you want to fit pairs of (x, y) data points with a polynomial, one of the first and common questions you

may ask regards the best order of the polynomial. This section deals with how to obtain the best

polynomial order in fitting (x, y) data points. The first issue in dealing with fitting polynomials that have

different orders is how to compare the goodness of fit for regression models that have a different number

of terms. Up till now, the functions I presented used the coefficient of determination to compare models

that have the same number of terms. To compare models that have different number of terms we need to

calculate the adjusted coefficient of determination
[2]

. The following equation calculates this statistic based

on the coefficient of determination:

R
2

adj = 1 – (1 – R
2
) (n – 1) / (n – k – 1)

Where n is the number of data points and k is the number of independent variables that are in the

regression model.

Using the adjusted coefficient of determination seems like a good idea at first. The reality is that high-

order polynomials also generate high value for their adjusted coefficient of determination. Often, you get

to a certain polynomial order where the gain in the adjusted coefficient of determination is small. You ask

yourself if that small gain is justified!

What would be nice is find a different statistic that balances the following aspects of goodness of fit:

 Reward the regression models that generate smaller values for the sum of squared errors.

 Penalize the regression models for using more independent variables or terms.

The Akaike information criterion
[1]

 (AIC) is one of the new goodness-of-fit statistics that follow the above

two rules. The corrected AIC statistic, AICC, is a refined version that I use in this article. To calculate the

AICC I use the following equation:

AICC = (∑ (̂)

))))

Where n is the number of observations, ̂ is the projected value of y, is the observed value of y (or its

transformed value), and k is the polynomial order plus 1 (that is, the total number of regression

coefficients, including the constant term). What kind of values for the AICC statistics are we looking for?

The smallest value of AICC picks the best the regression model. The AICC statistic works better than the

adjusted coefficient of determination with polynomials. The AICC is able to penalize higher order

polynomials if they fail to significantly reduce the sum of the errors squared. The AICC does not justify a

very small increase in the coefficient of determination in a higher order polynomial fit.

Page 13 of 21 Copyright © 2012, 2013 by Namir Shammas

Table 7 presents the source code for the BestPolyReg function. This function has the following

parameters:

 The parameter Data is the source data matrix that contains the values for variables x and y.

 The parameter SelXCol selects the column in matrix Data that contains the values for variable x.

 The parameter SelYCol selects the column in matrix Data that contains the values for variable y.

 The parameters MinOrder and MaxOrder define the range of polynomial orders to test.

The function returns the following list of results for the best polynomial fit:

 The polynomial order.

 The coefficient of determination.

 The adjusted coefficient of determination.

 The value for the AICC statistic.

 The vector column containing the regression coefficients.

During the calculation phase, the function also displays the values for the polynomial order, sum of

squared errors, and AICC statistic for all the polynomial order. This output should give you an idea of how

the different polynomial order compare with each other. When you press the [Home] button, the

calculator switches to the Home display and shows you the list of final results.

Statment
EXPORT BestPolyReg(Data,SelXCol,SelYCol,MinOrder,MaxOrder)

BEGIN

 LOCAL i,k,x,y,Order;

 LOCAL MatX,VectY;

 LOCAL lstDim,NumRows;

 LOCAL Sum1,Sum2,Sum3,AICc,BestAICc;

 LOCAL Rsqr,RsqrAdj,YMean,Yhat,RegCoeff;

 LOCAL BestOrder,BestRsqr,BestRsqrAdj,BestRegCoeff;

 lstDim:=SIZE(Data);

 NumRows:=lstDim(1);

 IF MinOrder<1 THEN

 MinOrder:=1;

 END;

 // initialize best regression data

 BestOrder=0;

 BestRsqr:=0;

 BestRsqrAdj=0;

 BestAICc:=1E499;

 // initialize vector y

 VectY:=MAKEMAT(1,NumRows,1);

 // calculate ymean … needs to be done once!

 Sum1:=0;

Page 14 of 21 Copyright © 2012, 2013 by Namir Shammas

Statment
 FOR i FROM 1 TO NumRows DO

 y:=Data(i,SelYCol);

 VectY(i,1):=y;

 Sum1:=Sum1+y;

 END;

 YMean:=Sum1/NumRows;

 // calculate sum of y – ymean squared

 Sum2:=0;

 FOR i FROM 1 TO NumRows DO

 y:=Data(i,SelYCol);

 Sum2:=Sum2+(y-YMean)^2;

 END;

 // iterate for the specified range of polynomial orders

 FOR Order FROM MinOrder TO MaxOrder DO

 // (re)create the matrix MatX

 MatX:=MAKEMAT(1,NumRows,1+Order);

 // fill the columns to to Order+1 with x^power values

 FOR i FROM 1 TO NumRows DO

 x:=Data(i,SelXCol);

 FOR k FROM 1 TO Order DO

 MatX(i,k+1):=x^k;

 END;

 END;

