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HP 39gII Regression: Part II 

Linearized Regression 
Namir Shammas 

 

Introduction 
This article shows you how to perform linearized regression between two and three variables. In addition, 

it presents functions that will help you perform regression analysis calculations on a wide variety of 

custom linearized equations. These functions allow you to select variables from matrices and apply 

temporary transformations that shift, scale, and raise to powers the values of these variables. Thus, these 

functions deliver very flexible transformation schemes. 
 

 In this series of articles, I use the term regression model to mean the equation that is used in the 

regression calculations to describe the relationship between a dependent variable and one or more 

independent variables. 

Linearized Regression for Two Variables 
When fitting equations to data you often need to transform the original equations into a linear form. For 

example, consider the following equation: 
 

y = a x
b
 

 

The above form can be linearized by taking the natural logarithm of both sides to yield: 
 

ln(y) = ln(a) + b ln(x) 
 

Thus ln(y) and ln(x) have a linear relation. The intercept of that linear relation is ln(a) and the slope is b. 

Thus to calculate the value of a, you need to calculate e
intercept

. 
 

Consider a second example: 
 

y = a x / (b + x) 
 

Again, you can linearize the above nonlinear equation by taking the reciprocal of both sides and obtaining 

the following linear form: 
 

1/y = 1/a + (b/a) / x 
 

In the above case, 1/y and 1/x have a linear relation. The intercept of that linear relation is 1/a and the 

slope is b/a. Thus to obtain the value of a, you need to calculate the reciprocal of the intercept. To 

calculate the value of b you need to divide the slope by the intercept. 
 

Linearizing relations allow you to use linear or multiple-linear regression to calculate the regression 

coefficients. Keep in mind that the regression coefficients are transformed versions of the coefficients in 

the original nonlinear equations. Thus, you will need to perform a few extra calculations to obtain the 

coefficients of the nonlinear equations. 

 

Table 1 presents the function LinearizedReg. This function supports linearized regression for two 

variables, x and y.  The function has the following parameters: 
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 The parameter DSMat represents the matrix that has the x and y data. 

 The parameter lstSelXData is a list that specifies data for variable x. The list contains an integer 

that selects the DSMat column storing values for variable x, and values to shift the values of x, an 

a scale value to multiply the values of x, and the power used for variable x. 

 The parameter lstSelYData is a list that specifies data for variable y. The list contains an integer 

that selects the DSMat column storing values for variable y, and a value to shift the values of y, an 

a scale value to multiply the values of y, and the power used for variable y. 

 

Both parameters lstSelXData and lstSelYData are lists that have similar contents. The first list element is 

a column index that selects a variable in the DSMat matrix. The second and third list elements are the 

shift and scale values, respectively, used with each of the x and y values. The shift and scale 

transformations use the following equation: 
 

Intermdiate_transformed_variable = scale_value * variable + shift_value 
 

The last list element is the power value used with the above (intermediate) transformed values. The 

argument for this power value can be a negative number, zero, or a positive number. You can use integers 

and non-integer powers. When the argument is zero, the function LinearizedReg treats this argument as a 

special case and applies the natural logarithm to the result of the scaled and shifted values. When the 

argument is not zero, the function applies that argument as the power of the scaled and shifted values. 

Thus, the final transformation for each variable is: 
 

Final_transformed_variable = (scale_value * variable + shift_value)^Power 
 

When the value of Power is not zero. Otherwise, the final transformation is: 
 

Final_transformed_variable = ln(scale_value * variable + shift_value) 
 

This transformation scheme allows you to cover a wide range of transformations without taxing the size 

of the source code. For example you can generate linear, squared, cubed, square-root, cube root 

transformations and all of their reciprocals! If the transformations generate an error, the function 

execution will stop. Experience shows that typical values for the scale and shift are 1 and 0, respectively. 

However, the ability to shift and scale the original observed values, using values other than 1 and 0, may 

well prove to be valuable when you need them! 

