
Page 1 of 21 Copyright © 2012, 2013 by Namir Shammas 

 

HP 39gII Regression: Part III 

The Best Curve Fits in Town! 
Namir Shammas 

 

Introduction 
In the last two articles I presented various HP 39gII functions that performed regression calculations on 

different models. Using these functions assumed that you either knew the regression model suitable for 

your data or were willing to try a few different regression models to see which one best fit your data. This 

article looks at HP 39gII functions that systematically try a large number of regression models to see 

which ones are the best. In this article I discuss the following topics: 
 

1. The best regression models for two variables, fitting up to 81 regression models. 
 

2. The best regression models for three variables, fitting up to 729 regression models. 
 

3. The best regression models for four variables fitting up to 6561 regression models. 
 

4. The best polynomial for two variables. 
 

 In this series of articles, I use the term regression model to mean the equation that is used in the 

regression calculations to describe the relationship between a dependent variable and one or more 

independent variables. 

The Best Regression Model for Two Variables 
Given two variables, x and y, what is the best linearized regression model when each variable has a list of 

powers used to transform it? Here is a partial list of linearized regression models that can be tested: 

 

y = a + b x 

y = a + b/ln(x) 

ln(y) = a + b x 

ln(y) = a + b ln(x) 

y = a + b/x 

1/y = a + b x 

1/y = a + b/x 

ln(y) = a + b/x 

1/y = a + b ln(x) 

 

And so on! I can further extend the list by adding more regression models that use combinations of square 

root, squared, cubed, reciprocal square root, reciprocal square, and reciprocal cube transformations for 

each of x and y. The total number of regression models equals the number of product of the 

transformation applied to x and y. 

 

What is my end game here? Rather than selecting just the very best regression model (with the highest 

coefficient of determination), I want to apply a more informative approach. I want to find out the best N 

regression models. In this article I choose N to be 20. You can easily change that limit to 10, 15, 25, or 

any other number you want. In general it’s a good idea to look at the top N regression model and not be 

fixated with just the very best regression model. 
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Table 1 shows you the source code for function BestLR. This function has the following parameters: 

 

1. The parameter Data is the source data matrix that contains the variables x and y. The matrix must 

have at least two columns of data. 
 

2. The parameter lstSel is a list containing two elements. The first element is the index of parameter 

Data that selects the variable x. The second list element is the index of parameter Data that selects the 

variable y.  
 

3. The parameter lstX is a list that enumerates the set of powers used to transform the variable x. These 

powers can be integers and non-integers, and also positive, zero, and negative. The function treats the 

zero power as a special case and applies the natural logarithm. If you supply an empty list to this 

parameter, the function automatically uses the list {–3, –2, –1, –0.5,0,0.5,1,2,3}. This list allows the 

values of x to be transformed into reciprocal cube, reciprocal square, reciprocal, reciprocal square 

root, natural logarithm, square root, linear, square, and cube values. You can pass arguments for this 

parameter that are subsets of these values to choose fewer transformations. You can also pass 

arguments for this parameter that are supersets of these values to choose more transformations. You 

can also pick and choose any valid combination of powers. The key point in all these cases is to use 

valid powers that lead to error-free transformations. All of the transformation you choose must NOT 

GENERATE RUNTIME errors. Otherwise, the function will stop executing. 
 

4. The parameter lstY is a list that enumerates the set of powers used to transform the variable y. It 

works just like parameter lstX but on the data for variable y. 
 

The function uses the variable MaxRes to manage the number of best regression models to report back to 

you. The function assigns the value of 20 to this variable. You can change this value to alter the number 

of best regression models stored in the results matrix. 

 

The function returns a results matrix containing the best 20 results. These results are sorted by the 

coefficient of determination of each regression model. The results matrix contains the following columns: 
 

1. The values of the coefficient of determination. 
 

2. The powers used to transform variable y. 
 

3. The powers used to transform variable x. 
 

4. The intercept values. 
 

5. The slope values. 
 

Statement 
EXPORT BestLR(Data,lstSel,lstX,lstY) 

BEGIN 

  LOCAL Tx,Ty,i,j,k; 

  LOCAL SelXCol,SelYCol; 

  LOCAL PowerX,PowerY; 

  LOCAL MatX,VectY,RegCoeff,MatRes; 

  LOCAL lstDim,NumRows,ResUpdated; 

  LOCAL Sum1,Sum2,Rsqr,YMean,Yhat; 

  LOCAL MaxRes,NumColRes; 
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  // use the default transformation list 