 // calculate regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate the coefficient of determination

 Sum1:=0;

 Sum3:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum3:=Sum3+(VectY(i,1)-Yhat(i,1))^2;

 END;

 Rsqr:=Sum1/Sum2;

 // calculate the adjusted coefficient of determination

 RsqrAdj:=1-(1-Rsqr)*(NumRows-1)/(NumRows-Order-1);

 k:=Order+1;

 // if Sum3 is 0 then adjust it to a small value

 // to avoid getting a LN(0) error

 IF Sum3==0 THEN

 Sum3:=1E-499;

Page 15 of 21 Copyright © 2012, 2013 by Namir Shammas

Statment
 END;

 // calculate AICc statistic

 AICc:=NumRows*LN(Sum3/NumRows)+2*k+(2*k*(k+1))/(NumRows-k-1);

 // display intermediate results

 PRINT("Order="+Order+", AICc="+AICc+", Sum3="+Sum3);

 // found a better fit?

 IF AICc<BestAICc THEN

 // update best regression data

 BestOrder:=Order;

 BestRsqr:=Rsqr;

 BestRsqrAdj:=RsqrAdj;

 BestAICc:=AICc;

 BestRegCoeff:=RegCoeff;

 END;

 END;

 RETURN {BestOrder,BestRsqr,BestRsqrAdj,BestAICc,BestRegCoeff};

END;

Table 7 – The source code for function BestPolyReg

Let’s test the function BestPolyReg. Table 8 shows sample (x,y) data. Enter the data in the global matrix

M2.

x y

1 1

2 5

3 10

4 15

5 25

6 35

7 50

8 65

9 80

10 100

Table 8 – The sample data used to test function BestPolyReg.

Invoke the function BestPolyReg by using the following command:

BestPolyReg(M2,1,2,1,5)

The above command specifies matrix M2 as the data source matrix. The second and third arguments

specify that variable x and y are in columns 1 and 2, respectively, of matrix M2. The last two arguments

in the call to function BestPolyReg specify that the polynomial orders examined are in the range of 1 to 5.

Figures 3 and 4 show the intermediate output of the function using the PRINT statement. Figure 3 shows

the upper portion of the PRINT statement output. Figure 4 shows the lower portion of the PRINT

statement output. Notice that the polynomial order of 2 has the smallest AICC statistic. At the same time,

the sum of errors squared keeps decreasing with the increasing polynomial order. Figure 4 also confirms

Page 16 of 21 Copyright © 2012, 2013 by Namir Shammas

this trend. The same figure shows that the higher order polynomials failed to obtain the lowest AICC

statistics.

Fig. 3 – The upper portion of the PRINT statements output.

Fig. 4 – The lower portion of the PRINT statements output.

Figures 5 and 6 show the left and right sides of the list of output values. The output indicates that the

quadratic polynomial is the best fit for the data in Table 8. The values for the coefficient of determination

and adjusted coefficient of determination are 0.999364666385 and 0.999183142495, respectively. The

AICC statistic for the best polynomial fit is 5.88. The best regression polynomial is:

y = 0.56666666 – 0.137878789 x + 1.007575758 x
2

Note that values of y in Table 5 are based on the quadratic polynomial y = x
2
 with added errors. The

function BestPolyReg has succeeded in identifying the quadratic polynomial as the one providing the best

regression model.

Fig. 5 – The left side of the output.

Page 17 of 21 Copyright © 2012, 2013 by Namir Shammas

Fig. 6 – The right side of the output.

Observations and Conclusions
This article presented HP 39gII functions that perform bets linearized regression between two, three, and

four variables. These functions go through a long list of linearized regression models and find the nest

models, sorting the results using the values of the coefficient of determination. The article also offered a

function that finds the best polynomial that fits (x, y) data points. The article demonstrated that the

modified Akaike information criterion is very suitable to select the best polynomial.

The next article discusses least-squares relative error regression. The article will introduce you to the math

behind relative error regression. Moreover, it will present several HP 39gII functions that apply

calculations for this type of regression to general linear, polynomial, and linearized models.

Appendix
Here is the listing for function BestML3:

Statement
EXPORT BestMLR3(Data,lstSel,lstX,lstZ,lstT,lstY)

BEGIN

 LOCAL Tx,Tz,Ty,Tt,i,j,k;

 LOCAL SelXCol,SelZCol,SelTCol,SelYCol;

 LOCAL PowerX,PowerZ,PowerT,PowerY;

 LOCAL MatX,VectY,RegCoeff,MatRes;

 LOCAL lstDim,NumRows,ResUpdated;

 LOCAL Sum1,Sum2,Rsqr,YMean,Yhat;

 LOCAL MaxRes,NumColRes;

 // use default transformation list

 // if lstX is an empty list

 IF SIZE(lstX)==0 THEN

 lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // use default transformation list