 

Let me give you a few examples for the list for parameter lstSelXData. You can use a similar approach 

with the lstSelYData parameter. If you pass the argument {2,0,1,1} to parameter lstSelXData, you tell 

function LinearizedReg that the source values for variable x are in the second column of the data source 

matrix DSMat. You also tell the function that variable x should be transformed using: 

 

x = (1*x + 0)^1 

 

Which basically tells the function LinearizedReg to use the values of variable x as they appear in the 

source data matrix. If you pass the argument {3,1,1.1,0.5} you tell function LinearizedReg that the 

source values for variable x are in the third  column of the data source matrix DSMat. You also tell the 

function that variable x should be transformed using: 

 

x = (1.1*x + 1)^0.5 
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If you pass the argument {3,2,3,–1} you tell function LinearizedReg that the source values for variable x 

are in the third  column of the data source matrix DSMat. You also tell the function that variable x should 

be transformed using: 

 

x = (3*x + 2)^(–1) = 1/(3*x+2) 
 

The function LinearizedReg returns a list that contains the value of the coefficient of determination and a 

column matrix containing the regression coefficients. I recommend that you store the results of calling 

function LinearizedReg in a list so that you can further examine and/or use the results. 
 

Statement 
EXPORT LinearizedReg(DSMat,lstSelXData,lstSelYData) 

BEGIN 

  LOCAL i,x,y; 

  LOCAL lstDimX,NumRowsX; 

  LOCAL MatX,VectY,RegCoeff; 

  LOCAL SelXCol,ShiftX,ScaleX,PowerX; 

  LOCAL SelYCol,ShiftY,ScaleY,PowerY; 

  LOCAL Sum1,Sum2,YMean,Yhat,Rsqr; 

   

  lstDimX:=SIZE(DSMat); 

  NumRowsX:=lstDimX(1); 

 

  // get parameters for x 

  SelXCol:=lstSelXData(1); 

  ShiftX:=lstSelXData(2); 

  ScaleX:=lstSelXData(3); 

  PowerX:=lstSelXData(4); 

   

  // get parameters for y 

  SelYCol:=lstSelYData(1); 

  ShiftY:=lstSelYData(2); 

  ScaleY:=lstSelYData(3); 

  PowerY:=lstSelYData(4); 

   

  // create regression matrix and vector 

  MatX:=MAKEMAT(1,NumRowsX,2); 

  VectY:=MAKEMAT(1,NumRowsX,1); 

  // populate matrix and vector 

  FOR i FROM 1 TO NumRowsX DO 

    x:=ScaleX*DSMat(i,SelXCol)+ShiftX; 

    y:=ScaleY*DSMat(i,SelYCol)+ShiftY; 

 

    // transform x 

    IF PowerX==0 THEN 

      x:=LN(x); 

    ELSE 

      x:=x^PowerX; 
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Statement 
    END; 

 

    // transform y 

    IF PowerY==0 THEN 

      y:=LN(y); 

    ELSE 

      y:=y^PowerY; 

    END; 

   

    MatX(i,2):=x; 

    VectY(i,1):=y; 

  END; 

  // calculate coefficient of determination 

  RegCoeff:=LSQ(MatX,VectY); 

   

  // calculate ymean 

  Sum1:=0; 

  FOR i FROM 1 TO NumRowsX DO 

    y:=VectY(i,1); 

    Sum1:=Sum1+y;   

  END; 

  YMean:=Sum1/NumRowsX; 

 

  // calculate coefficient of determination 

  Sum1:=0; 

  Sum2:=0; 

  Yhat:=MatX*RegCoeff; 

  FOR i FROM 1 TO NumRowsX DO 

    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 

    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 

  END; 

  Rsqr:=Sum1/Sum2;   

  RETURN {Rsqr,RegCoeff}; 

END; 
 

Table 1 – The function LinearizedReg. 
 

