
Page 1 of 15 Copyright © 2012, 2013 by Namir Shammas

HP 39gII Regression: Part II

Linearized Regression
Namir Shammas

Introduction
This article shows you how to perform linearized regression between two and three variables. In addition,

it presents functions that will help you perform regression analysis calculations on a wide variety of

custom linearized equations. These functions allow you to select variables from matrices and apply

temporary transformations that shift, scale, and raise to powers the values of these variables. Thus, these

functions deliver very flexible transformation schemes.

 In this series of articles, I use the term regression model to mean the equation that is used in the

regression calculations to describe the relationship between a dependent variable and one or more

independent variables.

Linearized Regression for Two Variables
When fitting equations to data you often need to transform the original equations into a linear form. For

example, consider the following equation:

y = a x
b

The above form can be linearized by taking the natural logarithm of both sides to yield:

ln(y) = ln(a) + b ln(x)

Thus ln(y) and ln(x) have a linear relation. The intercept of that linear relation is ln(a) and the slope is b.

Thus to calculate the value of a, you need to calculate e
intercept

.

Consider a second example:

y = a x / (b + x)

Again, you can linearize the above nonlinear equation by taking the reciprocal of both sides and obtaining

the following linear form:

1/y = 1/a + (b/a) / x

In the above case, 1/y and 1/x have a linear relation. The intercept of that linear relation is 1/a and the

slope is b/a. Thus to obtain the value of a, you need to calculate the reciprocal of the intercept. To

calculate the value of b you need to divide the slope by the intercept.

Linearizing relations allow you to use linear or multiple-linear regression to calculate the regression

coefficients. Keep in mind that the regression coefficients are transformed versions of the coefficients in

the original nonlinear equations. Thus, you will need to perform a few extra calculations to obtain the

coefficients of the nonlinear equations.

Table 1 presents the function LinearizedReg. This function supports linearized regression for two

variables, x and y. The function has the following parameters:

Page 2 of 15 Copyright © 2012, 2013 by Namir Shammas

 The parameter DSMat represents the matrix that has the x and y data.

 The parameter lstSelXData is a list that specifies data for variable x. The list contains an integer

that selects the DSMat column storing values for variable x, and values to shift the values of x, an

a scale value to multiply the values of x, and the power used for variable x.

 The parameter lstSelYData is a list that specifies data for variable y. The list contains an integer

that selects the DSMat column storing values for variable y, and a value to shift the values of y, an

a scale value to multiply the values of y, and the power used for variable y.

Both parameters lstSelXData and lstSelYData are lists that have similar contents. The first list element is

a column index that selects a variable in the DSMat matrix. The second and third list elements are the

shift and scale values, respectively, used with each of the x and y values. The shift and scale

transformations use the following equation:

Intermdiate_transformed_variable = scale_value * variable + shift_value

The last list element is the power value used with the above (intermediate) transformed values. The

argument for this power value can be a negative number, zero, or a positive number. You can use integers

and non-integer powers. When the argument is zero, the function LinearizedReg treats this argument as a

special case and applies the natural logarithm to the result of the scaled and shifted values. When the

argument is not zero, the function applies that argument as the power of the scaled and shifted values.

Thus, the final transformation for each variable is:

Final_transformed_variable = (scale_value * variable + shift_value)^Power

When the value of Power is not zero. Otherwise, the final transformation is:

Final_transformed_variable = ln(scale_value * variable + shift_value)

This transformation scheme allows you to cover a wide range of transformations without taxing the size

of the source code. For example you can generate linear, squared, cubed, square-root, cube root

transformations and all of their reciprocals! If the transformations generate an error, the function

execution will stop. Experience shows that typical values for the scale and shift are 1 and 0, respectively.

However, the ability to shift and scale the original observed values, using values other than 1 and 0, may

well prove to be valuable when you need them!

Let me give you a few examples for the list for parameter lstSelXData. You can use a similar approach

with the lstSelYData parameter. If you pass the argument {2,0,1,1} to parameter lstSelXData, you tell

function LinearizedReg that the source values for variable x are in the second column of the data source

matrix DSMat. You also tell the function that variable x should be transformed using:

x = (1*x + 0)^1

Which basically tells the function LinearizedReg to use the values of variable x as they appear in the

source data matrix. If you pass the argument {3,1,1.1,0.5} you tell function LinearizedReg that the

source values for variable x are in the third column of the data source matrix DSMat. You also tell the

function that variable x should be transformed using:

x = (1.1*x + 1)^0.5

Page 3 of 15 Copyright © 2012, 2013 by Namir Shammas

If you pass the argument {3,2,3,–1} you tell function LinearizedReg that the source values for variable x

are in the third column of the data source matrix DSMat. You also tell the function that variable x should

be transformed using:

x = (3*x + 2)^(–1) = 1/(3*x+2)

The function LinearizedReg returns a list that contains the value of the coefficient of determination and a

column matrix containing the regression coefficients. I recommend that you store the results of calling

function LinearizedReg in a list so that you can further examine and/or use the results.