  // for variable x if lstX is empty 

  IF SIZE(lstX)==0 THEN 

    lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

   

  // use the default transformation list 

  // for variable y if lstY is empty 

  IF SIZE(lstY)==0 THEN 

    lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

  // set the maximum number of results 

  MaxRes:=20; 

  // set the number of columns in  

  // the results matrix 

  NumColRes:=5; 

  // get the indices for variable x and y 

  SelXCol:=lstSel(1); 

  SelYCol:=lstSel(2); 

  // get the number of rows of data 

  lstDim:=SIZE(Data); 

  NumRows:=lstDim(1); 

  // create the result and regression matrices 

  MatX:=MAKEMAT(1,NumRows,2); 

  VectY:=MAKEMAT(1,NumRows,1); 

  MatRes:=MAKEMAT(0,MaxRes,NumColRes); 

   

  // iterate for each transformation in x 

  FOR Tx FROM 1 TO SIZE(lstX) DO 

    // get the current power of x 

    PowerX:=lstX(Tx); 

 

    // transform x 

    IF PowerX==0 THEN 

      FOR i FROM 1 TO NumRows DO 

        MatX(i,2):=LN(Data(i,SelXCol)); 

      END; 

    ELSE 

      FOR i FROM 1 TO NumRows DO 

        MatX(i,2):=Data(i,SelXCol)^PowerX; 

      END;   

    END;       

 

    // iterate for each transformation in y 

    FOR Ty FROM 1 TO SIZE(lstY) DO 

      // get the current power of y 

      PowerY:=lstY(Ty); 
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      // transform y 

      IF PowerY==0 THEN 

        FOR i FROM 1 TO NumRows DO 

          VectY(i,1):=LN(Data(i,SelYCol)); 

        END; 

      ELSE 

        FOR i FROM 1 TO NumRows DO 

          VectY(i,1):=Data(i,SelYCol)^PowerY; 

        END;   

      END;       

       

      // calculate regression coefficients 

      RegCoeff:=LSQ(MatX,VectY); 

       

      // calculate ymean 

      Sum1:= 0; 

      FOR i FROM 1 TO NumRows DO 

        Sum1:=Sum1+VectY(i,1); 

      END; 

      YMean:=Sum1/NumRows; 

     

      // calculate coefficient of determination 

      Sum1:=0; 

      Sum2:=0; 

      Yhat:=MatX*RegCoeff; 

      FOR i FROM 1 TO NumRows DO 

        Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 

        Sum2:=Sum2+(VectY(i,1)-YMean)^2;       

      END; 

      Rsqr:=Sum1/Sum2;   

       

      // Rsqr is better than last entry 

      // in the results matrix? 

      IF Rsqr>MatRes(MaxRes,1) THEN 

        ResUpdated:=0; 

        // loop for each row in the 

        // results matrix 

        FOR i FROM 1 TO MaxRes DO 

          // compare with other Rsqr values 

          IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN 

            // found better Rsqr for row i 

            // push rows below? 

            IF i<MaxRes THEN 

              j:=MaxRes-1; 

              REPEAT 

              // FOR j FROM MaxRes-1 TO n STEP -1 DO 

                FOR k FROM 1 TO NumColRes DO 
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                  MatRes(j+1,k):=MatRes(j,k); 

                END; 

                j:=j-1; 

              //END; 

              UNTIL j<i; 

            END; 

            // store new best results 

            MatRes(i,1):=Rsqr; 

            MatRes(i,2):=PowerY; 

            MatRes(i,3):=PowerX; 

            MatRes(i,4):=RegCoeff(1,1); 

            MatRes(i,5):=RegCoeff(2,1); 

            ResUpdated:=1; 

          END; 

        END;       

      END; 

     END; // FOR Ty 

  END; // FOR Tx 

   

  RETURN MatRes; 

   

END; 
 

Table 1 – The source code for function BestLR. 
 

The source code for function BestLR uses two nested FOR loops to go through each transformation for 

the variables x and y. Inside the nested loops, the function calculates the regression coefficients and the 

coefficient of determination. The next phase compares the newly calculated coefficient of determination 

with similar values stored in the first column of the results matrix. If the newly calculated coefficient of 

determination is better than any value in the first column of the results matrix, the function inserts the data 

from the newly calculated regression into the results matrix. The function determines which row will store 

the new data. Then, the insertion process copies old data from the insertion row downward in the results 

matrix. The last row in the results matrix has its data overwritten by the ones in the row above it, or 

possibly by the newly calculated regression data. 
 