Let’s use the function LinearizedReg to fit the data in Table 2. Enter the data in matrix M1. 
 

x y 

1 2 

2 14 

3 54 

4 120 

5 237 

6 440 

7 890 

8 1000 
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x y 

9 1500 

10 2000 
 

Table 2 – Sample data for testing function LinearizedReg. 
 

The nonlinear regression model I want to use is: 
 

y = a*(2*x+1)
b
 

 

The linearized form of the above equation is: 
 

ln(y) = ln(a) + b*ln(2*x+1) 
 

Thus ln(y) and ln(2*x+1) have a linear relation. To obtain the regression coefficients and coefficient of 

determination for data in Table 2, execute the following command: 
 

LinearizedReg(M1,{1,1,2,0},{2,0,1,0})L1 
 

The first argument of calling function LinearizedReg is the matrix M1 which contains the (x, y) data 

points. The second argument is the list {1,1,2,0}. This list tells the function LinearizedReg that values for 

variable x are in the first column of matrix M1. The remaining list elements tell the function that the 

transformed values for variable x are calculated using: 
 

x = ln(2*x+1) 
 

The third argument is the list {2, 0,1,0}. This list tells the function LinearizedReg that values for variable 

y are in the second column of matrix M1. The remaining list elements tell the function that the 

transformed values for variable y are calculated using: 
 

y = ln(1*y + 0) = ln(y) 
 

Figure 1 shows the output of calling function LinearizedReg. 
 

 
 

Fig.  1 – The results of executing function LinearizedReg. 
 

The results show that R
2
 is 0.996932488 and the fitted polynomial is: 

 

ln(y) = –3.080667377 + 3.55904655 ln(2*x+1)
 

 

The value of R
2
 indicates that the polynomial explains about 99.7% of the variation in the values of y. The 

values of the regression coefficients a and b are 0.045928595 and 3.55904655, respectively. 
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Linearized Regression for Three Variables 
This section offers the function LinerizedReg3 that performs linearized regression between two 

independent variables, x and z, and the dependent variable y. Function LinerizedReg3 is very similar to 

function LinearizedReg and has the following parameters: 
 

 The parameter DSMat represents the matrix that has the x, z, and y data. 

 The parameter lstSelXData is a list that specifies data for variable x. The list contains an integer 

that selects the DSMat column storing values for variable x, an value to shift the values of x, an 

scale value to multiply the values of x, and the power used for variable x. 

 The parameter lstSelZData is a list that specifies data for variable z. The list contains an integer 

that selects the DSMat column storing values for variable z, an value to shift the values of z, an 

scale value to multiply the values of z, and the power used for variable z. 

 The parameter lstSelYData is a list that specifies data for variable y. The list contains an integer 

that selects the DSMat column storing values for variable y, an value to shift the values of y, an 

scale value to multiply the values of y, and the power used for variable y. 
 

You can regard function LinerizedReg3 as the big brother of function LinearizedReg. Table 3 shows the 

source code for function LinearizedReg3. 
 

Statement 
EXPORT LinearizedReg3(DSMat,lstSelXData,lstSelZData,lstSelYData) 

BEGIN 

  LOCAL i,x,y,z; 

  LOCAL lstDimX,NumRowsX; 

  LOCAL MatX,VectY,RegCoeff; 

  LOCAL SelXCol,ShiftX,ScaleX,PowerX; 

  LOCAL SelYCol,ShiftY,ScaleY,PowerY; 

  LOCAL SelZCol,ShiftZ,ScaleZ,PowerZ; 

  LOCAL Sum1,Sum2,YMean,Yhat,Rsqr; 

   

  lstDimX:=SIZE(DSMat); 

  NumRowsX:=lstDimX(1); 

 

  SelXCol:=lstSelXData(1); 

  ShiftX:=lstSelXData(2); 

  ScaleX:=lstSelXData(3); 

  PowerX:=lstSelXData(4); 

   

  // get parameters for z 

  SelZCol:=lstSelZData(1); 

  ShiftZ:=lstSelZData(2); 

  ScaleZ:=lstSelZData(3); 