Statement
EXPORT LinearizedReg(DSMat,lstSelXData,lstSelYData)

BEGIN

 LOCAL i,x,y;

 LOCAL lstDimX,NumRowsX;

 LOCAL MatX,VectY,RegCoeff;

 LOCAL SelXCol,ShiftX,ScaleX,PowerX;

 LOCAL SelYCol,ShiftY,ScaleY,PowerY;

 LOCAL Sum1,Sum2,YMean,Yhat,Rsqr;

 lstDimX:=SIZE(DSMat);

 NumRowsX:=lstDimX(1);

 // get parameters for x

 SelXCol:=lstSelXData(1);

 ShiftX:=lstSelXData(2);

 ScaleX:=lstSelXData(3);

 PowerX:=lstSelXData(4);

 // get parameters for y

 SelYCol:=lstSelYData(1);

 ShiftY:=lstSelYData(2);

 ScaleY:=lstSelYData(3);

 PowerY:=lstSelYData(4);

 // create regression matrix and vector

 MatX:=MAKEMAT(1,NumRowsX,2);

 VectY:=MAKEMAT(1,NumRowsX,1);

 // populate matrix and vector

 FOR i FROM 1 TO NumRowsX DO

 x:=ScaleX*DSMat(i,SelXCol)+ShiftX;

 y:=ScaleY*DSMat(i,SelYCol)+ShiftY;

 // transform x

 IF PowerX==0 THEN

 x:=LN(x);

 ELSE

 x:=x^PowerX;

Page 4 of 15 Copyright © 2012, 2013 by Namir Shammas

Statement
 END;

 // transform y

 IF PowerY==0 THEN

 y:=LN(y);

 ELSE

 y:=y^PowerY;

 END;

 MatX(i,2):=x;

 VectY(i,1):=y;

 END;

 // calculate coefficient of determination

 RegCoeff:=LSQ(MatX,VectY);

 // calculate ymean

 Sum1:=0;

 FOR i FROM 1 TO NumRowsX DO

 y:=VectY(i,1);

 Sum1:=Sum1+y;

 END;

 YMean:=Sum1/NumRowsX;

 // calculate coefficient of determination

 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(VectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 RETURN {Rsqr,RegCoeff};

END;

Table 1 – The function LinearizedReg.

Let’s use the function LinearizedReg to fit the data in Table 2. Enter the data in matrix M1.

x y

1 2

2 14

3 54

4 120

5 237

6 440

7 890

8 1000

Page 5 of 15 Copyright © 2012, 2013 by Namir Shammas

x y

9 1500

10 2000

Table 2 – Sample data for testing function LinearizedReg.

The nonlinear regression model I want to use is:

y = a*(2*x+1)
b

The linearized form of the above equation is:

ln(y) = ln(a) + b*ln(2*x+1)

Thus ln(y) and ln(2*x+1) have a linear relation. To obtain the regression coefficients and coefficient of

determination for data in Table 2, execute the following command:

LinearizedReg(M1,{1,1,2,0},{2,0,1,0})L1

The first argument of calling function LinearizedReg is the matrix M1 which contains the (x, y) data

points. The second argument is the list {1,1,2,0}. This list tells the function LinearizedReg that values for

variable x are in the first column of matrix M1. The remaining list elements tell the function that the

transformed values for variable x are calculated using:

x = ln(2*x+1)

The third argument is the list {2, 0,1,0}. This list tells the function LinearizedReg that values for variable

y are in the second column of matrix M1. The remaining list elements tell the function that the

transformed values for variable y are calculated using:

y = ln(1*y + 0) = ln(y)

Figure 1 shows the output of calling function LinearizedReg.

Fig. 1 – The results of executing function LinearizedReg.