Let’s test the function BestLR using the data in Table 2. The values in the table come from the equation: 

 

y = 3 + 2 x
2
 

 
 

x y 

1 5 

2 11 

3 21 

4 35 

5 53 

6 75 

7 101 

8 131 

9 165 
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x y 

10 203 
 

Table 2 – Sample data used to test the function BestLR. 
 

Enter the values of Table 2 in the global matrix M1 and then execute the following command: 

 

BestLR(M1,{1,2},{},{})M2 
 

The above call for function BestLR uses the default transformations for both variables x and y. Since the 

function uses 9 transformations (including the linear one) on each variable, the total number of regression 

models tested is 81. Figure 1 shows the contents of matrix M2 which stores the results of the best model 

selection. Table 3 shows the best five regression models. The best model in that table is indeed the one 

used to create the data in Table 2. Keep in mind that if the values of y included an error component, the 

function BestLR may not specify the equation y = 3 + 2 x
2
 as the best model. That model may be 

superseded by other models depending on the error components associated with the values of variable y.  

 
 

 
 

Fig.  1 – The values in matrix M2. 
 
 

Rsqr Power y Power x Regression 

Model 

Intercept Slope 

1.000000 1 2 y = a+b x
2
 3 2 

 0.999189 0.5 1 √y = a+b x 0.6279425 1.3509222 

0.998873 -3 -3 1/y
3
 = a + b/x

3
 -7.441533E-5 8.0478988E-3 

0.997834 -0.5 0.5 1/√y = a+b/√x -0.1115322 0.56543287 

0.997208 -2 -2 1/y
2
 = a + b/x

2
 -1.1075566E-3 0.0407642 

 

Table 3 – The Best five regression models found by function BestLR. 

The Best Regression Model for Three Variables 
The last section gave you have a taste of finding the best regression model between one dependent 

variable and one independent variable. This section presents a function that finds the best regression 

model between the dependent variable, y, and the independent variables x and z.  
 

Table 4 shows you the source code for function BestMLR2. This function has the following parameters: 
 

1. The parameter Data is the source data matrix that contains the variables x, z, and y. The matrix must 

have at least two columns of data. 
 

2. The parameter lstSel is a list containing three elements. The first element is the index of parameter 

Data that selects the independent variable x. The second list element is the index of parameter Data 
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that selects the independent variable z. The third list element is the index of parameter Data that 

selects the dependent variable y.  
 

3. The parameter lstX is a list that enumerates the set of powers used to transform the variable x. These 

powers can be integers and non-integers, and also positive, zero, and negative. The function treats the 

zero power as a special case and applies the natural logarithm. If you supply an empty list to this 

parameter, the function automatically uses the list {–3, –2, –1, –0.5,0,0.5,1,2,3}. This list allows the 

values of x to be transformed into reciprocal cube, reciprocal square, reciprocal, reciprocal square 

root, natural logarithm, square root, linear, square, and cube values. You can pass arguments for this 

parameter that are subsets of these values to choose fewer transformations. You can also pass 

arguments for this parameter that are supersets of these values to choose more transformations. All of 

the transformation you choose must NOT GENERATE RUNTIME errors. 
 

4. The parameter lstZ is a list that enumerates the set of powers used to transform the variable z. It works 

just like parameter lstX but on the data for variable z. 
 

5. The parameter lstY is a list that enumerates the set of powers used to transform the variable y. It 

works just like parameter lstX but on the data for variable y. 
 

The function uses the variable MaxRes to manage the number of best regression models to store and 

report back to you. The function assigns the value of 20 to this variable. You can change this value to alter 

the number of best regression models stored in the results matrix. 
 

The function returns a results matrix containing the best 20 results. These results are sorted by the 

coefficient of determination of each regression model. The results matrix contains the following columns: 
 

1. The values for the coefficient of determination. 
 

2. The powers used to transform variable y. 
 

3. The powers used to transform variable x. 
 

4. The powers used to transform variable z. 
 

5. The intercept values. 
 

6. The values for the regression coefficient of variable x. 
 

7. The values for the regression coefficient of variable z. 
 

Statement 
EXPORT BestMLR2(Data,lstSel,lstX,lstZ,lstY) 

BEGIN 

  LOCAL Tx,Tz,Ty,i,j,k; 

  LOCAL SelXCol,SelZCol,SelYCol; 

  LOCAL PowerX,PowerZ,PowerY;   

  LOCAL MatX,VectY,RegCoeff,MatRes; 

  LOCAL lstDim,NumRows,ResUpdated; 

  LOCAL Sum1,Sum2,Rsqr,YMean,Yhat; 