  PowerZ:=lstSelZData(4); 

   

  // get parameters for y 

  SelYCol:=lstSelYData(1); 

  ShiftY:=lstSelYData(2); 

  ScaleY:=lstSelYData(3); 

  PowerY:=lstSelYData(4); 
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Statement 
   

  // create regression matrix and vector   

  MatX:=MAKEMAT(1,NumRowsX,3); 

  VectY:=MAKEMAT(1,NumRowsX,1); 

  // populate matrix and vector 

  FOR i FROM 1 TO NumRowsX DO 

    x:=ScaleX*DSMat(i,SelXCol)+ShiftX; 

    y:=ScaleY*DSMat(i,SelYCol)+ShiftY; 

    z:=ScaleZ*DSMat(i,SelZCol)+ShiftZ; 

     

    // transform x 

    IF PowerX==0 THEN 

      x:=LN(x); 

    ELSE 

      x:=x^PowerX; 

    END; 

     

    // transform z 

    IF PowerZ==0 THEN 

      z:=LN(z); 

    ELSE 

      z:=z^PowerZ; 

    END; 

     

    // transform y 

    IF PowerY==0 THEN 

      y:=LN(y); 

    ELSE 

      y:=y^PowerY; 

    END; 

     

    MatX(i,2):=x; 

    MatX(i,3):=z; 

    VectY(i,1):=y; 

  END; 

  // calculate regression coefficients  

  RegCoeff:=LSQ(MatX,VectY); 

   

  // calculate ymean 

  Sum1:=0; 

  FOR i FROM 1 TO NumRowsX DO 

    y:=VectY(i,1); 

    Sum1:=Sum1+y;   

  END; 

  YMean:=Sum1/NumRowsX; 

 

  // calculate coefficient of determination 
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Statement 
  Sum1:=0; 

  Sum2:=0; 

  Yhat:=MatX*RegCoeff; 

  FOR i FROM 1 TO NumRowsX DO 

    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 

    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 

  END; 

  Rsqr:=Sum1/Sum2;   

  RETURN {Rsqr,RegCoeff}; 

END; 
 

Table 3 – The function LinearizedReg3. 
 

Let’s use the function LinearizedReg3 to fit the data in Table 4. Enter the data in matrix M1. 
 

x z y 

1 1 1.6 

2 1 1.2 

3 2 –0.7 

4 2 –1.9 

5 3 –1.9 

6 3 –3.4 

7 4 –3.0 

8 4 –4.0 

9 5 –2.8 

10 5 –3.5 
 

Table 4 – Sample data for testing function LinearizedReg3. 
 

The regression model I want to use is: 
 

y = a + b*ln(1.5*x+2) + c/(2*z – 1) 
 

Thus ln(y) has a linear relation with ln(1.5*x+2) and 1/(2*z – 1). To obtain the regression coefficients and 

coefficient of determination for data in Table 1, execute the following command: 
 

LinearizedReg3(M1,{1,2,1.5,0},{2, –1,2, –1},{3,0,1,1})L1 
 

The first argument of calling function LinearizedReg3 is the matrix M1 which contains the (x,z,y) data 

points. The second argument is the list {1,2,1.5,0}. This list tells the function LinearizedReg3 that values 

for variable x are in the first column of matrix M1. The remaining list elements tell the function that the 

transformed values for variable x are calculated using: 
 

x = ln(1.5*x+2) 
 

The third argument is the list {2, –1,2, –1}. This list tells the function LinearizedReg3 that values for 

variable z are in the second column of matrix M1. The remaining list elements tell the function that the 

transformed values for variable z are calculated using: 
 

z = 1/(2*z – 1) 
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The fourth argument is the list {3,0,1,1}. This list tells the function LinearizedReg3 that values for 

variable y are in the third column of matrix M1. The remaining list elements tell the function that the 

transformed values for variable: 
 

y = 1*y + 0 
 

That is, to take the values of y from the third column of matrix M1. 