The results show that R
2
 is 0.996932488 and the fitted polynomial is:

ln(y) = –3.080667377 + 3.55904655 ln(2*x+1)

The value of R
2
 indicates that the polynomial explains about 99.7% of the variation in the values of y. The

values of the regression coefficients a and b are 0.045928595 and 3.55904655, respectively.

Page 6 of 15 Copyright © 2012, 2013 by Namir Shammas

Linearized Regression for Three Variables
This section offers the function LinerizedReg3 that performs linearized regression between two

independent variables, x and z, and the dependent variable y. Function LinerizedReg3 is very similar to

function LinearizedReg and has the following parameters:

 The parameter DSMat represents the matrix that has the x, z, and y data.

 The parameter lstSelXData is a list that specifies data for variable x. The list contains an integer

that selects the DSMat column storing values for variable x, an value to shift the values of x, an

scale value to multiply the values of x, and the power used for variable x.

 The parameter lstSelZData is a list that specifies data for variable z. The list contains an integer

that selects the DSMat column storing values for variable z, an value to shift the values of z, an

scale value to multiply the values of z, and the power used for variable z.

 The parameter lstSelYData is a list that specifies data for variable y. The list contains an integer

that selects the DSMat column storing values for variable y, an value to shift the values of y, an

scale value to multiply the values of y, and the power used for variable y.

You can regard function LinerizedReg3 as the big brother of function LinearizedReg. Table 3 shows the

source code for function LinearizedReg3.

Statement
EXPORT LinearizedReg3(DSMat,lstSelXData,lstSelZData,lstSelYData)

BEGIN

 LOCAL i,x,y,z;

 LOCAL lstDimX,NumRowsX;

 LOCAL MatX,VectY,RegCoeff;

 LOCAL SelXCol,ShiftX,ScaleX,PowerX;

 LOCAL SelYCol,ShiftY,ScaleY,PowerY;

 LOCAL SelZCol,ShiftZ,ScaleZ,PowerZ;

 LOCAL Sum1,Sum2,YMean,Yhat,Rsqr;

 lstDimX:=SIZE(DSMat);

 NumRowsX:=lstDimX(1);

 SelXCol:=lstSelXData(1);

 ShiftX:=lstSelXData(2);

 ScaleX:=lstSelXData(3);

 PowerX:=lstSelXData(4);

 // get parameters for z

 SelZCol:=lstSelZData(1);

 ShiftZ:=lstSelZData(2);

 ScaleZ:=lstSelZData(3);

 PowerZ:=lstSelZData(4);

 // get parameters for y

 SelYCol:=lstSelYData(1);

 ShiftY:=lstSelYData(2);

 ScaleY:=lstSelYData(3);

 PowerY:=lstSelYData(4);

Page 7 of 15 Copyright © 2012, 2013 by Namir Shammas

Statement

 // create regression matrix and vector

 MatX:=MAKEMAT(1,NumRowsX,3);

 VectY:=MAKEMAT(1,NumRowsX,1);

 // populate matrix and vector

 FOR i FROM 1 TO NumRowsX DO

 x:=ScaleX*DSMat(i,SelXCol)+ShiftX;

 y:=ScaleY*DSMat(i,SelYCol)+ShiftY;

 z:=ScaleZ*DSMat(i,SelZCol)+ShiftZ;

 // transform x

 IF PowerX==0 THEN

 x:=LN(x);

 ELSE

 x:=x^PowerX;

 END;

 // transform z

 IF PowerZ==0 THEN

 z:=LN(z);

 ELSE

 z:=z^PowerZ;

 END;

 // transform y

 IF PowerY==0 THEN

 y:=LN(y);

 ELSE

 y:=y^PowerY;

 END;

 MatX(i,2):=x;

 MatX(i,3):=z;

 VectY(i,1):=y;

 END;

 // calculate regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate ymean

 Sum1:=0;

 FOR i FROM 1 TO NumRowsX DO

 y:=VectY(i,1);

 Sum1:=Sum1+y;

 END;

 YMean:=Sum1/NumRowsX;

 // calculate coefficient of determination

Page 8 of 15 Copyright © 2012, 2013 by Namir Shammas

Statement
 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(VectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 RETURN {Rsqr,RegCoeff};

END;

Table 3 – The function LinearizedReg3.

Let’s use the function LinearizedReg3 to fit the data in Table 4. Enter the data in matrix M1.

x z y

1 1 1.6

2 1 1.2

3 2 –0.7

4 2 –1.9

5 3 –1.9

6 3 –3.4

7 4 –3.0

8 4 –4.0

9 5 –2.8

10 5 –3.5

Table 4 – Sample data for testing function LinearizedReg3.