  LOCAL MaxRes,NumColRes; 

 

  // use default transformation list 

  // if lstX is an empty list 
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Statement 
  IF SIZE(lstX)==0 THEN 

    lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

   

  // use default transformation list 

  // if lstZ is an empty list 

  IF SIZE(lstZ)==0 THEN 

    lstZ:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

 

  // use default transformation list 

  // if lstY is an empty list 

  IF SIZE(lstY)==0 THEN 

    lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

  // Set the number of rows and columns in the results matrix 

  MaxRes:=20; 

  NumColRes:=7; 

  // get the variable selectors 

  SelXCol:=lstSel(1); 

  SelZCol:=lstSel(2); 

  SelYCol:=lstSel(3); 

  // get the number of rows in matrix Data 

  lstDim:=SIZE(Data); 

  NumRows:=lstDim(1); 

  // create the regression and results matrices 

  MatX:=MAKEMAT(1,NumRows,3); 

  VectY:=MAKEMAT(1,NumRows,1); 

  MatRes:=MAKEMAT(0,MaxRes,NumColRes); 

   

  // start the calculations 

 

  // process transformations for variable x 

  FOR Tx FROM 1 TO SIZE(lstX) DO 

   PowerX:=lstX(Tx); 

   

   // transform x 

   IF PowerX==0 THEN 

     FOR i FROM 1 TO NumRows DO 

       MatX(i,2):=LN(Data(i,SelXCol)); 

     END; 

    ELSE 

      FOR i FROM 1 TO NumRows DO 

        MatX(i,2):=Data(i,SelXCol)^PowerX; 

      END;   

    END;       
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Statement 
    // process transformations for variable z 

    FOR Tz FROM 1 TO SIZE(lstZ) DO 

      PowerZ:=lstZ(Tz); 

 

      // transform z 

      IF PowerZ==0 THEN 

        FOR i FROM 1 TO NumRows DO 

          MatX(i,3):=LN(Data(i,SelZCol)); 

        END; 

      ELSE 

        FOR i FROM 1 TO NumRows DO 

          MatX(i,3):=Data(i,SelZCol)^PowerZ; 

        END;   

      END;       

 

      // process transformations for variable y 

      FOR Ty FROM 1 TO SIZE(lstY) DO   

        PowerY:=lstY(Ty); 

       

        // transform y 

        IF PowerY==0 THEN 

          FOR i FROM 1 TO NumRows DO 

            VectY(i,1):=LN(Data(i,SelYCol)); 

          END; 

        ELSE 

          FOR i FROM 1 TO NumRows DO 

            VectY(i,1):=Data(i,SelYCol)^PowerY; 

          END;   

        END;      

  

        // calculate regression coefficients 

        RegCoeff:=LSQ(MatX,VectY); 

       

        // calculate ymean 

        Sum1:=0; 

        FOR i FROM 1 TO NumRows DO 

          Sum1:=Sum1+VectY(i,1); 

        END; 

        Ymean:=Sum1/NumRows; 

     

        // calculate the coefficient of determination 

        Sum1:=0; 

        Sum2:=0; 

        Yhat:=MatX*RegCoeff; 

        FOR i FROM 1 TO NumRows DO 

          Sum1:=Sum1+(Yhat(i,1)-Ymean)^2; 

          Sum2:=Sum2+(VectY(i,1)-Ymean)^2;       
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Statement 
        END; 

        Rsqr:=Sum1/Sum2;   

       

        // Rsqr is better than last entry 

        // in the results matrix? 

        IF Rsqr>MatRes(MaxRes,1) THEN 

          ResUpdated:=0; 

          // check which row to insert better  

          // regression results 

          FOR i FROM 1 TO MaxRes DO 

            // insert new results in row i? 

            IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN 

              // inserting inside the results matrix? 

              IF i<MaxRes THEN 

                // downward copy rows from MaxRes-1 to i 

                j:=MaxRes-1; 

                REPEAT 

                  FOR k FROM 1 TO NumColRes DO 

                    MatRes(j+1,k):=MatRes(j,k); 

                  END; 

                  j:=j-1; 

                UNTIL j<i; 

              END; 

              // insert better results in row i 

              MatRes(i,1):=Rsqr; 

              MatRes(i,2):=PowerY; 

              MatRes(i,3):=PowerX; 

              MatRes(i,4):=PowerZ; 

              FOR k FROM 1 TO 3 DO 

                MatRes(i,4+k):=RegCoeff(k,1); 

              END; 

              ResUpdated:=1; 

            END; 

          END; 

        END; 

      END; // FOR Ty 

     END; // FOR Tz 

    END; // FOR Tx 

   

  RETURN MatRes;  

   

END; 

Table 4 – The source code for function BestMLR2. 
 