 // if lstZ is an empty list

 IF SIZE(lstZ)==0 THEN

 lstZ:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

Page 18 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement
 // use default transformation list

 // if lstT is an empty list

 IF SIZE(lstT)==0 THEN

 lstT:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 // use default transformation list

 // if lstY is an empty list

 IF SIZE(lstY)==0 THEN

 lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3};

 END;

 MaxRes:=20;

 NumColRes:=9;

 // get the variable selectors

 SelXCol:=lstSel(1);

 SelZCol:=lstSel(2);

 SelTCol:=lstSel(3);

 SelYCol:=lstSel(4);

 // get the number of rows in matrix Data

 lstDim:=SIZE(Data);

 NumRows:=lstDim(1);

 // create the regression and results matrices

 MatX:=MAKEMAT(1,NumRows,3);

 VectY:=MAKEMAT(1,NumRows,1);

 MatRes:=MAKEMAT(0,MaxRes,NumColRes);

 // start the calculations

 // process transformations for variable x

 FOR Tx FROM 1 TO SIZE(lstX) DO

 PowerX:=lstX(Tx);

 // transform x

 IF PowerX==0 THEN

 FOR i FROM 1 TO NumRows DO

 MatX(i,2):=LN(Data(i,SelXCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 MatX(i,2):=Data(i,SelXCol)^PowerX;

 END;

 END;

 // process transformations for variable z

 FOR Tz FROM 1 TO SIZE(lstZ) DO

 PowerZ:=lstZ(Tz);

Page 19 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement

 // transform z

 IF PowerZ==0 THEN

 FOR i FROM 1 TO NumRows DO

 MatX(i,3):=LN(Data(i,SelZCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 MatX(i,3):=Data(i,SelZCol)^PowerZ;

 END;

 END;

 // process transformations for variable t

 FOR Tt FROM 1 TO SIZE(lstT) DO

 PowerT:=lstT(Tt);

 // transform t

 IF PowerT==0 THEN

 FOR i FROM 1 TO NumRows DO

 MatX(i,4):=LN(Data(i,SelTCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 MatX(i,4):=Data(i,SelTCol)^PowerT;

 END;

 END;

 // process transformations for variable y

 FOR Ty FROM 1 TO SIZE(lstY) DO

 PowerY:=lstY(Ty);

 // transform y

 IF PowerY==0 THEN

 FOR i FROM 1 TO NumRows DO

 VectY(i,1):=LN(Data(i,SelYCol));

 END;

 ELSE

 FOR i FROM 1 TO NumRows DO

 VectY(i,1):=Data(i,SelYCol)^PowerY;

 END;

 END;

 // calculate regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate ymean

 Sum1:=0;

Page 20 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement
 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+VectY(i,1);

 END;

 YMean:=Sum1/NumRows;

 // calculate the coefficient of determination

 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRows DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(VectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 // Rsqr is better than last entry

 // in the results matrix?

 IF Rsqr>MatRes(MaxRes,1) THEN

 ResUpdated:=0;

 // check which row to insert better

 // regression results

 FOR i FROM 1 TO MaxRes DO

 // insert new results in row i?

 IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN

 // inserting inside the results matrix?

 IF i<MaxRes THEN

 // downward copy rows from MaxRes-1 to i

 j:=MaxRes-1;

 REPEAT

 FOR k FROM 1 TO NumColRes DO

 MatRes(j+1,k):=MatRes(j,k);

 END;

 j:=j-1;

 UNTIL j<i;

 END;

 // insert better results in row i

 MatRes(i,1):=Rsqr;

 MatRes(i,2):=PowerY;

 MatRes(i,3):=PowerX;

 MatRes(i,4):=PowerZ;

 MatRes(i,5):=PowerT;

 FOR k FROM 1 TO 4 DO

 MatRes(i,5+k):=RegCoeff(k,1);

 END;

 ResUpdated:=1;

 END;

 END;

Page 21 of 21 Copyright © 2012, 2013 by Namir Shammas

Statement
 END;

 END; // FOR Ty

 END; // FOR Tt

 END; // FOR Tz

 END; // FOR Tx

 RETURN MatRes;

END;

References

1. Wikipedia article Akaike information criterion.

2. Wikipedia article Coefficient of Determination.

3. Wikipedia article Linear Regression.

4. Draper and Smith, Applied Regression Analysis, Wiley-Interscience; 3rd edition (April 23, 1998)

5. Neter, Kuther, Wasserman, and Nachtsheim, Applied Linear Statistical Models, McGraw-

Hill/Irwin; 4th edition (February 1, 1996).

6. Fox, Applied Regression Analysis and Generalized Linear Models, Sage Publications, Inc; 2nd

edition (April 16, 2008).

7. Montgomery, Peck, and Vining, Introduction to Linear Regression Analysis, Wiley-Interscience;

4th edition (2006).

8. Seber and Lee, Linear Regression Analysis, Wiley; 2nd edition (February 5, 2003).