The regression model I want to use is:

y = a + b*ln(1.5*x+2) + c/(2*z – 1)

Thus ln(y) has a linear relation with ln(1.5*x+2) and 1/(2*z – 1). To obtain the regression coefficients and

coefficient of determination for data in Table 1, execute the following command:

LinearizedReg3(M1,{1,2,1.5,0},{2, –1,2, –1},{3,0,1,1})L1

The first argument of calling function LinearizedReg3 is the matrix M1 which contains the (x,z,y) data

points. The second argument is the list {1,2,1.5,0}. This list tells the function LinearizedReg3 that values

for variable x are in the first column of matrix M1. The remaining list elements tell the function that the

transformed values for variable x are calculated using:

x = ln(1.5*x+2)

The third argument is the list {2, –1,2, –1}. This list tells the function LinearizedReg3 that values for

variable z are in the second column of matrix M1. The remaining list elements tell the function that the

transformed values for variable z are calculated using:

z = 1/(2*z – 1)

Page 9 of 15 Copyright © 2012, 2013 by Namir Shammas

The fourth argument is the list {3,0,1,1}. This list tells the function LinearizedReg3 that values for

variable y are in the third column of matrix M1. The remaining list elements tell the function that the

transformed values for variable:

y = 1*y + 0

That is, to take the values of y from the third column of matrix M1.

Figure 2 shows the output of calling function LinearizedReg3.

Fig. 2 – The results of executing function LinearizedReg.

The results show that R
2
 is 0.932531686 and the fitted polynomial is:

y = 1.949488869 – 2.100307854 ln(1.5*x+1) + 2.443637745 /(2*z – 1)

The value of R
2
 indicates that the polynomial explains about 93 % of the variation in the values of y. The

values of the regression coefficients a, b, and c are 1.949488869, – 2.100307854 , and 2.443637745,

respectively.

Regression Beyond Three Variables
What about fitting regression models beyond a total of three variables? I could present the function,

LinearizedReg4 to support regression with four variables. It would look like a version of functions

LinearizedReg and LinearizedReg3 on steroids!

I decided to take a different approach and present you with a more powerful function. This function can

handle elaborate regression models such as:

y = a0 + a1 (2x+4)
2
 + a2 (4z+3)

3
 + a3 ln(t+1) + a4 (u+3)

0.5
 + a5 (v+2)

y = a0 + a1 (2x+4)
2
 + a2 (3x+3)/(4x+3)

3

y = a0 + a1 (2x+4)
2
 + a2 (4z+3)

3
 + a3 ln(t+1) /(3z+7) + a4 (x+1)(3z-5)/(t=7)

The above examples hint at the following features of the next function:

 The ability to handle more than three independent variables.

 The ability to build regression models with terms that have multiplicative factors. The key word

here is multiplicative. These factors have transformations of the same or different variables.

Table 5 contains the source code for function MLRX. This powerful and versatile function has the

following parameters:

 The parameter DSMat specifies the data source matrix containing the dependent and independent

variables.

Page 10 of 15 Copyright © 2012, 2013 by Namir Shammas

 The parameter MaxTerms designates the number of terms in the regression models (not counting

the constant term).

 The parameter TrnfMat specifies the name of the transformations matrix that contains the values

used to select, transform, and store variables in the internal regression matrix X (stored in variable

MatX) and vector y (stored in variable VectY).

The parameter TrnfMat is a matrix with six columns. Each row groups the data to select, transform, and

store a specific regression variable. The columns of the transformations matrix are:

 Column 1 is the index that selects a regression variable from matrix DSMat. You can select the

dependent variable or an independent variable.

 Column 2 specifies the scale value used to multiply the values of the selected variable.

 Column 3 specifies the shift value used to add to the scaled values of the variable.

 Column 4 specifies the power value used to raise the scaled and shifted values. If the value in this

column is zero, the function MLRX calculates the natural logarithm of the scaled and shifted

values.

 Column 5 is a numeric switch that tells function MLRX where to store the results of the

transformed values. When the value of this column is positive, the function store the transformed

values in MatX. Otherwise, it stores the transformed values in VectY.

 Column 6 specifies the column index of variable MatX where the transformed values are stored.

The values of this column are relevant only when the corresponding values in Column 5 are

positive.