The source code for function BestMLR2 uses three nested FOR loops to go through each transformation 

for the variables x, z, and y. Inside the nested loops, the function calculates the regression coefficients and 

the coefficient of determination. The next phase compares the newly calculated coefficient of 
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determination with similar values stored in the first column of the results matrix. If the newly calculated 

coefficient of determination is better than any value in the first column of the results matrix, the function 

inserts the data from the newly calculated regression into the results matrix. The function determines 

which row will store the new data. Then, the insertion process copies old data from the insertion row 

downward in the results matrix. The last row in the results matrix has its data overwritten by the ones in 

the row above it, or possibly by the newly calculated regression data. 
 

Let’s test the function BestMLR2 using the data in Table 5. The values in the table come from to the 

equation: 

 

y = 3 + 2 x
2
 + 20/z 

 
 

x z y 

1 1 25 

2 1 31 

3 2 31 

4 2 45 

5 4 58 

6 5 79 

7 2 111 

8 4 136 

9 5 169 

10 5 207 
 

Table 5 – Sample data used to test the function BestMLR2. 
 

Enter the values of Table 5 in the global matrix M1 and then execute the following command: 

 

BestMLR2(M1,{1,2,3},{},{},{})M2 
 

The above call for function BestMLR2 uses the default transformations for variables x, z, and y. Since 

the function uses 9 transformations (including the linear one) on each variable, the total number of 

regression models tested is 729. Figure 2 shows the contents of matrix M2 which stores the results of the 

best model selection. Table 6 shows the best five regression models. The best model is the same one used 

to create the data in Table 5. 
 

 
 

Fig.  2 – The values in matrix M2. 
 

 

Rsqr Power y Power z Power z Intercept Slope X Slope Z 

1.000000 1 2 -1 3 2 20 

 0.999893 1 2 -0.5 -7.371050 2.00917 29.73563 
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Rsqr Power y Power z Power z Intercept Slope X Slope Z 

0.999772 1 2 -2 8.661370 1.976927 14.78107 

0.999542 1 2 0 21.432295 2.011851 -10.008505 

0.999459 1 2 -3 10.607556 1.960595 12.795117 
 

Table 6 – The Best five regression models found by function BestMLR2. 
 

The appendix contains the listing for function BestML3 which obtains the best regression models for the 

independent variables x, z, and t, and the dependent variable y. This function performs tasks that are 

similar to functions BestLR and BetMLR2. 

The Best Polynomial Fit 
If you want to fit pairs of (x, y) data points with a polynomial, one of the first and common questions you 

may ask regards the best order of the polynomial. This section deals with how to obtain the best 

polynomial order in fitting (x, y) data points. The first issue in dealing with fitting polynomials that have 

different orders is how to compare the goodness of fit for regression models that have a different number 

of terms. Up till now, the functions I presented used the coefficient of determination to compare models 

that have the same number of terms. To compare models that have different number of terms we need to 

calculate the adjusted coefficient of determination
[2]

. The following equation calculates this statistic based 

on the coefficient of determination: 
 

R
2

adj = 1 – (1 – R
2
) (n – 1) / (n – k – 1) 

 

Where n is the number of data points and k is the number of independent variables that are in the 

regression model. 

 

Using the adjusted coefficient of determination seems like a good idea at first. The reality is that high-

order polynomials also generate high value for their adjusted coefficient of determination. Often, you get 

to a certain polynomial order where the gain in the adjusted coefficient of determination is small. You ask 

yourself if that small gain is justified! 

 

What would be nice is find a different statistic that balances the following aspects of goodness of fit: 
 

 Reward the regression models that generate smaller values for the sum of squared errors. 

 Penalize the regression models for using more independent variables or terms. 

 

The Akaike information criterion
[1]

 (AIC) is one of the new goodness-of-fit statistics that follow the above 

two rules. The corrected AIC statistic, AICC, is a refined version that I use in this article. To calculate the 

AICC I use the following equation: 
 

AICC =     (∑ ( ̂     )
 
   

 )             ))       )  
 

Where n is the number of observations,  ̂  is the projected value of y,    is the observed value of y (or its 

transformed value), and k is the polynomial order plus 1 (that is, the total number of regression 

coefficients, including the constant term). What kind of values for the AICC statistics are we looking for? 