 

Figure 2 shows the output of calling function LinearizedReg3. 
 

 

 
 

Fig.  2 – The results of executing function LinearizedReg. 
 

The results show that R
2
 is 0.932531686 and the fitted polynomial is: 

 

y = 1.949488869 – 2.100307854 ln(1.5*x+1) + 2.443637745 /(2*z – 1)
 

 

The value of R
2
 indicates that the polynomial explains about 93 % of the variation in the values of y. The 

values of the regression coefficients a, b, and c are 1.949488869, – 2.100307854 , and 2.443637745, 

respectively. 

Regression Beyond Three Variables 
What about fitting regression models beyond a total of three variables? I could present the function, 

LinearizedReg4 to support regression with four variables. It would look like a version of functions 

LinearizedReg and LinearizedReg3 on steroids!  
 

I decided to take a different approach and present you with a more powerful function. This function can 

handle elaborate regression models such as: 

 

y = a0 + a1 (2x+4)
2
 + a2 (4z+3)

3
 + a3 ln(t+1) + a4 (u+3)

0.5
 + a5 (v+2) 

y = a0 + a1 (2x+4)
2
 + a2 (3x+3)/(4x+3)

3
  

y = a0 + a1 (2x+4)
2
 + a2 (4z+3)

3
 + a3 ln(t+1) /(3z+7) + a4 (x+1)(3z-5)/(t=7) 

 

The above examples hint at the following features of the next function: 
 

 The ability to handle more than three independent variables. 

 The ability to build regression models with terms that have multiplicative factors. The key word 

here is multiplicative. These factors have transformations of the same or different variables. 
 

Table 5 contains the source code for function MLRX. This powerful and versatile function has the 

following parameters: 
 

 The parameter DSMat specifies the data source matrix containing the dependent and independent 

variables. 
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 The parameter MaxTerms designates the number of terms in the regression models (not counting 

the constant term). 

 The parameter TrnfMat specifies the name of the transformations matrix that contains the values 

used to select, transform, and store variables in the internal regression matrix X (stored in variable 

MatX) and vector y (stored in variable VectY). 
 

The parameter TrnfMat is a matrix with six columns. Each row groups the data to select, transform, and 

store a specific regression variable. The columns of the transformations matrix are: 
 

 Column 1 is the index that selects a regression variable from matrix DSMat. You can select the 

dependent variable or an independent variable. 

 Column 2 specifies the scale value used to multiply the values of the selected variable. 

 Column 3 specifies the shift value used to add to the scaled values of the variable. 

 Column 4 specifies the power value used to raise the scaled and shifted values. If the value in this 

column is zero, the function MLRX calculates the natural logarithm of the scaled and shifted 

values. 

 Column 5 is a numeric switch that tells function MLRX where to store the results of the 

transformed values. When the value of this column is positive, the function store the transformed 

values in MatX. Otherwise, it stores the transformed values in VectY. 

 Column 6 specifies the column index of variable MatX where the transformed values are stored. 

The values of this column are relevant only when the corresponding values in Column 5 are 

positive. 
 

You can think of parameter TrnfMat as numerically-coded meta-program (or instruction set) for function 

MLRX. This meta-program tells the function which variable to select, what transformations to apply, and 

where to store the transformation results. Each row in parameter TrnfMat represents a meta-program 

instruction. The totality of these instructions helps the function MLRX to build the data in the variables 

MatX and VectY. 
 

The function MLX returns the coefficient of determination and the vector matrix of the regression 

coefficients. If a value in column 6 of the transformations matrix is greater than the maximum number of 

terms, plus 1, the function MLRX displays an error message box and returns the text “ERROR”. 
 