You can think of parameter TrnfMat as numerically-coded meta-program (or instruction set) for function

MLRX. This meta-program tells the function which variable to select, what transformations to apply, and

where to store the transformation results. Each row in parameter TrnfMat represents a meta-program

instruction. The totality of these instructions helps the function MLRX to build the data in the variables

MatX and VectY.

The function MLX returns the coefficient of determination and the vector matrix of the regression

coefficients. If a value in column 6 of the transformations matrix is greater than the maximum number of

terms, plus 1, the function MLRX displays an error message box and returns the text “ERROR”.

Statement
EXPORT MLRX(DSMat,MaxTerms,TrnfMat)

BEGIN

 LOCAL i,j,x,Rsqr;

 LOCAL lstDimX,lstDimT,NumRowsX,NumColsX;

 LOCAL MatX,VectY,RegCoeff;

 LOCAL SelXCol,Shift,Scale,PowerX;

 LOCAL InsMat,InsCol,NumTrnf;

 LOCAL YMean,Sum1,Sum2,Yhat;

 // calculate the number of data points

 lstDimX:=SIZE(DSMat);

 NumRowsX:=lstDimX(1);

 NumColsX:=lstDimX(2);

 // get the number of transformations

Page 11 of 15 Copyright © 2012, 2013 by Namir Shammas

Statement
 lstDimT:=SIZE(TrnfMat);

 NumTrnf:=lstDimT(1);

 // create the data matrices

 MatX:=MAKEMAT(1,NumRowsX,MaxTerms+1);

 VectY:=MAKEMAT(1,NumRowsX,1);

 FOR j FROM 1 TO NumTrnf DO

 // get the transformation/insertion parameters

 SelXCol:=TrnfMat[j,1];

 Scale:=TrnfMat[j,2];

 Shift:=TrnfMat[j,3];

 PowerX:=TrnfMat[j,4];

 InsMat:=TrnfMat[j,5];

 InsCol:=TrnfMat[j,6];

 // process all rows for current variable selection,

 // transformation, and insertion

 FOR i FROM 1 TO NumRowsX DO

 // get x

 x:=DSMat[i,SelXCol];

 // transform x by scaling and shifting

 x:=Scale*x+Shift;

 // raise x to power or take ln() value

 IF PowerX==0 THEN

 x:=LN(x);

 ELSE

 x:=x^PowerX;

 END;

 // insert in targeted matrix

 IF InsMat>0 THEN

 // insert in matrix of independent variables

 IF InsCol>(MaxTerms+1) THEN

 // display an error message

 MSGBOX("Column "+InsCol+" is outside the range of columns");

 RETURN "ERROR";

 END;

 MatX[i,InsCol]:=MatX[i,InsCol]*x;

 ELSE

 // insert in vector of dependent variable

 VectY[i,1]:=VectY[i,1]*x;

 END;

 END;

 END;

 // calculate the regression coefficients

Page 12 of 15 Copyright © 2012, 2013 by Namir Shammas

Statement
 RegCoeff:=LSQ(MatX,VectY);

 // calculate ymean

 Sum1:=0;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+VectY(i,1);

 END;

 YMean:=Sum1/NumRowsX;

 // calculate the correlation coefficient

 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(VectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 // return the results

 RETURN {Rsqr,RegCoeff};

END;

Table 5 – The source code for function MLRX.

Let’s use function MLRX to fit data for with the regression model:

ln(y) = a + b/(2x + 1) + c ln(3z + 5) + d (5t – 2)
2

Table 6 shows the data that I will use to calculate the regression coefficients for the above equation. Store

the data of Table 6 in matrix M1. Table 7 shows the transformations matrix. The matrix rows give

function MLRX the instructions to build the data in the variables MatX and VectY. Store the data of

Table 7 in matrix M2.

x z t y

1 1 7 3000

2 3 6 250

3 2 3 500

4 2 1 50

5 3 2 200

6 3 5 1500

7 4 8 4500

8 4 9 5500

9 5 4 1000

10 5 2 200

Table 6 – Sample data for testing function MLRX.

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column

4 1 0 0 0 0

1 2 1 –1 1 2

Page 13 of 15 Copyright © 2012, 2013 by Namir Shammas

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column

2 3 5 0 1 3

3 5 –2 2 1 4

Table 7 – Transformations matrix.

Calculate the coefficient of determination and regression coefficients by executing the following

command:

MLRX(M1,3,M3)L1

Figure 3 shows the results of calling function MLRX.