The smallest value of AICC picks the best the regression model. The AICC statistic works better than the 

adjusted coefficient of determination with polynomials. The AICC is able to penalize higher order 

polynomials if they fail to significantly reduce the sum of the errors squared. The AICC does not justify a 

very small increase in the coefficient of determination in a higher order polynomial fit. 
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Table 7 presents the source code for the BestPolyReg function. This function has the following 

parameters: 
 

 The parameter Data is the source data matrix that contains the values for variables x and y. 

 The parameter SelXCol selects the column in matrix Data that contains the values for variable x.  

 The parameter SelYCol selects the column in matrix Data that contains the values for variable y.  

 The parameters MinOrder and MaxOrder define the range of polynomial orders to test. 
 

The function returns the following list of results for the best polynomial fit: 
 

 The polynomial order. 

 The coefficient of determination. 

 The adjusted coefficient of determination. 

 The value for the AICC statistic. 

 The vector column containing the regression coefficients. 
 

During the calculation phase, the function also displays the values for the polynomial order, sum of 

squared errors, and AICC statistic for all the polynomial order. This output should give you an idea of how 

the different polynomial order compare with each other. When you press the [Home] button, the 

calculator switches to the Home display and shows you the list of final results. 
 

Statment 
EXPORT BestPolyReg(Data,SelXCol,SelYCol,MinOrder,MaxOrder) 

BEGIN 

  LOCAL i,k,x,y,Order; 

  LOCAL MatX,VectY; 

  LOCAL lstDim,NumRows; 

  LOCAL Sum1,Sum2,Sum3,AICc,BestAICc; 

  LOCAL Rsqr,RsqrAdj,YMean,Yhat,RegCoeff; 

  LOCAL BestOrder,BestRsqr,BestRsqrAdj,BestRegCoeff; 

 

  lstDim:=SIZE(Data); 

  NumRows:=lstDim(1); 

   

  IF MinOrder<1 THEN 

    MinOrder:=1; 

  END; 

   

  // initialize best regression data 

  BestOrder=0; 

  BestRsqr:=0; 

  BestRsqrAdj=0; 

  BestAICc:=1E499; 

  // initialize vector y 

  VectY:=MAKEMAT(1,NumRows,1); 

   

  // calculate ymean … needs to be done once! 

  Sum1:=0; 
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Statment 
  FOR i FROM 1 TO NumRows DO 

    y:=Data(i,SelYCol); 

    VectY(i,1):=y; 

    Sum1:=Sum1+y; 

  END; 

  YMean:=Sum1/NumRows; 

 

  // calculate sum of y – ymean squared 

  Sum2:=0; 

  FOR i FROM 1 TO NumRows DO 

    y:=Data(i,SelYCol); 

    Sum2:=Sum2+(y-YMean)^2; 

  END; 

   

  // iterate for the specified range of polynomial orders 

  FOR Order FROM MinOrder TO MaxOrder DO 

    // (re)create the matrix MatX 

    MatX:=MAKEMAT(1,NumRows,1+Order); 

    // fill the columns to to Order+1 with x^power values 

    FOR i FROM 1 TO NumRows DO 

      x:=Data(i,SelXCol); 

      FOR k FROM 1 TO Order DO 

        MatX(i,k+1):=x^k; 

      END; 

    END;   

 

    // calculate regression coefficients 

    RegCoeff:=LSQ(MatX,VectY); 

    

    // calculate the coefficient of determination 

    Sum1:=0; 

    Sum3:=0; 

    Yhat:=MatX*RegCoeff; 

    FOR i FROM 1 TO NumRows DO 

      Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 

      Sum3:=Sum3+(VectY(i,1)-Yhat(i,1))^2; 

    END; 

    Rsqr:=Sum1/Sum2;   

 

    // calculate the adjusted coefficient of determination 

    RsqrAdj:=1-(1-Rsqr)*(NumRows-1)/(NumRows-Order-1); 

 

    k:=Order+1; 

    // if Sum3 is 0 then adjust it to a small value 

    // to avoid getting a LN(0) error 

    IF Sum3==0 THEN 

      Sum3:=1E-499; 
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Statment 
    END; 

    // calculate AICc statistic 

    AICc:=NumRows*LN(Sum3/NumRows)+2*k+(2*k*(k+1))/(NumRows-k-1); 

    // display intermediate results 

    PRINT("Order="+Order+", AICc="+AICc+", Sum3="+Sum3); 

    // found a better fit? 