Statement 
EXPORT MLRX(DSMat,MaxTerms,TrnfMat) 

BEGIN 

  LOCAL i,j,x,Rsqr; 

  LOCAL lstDimX,lstDimT,NumRowsX,NumColsX; 

  LOCAL MatX,VectY,RegCoeff; 

  LOCAL SelXCol,Shift,Scale,PowerX; 

  LOCAL InsMat,InsCol,NumTrnf; 

  LOCAL YMean,Sum1,Sum2,Yhat; 

 

  // calculate the number of data points 

  lstDimX:=SIZE(DSMat); 

  NumRowsX:=lstDimX(1); 

  NumColsX:=lstDimX(2); 

   

  // get the number of transformations 
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Statement 
  lstDimT:=SIZE(TrnfMat);  

  NumTrnf:=lstDimT(1); 

   

  // create the data matrices 

  MatX:=MAKEMAT(1,NumRowsX,MaxTerms+1); 

  VectY:=MAKEMAT(1,NumRowsX,1); 

 

  FOR j FROM 1 TO NumTrnf DO 

    // get the transformation/insertion parameters 

    SelXCol:=TrnfMat[j,1]; 

    Scale:=TrnfMat[j,2]; 

    Shift:=TrnfMat[j,3]; 

    PowerX:=TrnfMat[j,4]; 

    InsMat:=TrnfMat[j,5]; 

    InsCol:=TrnfMat[j,6]; 

     

    // process all rows for current variable selection, 

    // transformation, and insertion 

    FOR i FROM 1 TO NumRowsX DO 

      // get x 

      x:=DSMat[i,SelXCol]; 

      // transform x by scaling and shifting 

      x:=Scale*x+Shift; 

      // raise x to power or take ln() value 

      IF PowerX==0 THEN 

        x:=LN(x); 

      ELSE 

        x:=x^PowerX; 

      END; 

       

      // insert in targeted matrix 

      IF InsMat>0 THEN 

        // insert in matrix of independent variables 

        IF InsCol>(MaxTerms+1) THEN 

          // display an error message 

          MSGBOX("Column "+InsCol+" is outside the range of columns"); 

          RETURN "ERROR"; 

        END; 

        MatX[i,InsCol]:=MatX[i,InsCol]*x; 

      ELSE 

        // insert in vector of dependent variable 

        VectY[i,1]:=VectY[i,1]*x; 

      END; 

    END;   

  END; 

 

  // calculate the regression coefficients 
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Statement 
  RegCoeff:=LSQ(MatX,VectY); 

   

  // calculate ymean 

  Sum1:=0; 

  FOR i FROM 1 TO NumRowsX DO 

    Sum1:=Sum1+VectY(i,1);   

  END; 

  YMean:=Sum1/NumRowsX; 

 

  // calculate the correlation coefficient 

  Sum1:=0; 

  Sum2:=0; 

  Yhat:=MatX*RegCoeff; 

  FOR i FROM 1 TO NumRowsX DO 

    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 

    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 

  END; 

  Rsqr:=Sum1/Sum2;   

  // return the results 

  RETURN {Rsqr,RegCoeff}; 

END; 
 

Table 5 – The source code for function MLRX. 
 

Let’s use function MLRX to fit data for with the regression model: 
 

ln(y) = a + b/(2x + 1) + c ln(3z + 5)  + d (5t – 2)
2
 

 

Table 6 shows the data that I will use to calculate the regression coefficients for the above equation.  Store 

the data of Table 6 in matrix M1. Table 7 shows the transformations matrix. The matrix rows give 

function MLRX the instructions to build the data in the variables MatX and VectY. Store the data of 

Table 7 in matrix M2. 
 

x z t y 

1 1 7 3000 

2 3 6 250 

3 2 3 500 

4 2 1 50 

5 3 2 200 

6 3 5 1500 

7 4 8 4500 

8 4 9 5500 

9 5 4 1000 

10 5 2 200 
 

Table 6 – Sample data for testing function MLRX. 
 

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column 

4 1 0 0 0 0 

1 2 1 –1 1 2 
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Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column 

2 3 5 0 1 3 

3 5 –2 2 1 4 
 

Table 7 – Transformations matrix. 
 