Fig. 3 – The results of executing functions InsertVar and MLR2.

The coefficient of determination is 0.705686. The fitted model is:

ln(y) = 5.064781119 – 0.482455938/(2x + 1) + 0.095869673 ln(3*z + 5) + 0.002036764 (5t – 2)
2

The above model explains about 70.5 % of the variation in y.

Further Exploring the Power of Function MLRX
The last section showed you how to work with a custom multi-variable linearized regression. The

example I gave you tested fitting the following empirical equation:

ln(y) = a + b/(2x + 1) + c ln(3z + 5) + d (5t – 2)
2

The above equation has several terms, each with a single variable. You may recall that the introduction

for function MLRX hailed its ability to handle elaborate regression models. This section looks at this

feature. Consider the following empirical equation:

ln(y) = a + b (5x – 2)/(2x + 1) + c ln(3z + 5)/(x+1) + d (x+1)(z+3)(5t – 2)
2

Notice the following terms of the above equation:

 The term (5x – 2)/(2x + 1) has two factors that use the same variable, x.

 The term (ln(3z + 5))/(x+1) has two factors that use two different variables, z and x.

 The term (x+1)(z+3)(5t – 2)
2
 has three factors that use three different variables, x, z and t.

To use function MLRX with the above empirical regression model we use the values in Table 8. The

rows of that table map the terms of the empirical regression model from left to right. Store the values of

Table 8 in matrix M3. I will use the same data in Table 6, which should still reside in matrix M1.

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column

4 1 0 0 0 0

Page 14 of 15 Copyright © 2012, 2013 by Namir Shammas

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column

1 5 –2 1 1 2

1 2 1 –1 1 2

2 3 5 0 1 3

1 1 1 –1 1 3

1 1 1 1 1 4

2 1 3 1 1 4

3 5 –2 2 1 4

Table 8 – The second transformations matrix.

Calculate the coefficient of determination and regression coefficients by executing the following

command:

MLRX(M1,3,M3)

Figure 4 shows the output of function MLRX.

Fig. 4 – The results of executing function MLRX.

The coefficient of determination is 0.7399. The fitted model is:

ln(y) = 21.49 – 6.1423 (5x – 2)/(2x + 1) – 7.464 ln(3z + 5)/(x+1) + 3.3069E–5 (x+1)(z+3)(5t – 2)
2

The above model explains about 74 % of the variation in y.

The versatility of function MLRX comes from the following IF statement in Table 5:

IF InsMat>0 THEN

 // insert in matrix of independent variables

 IF InsCol>(MaxTerms+1) THEN

 // display an error message

 MSGBOX("Column "+InsCol+" is outside the range of columns");

 RETURN "ERROR";

 END;

 MatX[i,InsCol]:=MatX[i,InsCol]*x;

ELSE

 // insert in vector of dependent variable

 VectY[i,1]:=VectY[i,1]*x;

END;

The assignment statements that write values to matrices MatX and VectYempower you to build the

product of multiple factors containing the same or different variable. You can even include values from

the dependent variable, if your model requires it.

Page 15 of 15 Copyright © 2012, 2013 by Namir Shammas

Observations and Conclusions
This article presented you with HP 39gII functions that performed linearized regression between two and

between three variables. In addition, the article presented you with the special function MLRX that allows

you to perform linearized regression between four or more variables. The function also supports

regression models that contains terms with one or more transformed variables. All of these tools allow

you to select variables and then temporarily scale, shift, and raise their values to powers (or take their

natural logarithms) before performing regression calculations.

The next article presents HP 39gII functions that perform the best linearized regression between two,

three, and four variables. The article also offers an HP 39gII function that selects the best polynomial that

fits (x, y) data points.

References

1. Wikipedia article Coefficient of Determination.

2. Wikipedia article Linear Regression.

3. Draper and Smith, Applied Regression Analysis, Wiley-Interscience; 3rd edition (April 23, 1998)

4. Neter, Kuther, Wasserman, and Nachtsheim, Applied Linear Statistical Models, McGraw-

Hill/Irwin; 4th edition (February 1, 1996).

5. Fox, Applied Regression Analysis and Generalized Linear Models, Sage Publications, Inc; 2nd

edition (April 16, 2008).

6. Montgomery, Peck, and Vining, Introduction to Linear Regression Analysis, Wiley-Interscience;

4th edition (2006).

7. Seber and Lee, Linear Regression Analysis, Wiley; 2nd edition (February 5, 2003).