    IF AICc<BestAICc THEN 

      // update best regression data 

      BestOrder:=Order; 

      BestRsqr:=Rsqr; 

      BestRsqrAdj:=RsqrAdj; 

      BestAICc:=AICc; 

      BestRegCoeff:=RegCoeff; 

    END; 

  END; 

   

  RETURN {BestOrder,BestRsqr,BestRsqrAdj,BestAICc,BestRegCoeff}; 

END; 
 

Table 7 – The source code for function BestPolyReg 
 

Let’s test the function BestPolyReg. Table 8 shows sample (x,y) data. Enter the data in the global matrix 

M2. 

x y 

1 1 

2 5 

3 10 

4 15 

5 25 

6 35 

7 50 

8 65 

9 80 

10 100 
 

Table 8 – The sample data used to test function BestPolyReg. 
 

Invoke the function BestPolyReg by using the following command: 
 

BestPolyReg(M2,1,2,1,5) 
 

The above command specifies matrix M2 as the data source matrix. The second and third arguments 

specify that variable x and y are in columns 1 and 2, respectively, of matrix M2. The last two arguments 

in the call to function BestPolyReg specify that the polynomial orders examined are in the range of 1 to 5. 
 

Figures 3 and 4 show the intermediate output of the function using the PRINT statement. Figure 3 shows 

the upper portion of the PRINT statement output. Figure 4 shows the lower portion of the PRINT 

statement output. Notice that the polynomial order of 2 has the smallest AICC statistic. At the same time, 

the sum of errors squared keeps decreasing with the increasing polynomial order. Figure 4 also confirms 
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this trend. The same figure shows that the higher order polynomials failed to obtain the lowest AICC 

statistics. 
 

 
 

Fig.  3 – The upper portion of the PRINT statements output. 
 

 
 

Fig.  4 – The lower portion of the PRINT statements output. 
 

Figures 5 and 6 show the left and right sides of the list of output values. The output indicates that the 

quadratic polynomial is the best fit for the data in Table 8. The values for the coefficient of determination 

and adjusted coefficient of determination are 0.999364666385 and 0.999183142495, respectively. The 

AICC statistic for the best polynomial fit is 5.88. The best regression polynomial is: 
 

y = 0.56666666 – 0.137878789 x + 1.007575758 x
2 

 

Note that values of y in Table 5 are based on the quadratic polynomial y = x
2
 with added errors. The 

function BestPolyReg has succeeded in identifying the quadratic polynomial as the one providing the best 

regression model. 

 

 

 
 

Fig.  5 – The left side of the output. 
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Fig.  6 – The right side of the output. 

Observations and Conclusions 
This article presented HP 39gII functions that perform bets linearized regression between two, three, and 

four variables. These functions go through a long list of linearized regression models and find the nest 

models, sorting the results using the values of the coefficient of determination. The article also offered a 

function that finds the best polynomial that fits (x, y) data points. The article demonstrated that the 

modified Akaike information criterion is very suitable to select the best polynomial.  
 

The next article discusses least-squares relative error regression. The article will introduce you to the math 

behind relative error regression. Moreover, it will present several HP 39gII functions that apply 

calculations for this type of regression to general linear, polynomial, and linearized models. 

Appendix 
Here is the listing for function BestML3: 
 

Statement 
EXPORT BestMLR3(Data,lstSel,lstX,lstZ,lstT,lstY) 

BEGIN 

  LOCAL Tx,Tz,Ty,Tt,i,j,k; 

  LOCAL SelXCol,SelZCol,SelTCol,SelYCol; 

  LOCAL PowerX,PowerZ,PowerT,PowerY;  

  LOCAL MatX,VectY,RegCoeff,MatRes; 

  LOCAL lstDim,NumRows,ResUpdated; 

  LOCAL Sum1,Sum2,Rsqr,YMean,Yhat; 

  LOCAL MaxRes,NumColRes; 

 

  // use default transformation list 

  // if lstX is an empty list 

  IF SIZE(lstX)==0 THEN 

    lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

   

  // use default transformation list 

  // if lstZ is an empty list 

  IF SIZE(lstZ)==0 THEN 

    lstZ:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 
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Statement 
  // use default transformation list 

  // if lstT is an empty list 

  IF SIZE(lstT)==0 THEN 

    lstT:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

 

  // use default transformation list 

  // if lstY is an empty list 

  IF SIZE(lstY)==0 THEN 

    lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 

  END; 

   

  MaxRes:=20; 

  NumColRes:=9; 

  // get the variable selectors 

  SelXCol:=lstSel(1); 

  SelZCol:=lstSel(2); 

  SelTCol:=lstSel(3); 