Calculate the coefficient of determination and regression coefficients by executing the following 

command: 
 

MLRX(M1,3,M3)L1 
 

Figure 3 shows the results of calling function MLRX. 
 

 
 

Fig.  3 – The results of executing functions InsertVar and MLR2. 
 

The coefficient of determination is 0.705686. The fitted model is: 
 

ln(y) = 5.064781119 – 0.482455938/(2x + 1) + 0.095869673 ln(3*z + 5)  + 0.002036764 (5t – 2)
2
 

 

The above model explains about 70.5 % of the variation in y.  

Further Exploring the Power of Function MLRX 
The last section showed you how to work with a custom multi-variable linearized regression. The 

example I gave you tested fitting the following empirical equation: 
 

ln(y) = a + b/(2x + 1) + c ln(3z + 5)  + d (5t – 2)
2
 

 

The above equation has several terms, each with a single variable. You may recall that the introduction 

for function MLRX hailed its ability to handle elaborate regression models. This section looks at this 

feature. Consider the following empirical equation: 
 

ln(y) = a + b (5x – 2)/(2x + 1) + c ln(3z + 5)/(x+1)  + d (x+1)(z+3)(5t – 2)
2
 

 

Notice the following terms of the above equation: 
 

 The term (5x – 2)/(2x + 1) has two factors that use the same variable, x. 

 The term (ln(3z + 5))/(x+1) has two factors that use two different variables, z and x. 

 The term (x+1)(z+3)(5t – 2)
2
 has three factors that use three different variables, x, z and t. 

 

To use function MLRX with the above empirical regression model we use the values in Table 8. The 

rows of that table map the terms of the empirical regression model from left to right. Store the values of 

Table 8 in matrix M3. I will use the same data in Table 6, which should still reside in matrix M1. 
 

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column 

4 1 0 0 0 0 
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Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column 

1 5 –2 1 1 2 

1 2 1 –1 1 2 

2 3 5 0 1 3 

1 1 1 –1 1 3 

1 1 1 1 1 4 

2 1 3 1 1 4 

3 5 –2 2 1 4 
 

Table 8 – The second transformations matrix. 
 

Calculate the coefficient of determination and regression coefficients by executing the following 

command: 
 

MLRX(M1,3,M3) 
 

Figure 4 shows the output of function MLRX. 
 

 
 

Fig.  4 – The results of executing function MLRX. 
 

The coefficient of determination is 0.7399. The fitted model is: 
 

ln(y) = 21.49 – 6.1423 (5x – 2)/(2x + 1) – 7.464 ln(3z + 5)/(x+1) + 3.3069E–5  (x+1)(z+3)(5t – 2)
2
 

 

The above model explains about 74 % of the variation in y.  
 

The versatility of function MLRX comes from the following IF statement in Table 5: 
 

IF InsMat>0 THEN 

  // insert in matrix of independent variables 

  IF InsCol>(MaxTerms+1) THEN 

    // display an error message 

    MSGBOX("Column "+InsCol+" is outside the range of columns"); 

    RETURN "ERROR"; 

  END; 

  MatX[i,InsCol]:=MatX[i,InsCol]*x; 

ELSE 

  // insert in vector of dependent variable 

  VectY[i,1]:=VectY[i,1]*x; 

END; 
 

The assignment statements that write values to matrices MatX and VectYempower you to build the 

product of multiple factors containing the same or different variable. You can even include values from 

the dependent variable, if your model requires it.  
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Observations and Conclusions 
This article presented you with HP 39gII functions that performed linearized regression between two and 

between three variables. In addition, the article presented you with the special function MLRX that allows 

you to perform linearized regression between four or more variables. The function also supports 

regression models that contains terms with one or more transformed variables. All of these tools allow 

you to select variables and then temporarily scale, shift, and raise their values to powers (or take their 

natural logarithms) before performing regression calculations.  
 

The next article presents HP 39gII functions that perform the best linearized regression between two, 

three, and four variables. The article also offers an HP 39gII function that selects the best polynomial that 

fits (x, y) data points. 
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