  SelYCol:=lstSel(4); 

  // get the number of rows in matrix Data 

  lstDim:=SIZE(Data); 

  NumRows:=lstDim(1); 

  // create the regression and results matrices 

  MatX:=MAKEMAT(1,NumRows,3); 

  VectY:=MAKEMAT(1,NumRows,1); 

  MatRes:=MAKEMAT(0,MaxRes,NumColRes); 

   

  // start the calculations 

 

  // process transformations for variable x 

  FOR Tx FROM 1 TO SIZE(lstX) DO 

   PowerX:=lstX(Tx); 

    

   // transform x 

   IF PowerX==0 THEN 

     FOR i FROM 1 TO NumRows DO 

       MatX(i,2):=LN(Data(i,SelXCol)); 

     END; 

   ELSE 

     FOR i FROM 1 TO NumRows DO 

       MatX(i,2):=Data(i,SelXCol)^PowerX; 

     END;   

   END;       

 

   // process transformations for variable z 

   FOR Tz FROM 1 TO SIZE(lstZ) DO 

    PowerZ:=lstZ(Tz); 
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Statement 
     

    // transform z 

    IF PowerZ==0 THEN 

      FOR i FROM 1 TO NumRows DO 

        MatX(i,3):=LN(Data(i,SelZCol)); 

      END; 

    ELSE 

      FOR i FROM 1 TO NumRows DO 

        MatX(i,3):=Data(i,SelZCol)^PowerZ; 

      END;   

    END;       

 

    // process transformations for variable t 

    FOR Tt FROM 1 TO SIZE(lstT) DO   

     PowerT:=lstT(Tt); 

      

     // transform t 

     IF PowerT==0 THEN 

       FOR i FROM 1 TO NumRows DO 

         MatX(i,4):=LN(Data(i,SelTCol)); 

       END; 

     ELSE 

       FOR i FROM 1 TO NumRows DO 

         MatX(i,4):=Data(i,SelTCol)^PowerT; 

       END;   

     END;       

 

     // process transformations for variable y 

     FOR Ty FROM 1 TO SIZE(lstY) DO   

      PowerY:=lstY(Ty); 

 

      // transform y 

      IF PowerY==0 THEN 

        FOR i FROM 1 TO NumRows DO 

          VectY(i,1):=LN(Data(i,SelYCol)); 

        END; 

      ELSE 

        FOR i FROM 1 TO NumRows DO 

          VectY(i,1):=Data(i,SelYCol)^PowerY; 

        END;   

      END;       

       

      // calculate regression coefficients 

      RegCoeff:=LSQ(MatX,VectY); 

       

      // calculate ymean 

      Sum1:=0; 
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Statement 
      FOR i FROM 1 TO NumRows DO 

        Sum1:=Sum1+VectY(i,1); 

      END; 

      YMean:=Sum1/NumRows; 

     

      // calculate the coefficient of determination 

      Sum1:=0; 

      Sum2:=0; 

      Yhat:=MatX*RegCoeff; 

      FOR i FROM 1 TO NumRows DO 

        Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 

        Sum2:=Sum2+(VectY(i,1)-YMean)^2;       

      END; 

      Rsqr:=Sum1/Sum2;   

       

      // Rsqr is better than last entry 

      // in the results matrix? 

      IF Rsqr>MatRes(MaxRes,1) THEN 

        ResUpdated:=0; 

        // check which row to insert better  

        // regression results 

        FOR i FROM 1 TO MaxRes DO 

          // insert new results in row i? 

          IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN 

            // inserting inside the results matrix? 

            IF i<MaxRes THEN 

              // downward copy rows from MaxRes-1 to i 

              j:=MaxRes-1; 

              REPEAT 

                FOR k FROM 1 TO NumColRes DO 

                  MatRes(j+1,k):=MatRes(j,k); 

                END; 

                j:=j-1; 

              UNTIL j<i; 

            END;  

            // insert better results in row i 

            MatRes(i,1):=Rsqr; 

            MatRes(i,2):=PowerY; 

            MatRes(i,3):=PowerX; 

            MatRes(i,4):=PowerZ; 

            MatRes(i,5):=PowerT; 

            FOR k FROM 1 TO 4 DO 

              MatRes(i,5+k):=RegCoeff(k,1); 

            END; 

            ResUpdated:=1; 

          END; 

        END; 
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Statement 
      END;  

     END; // FOR Ty    

    END; // FOR Tt 

   END; // FOR Tz 

  END; // FOR Tx 

   

  RETURN MatRes; 

END; 
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