
Page 1 of 11 Copyright © 2012, 2013 by Namir Shammas

HP 39gII Regression: Part I

Exploring Statistical Regression with the HP 39gII
Namir Shammas

Introduction
The advent of programmable calculators provided scientists, engineers, mathematicians, and statisticians

with personal computing devices that performed various statistical calculations. These calculations

included regression analysis to perform various kinds of curve fitting. As newer machines appeared on the

market, they supported more advanced regression calculations. The HP 39gII follows this trend very well.

It support matrix/vector calculations and also offers the LSQ function that performs, in one swoop, the

core least-squares calculations used in regression analysis. This article is the first of a series that explores

the HP 39gII regression analysis features. In this article I discuss the following topics:

1. The basics of working with the LSQ function with matrix/vector calculations to support regression

calculations.

2. Using an HP 39gII function that calculates and returns the regression coefficient of a general multiple

regression model and the coefficient of determination.

3. Polynomial regression.

4. Power curve fitting for two or more variables.

 In this series of articles, I use the term regression model to mean the equation that is used in the

regression calculations to describe the relationship between a dependent variable and one or more

independent variables.

The Basics
The built-in function LSQ(X, y) performs least-squares regression calculations on the matrix X and the

column vector y. The matrix X has multiple columns that represent values for independent variables

and/or their transformations (such as natural logarithm, reciprocal, and square, to name a few). The first

column in matrix X is typically filled with the constant 1 to allow LSQ to calculate a constant for the

fitted regression model. The column vector y contains the values of the dependent variable or its

transformations. The function LSQ calculates the constant and regression coefficients by evaluating the

following matrix expression:

LSQ(X,y) = (X
T
 X)

-1
 (X

T
 y)

The beauty of using matrix/vector operations is that they calculate the matrix and vector containing the

statistical summations using few high-level operations. Thus, the result of X
T
 X is a matrix that has the

statistical summations for the independent variables and/or their transformations. The result of X
T
 y is a

column vector that contains the statistical summations of the product between the dependent and

independent variables and/or their transformations. The matrix expression (X
T
 X)

-1
 (X

T
 y) solves for the

regression coefficients. Using the matrix operations reduces significantly the effort needed to calculate the

regression coefficients. If you read source code for statistical calculations, in languages like C++ and

Visual Basic, you will be stunned! You will realize how much lower-level coding is needed, in these

programming languages, to accumulate the values in the various statistical summations, and how much

Page 2 of 11 Copyright © 2012, 2013 by Namir Shammas

more coding is needed to calculate the regression coefficients! The function LSQ is a wonderful gift from

the designers of the HP 39gII.

The simplest case of using function LSQ is to provide it with values from the predefined matrices M0

through M9. Select one of these matrices to represent the matrix X and another matrix to represent the

column vector y. The selected matrices would have an equal number of rows of raw data. When using the

function LSQ inside a program function, its arguments can be locally defined matrices and vectors (which

are really single-column matrices). Table 1 shows sample data. The variables x1, x2, and x3 are the

independent variables. The variable y is the dependent variable.

x1 x2 x3 y

7 25 6 60

1 29 15 52

11 56 8 20

11 31 8 47

7 52 6 33

Table 1 – Sample data.

To calculate the coefficients of the following simple multiple regression model:

y = a + b x1 + c x2 + d x3

You need to store the values of y in matrix M1 and the values of the independent variables in matrix M2.

Figure 1 shows the contents of matrix M1 which stores the values for the column vector y.

Fig. 1 – The values in matrix M1.

Figure 2 shows the contents of matrix M2 which stores the values for the matrix X. Notice that the first

column in matrix M2 is filled with the constant 1. The values for the independent variables occupy

columns 2, 3, and 4.

Fig. 2 – The values in matrix M2.

Figure 3 shows the result of executing the command LSQ(M2,M1).

Page 3 of 11 Copyright © 2012, 2013 by Namir Shammas

Fig. 3 – The results of executing function LSQ.

The model fitted (with the coefficients rounded to four decimal places) in Figure 3 is:

y = 103.4473 – 1.2841 x1 – 1.0370 x2 – 1.3395 x3

I have presented you with a simple example of using the function LSQ. The example works well because

it uses the variables without performing any mathematical transformation on them. Moreover, the

calculations do not indicate how good the model is. One of the popular statistics used to indicate the

goodness of fit is called the coefficient of determination, R
2
. This statistic, which is the square of the

correlation coefficient, indicates the fraction of the variance in variable y that is explained by the

regression model we obtain. When the coefficient of determination is 1, its maximum value, we have a

perfect fit. This means that the regression model accounts for all of the observed values of y. On the other

extreme, when the coefficient of determination is 0, it means that the regression model has completely

failed to explain the variation in variable y. The value for R
2
 is calculated using the following equation:

R
2
 =

∑ ̂ ̅

∑ ̅

Where ̂ ̂ is the predicted value of y at the values of the independent variables used in the calculations, ̅

is the average value of y, and is the values of y entering in the regression calculations. Keep in mind

that the coefficient of determination cannot tell how well the regression model can predict values of y that

are based on new values for the independent variable(s).

First Things First!
After showing you how to use the function LSQ and presenting the coefficient of determination, let me

present the function MLR2 which performs the calculations for the regression coefficients and also the

coefficient of determination. This function is the first step in automating regression analysis calculations.

Table 2 shows the source code for function MLR2. This function has the following parameters:

 The parameter MatX which represents the matrix X.

 The parameter VectY which represents the vector y.

The function returns a list containing the coefficient of determination and the regression coefficients (as a

column matrix).

Statement
EXPORT MLR2(MatX,VectY)

BEGIN

 LOCAL i,j,y,Rsqr;

 LOCAL lstDimX,NumRowsX;

Page 4 of 11 Copyright © 2012, 2013 by Namir Shammas

Statement
 LOCAL YMean,Sum1,Sum2,Yhat,RegCoeff;

 // calculate the regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate the number of data points

 lstDimX:=SIZE(MatX);

 NumRowsX:=lstDimX(1);

 // calculate ymean

 Sum1:=0;

 FOR i FROM 1 TO NumRowsX DO

 y:=VectY(i,1);

 Sum1:=Sum1+y;

 END;

 YMean:=Sum1/NumRowsX;

 // calculate the coefficient of determination

 Sum1:=0;

 Sum2:=0;

 Yhat:=MatX*RegCoeff;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(VectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 // return the results

 RETURN {Rsqr,RegCoeff};

END;

Table 2 –The source code for function MLR2.

The function MLR2 performs the following tasks:

 Calculates the regression coefficients using the function LSQ. The function stores the result of

function LSQ in the local variable RegCoeff.

 Calculate the mean for the y values.

 Calculate the coefficient of determination using the definition I presented in the last section.

Notice that the function calculates the array of ̂ values using the matrix/vector multiplication

expression MatX*RegCoeff. The second FOR loop calculates the sums of squared differences

between ̂ ̂ and ̅ and between and ̅.

Let’s use function MLR2 with the data in Table 1. This time, function MLR2 yields the regression

coefficients and the coefficient of determination. To use function MLR2 with the data in matrix M1 and

M2, type the following command:

MLR2(M2,M1))L1

The above command stores the results in list L1 for further examination if so desired. Figure 4 shows the

results of executing the function MLR2(M2,M1):

Page 5 of 11 Copyright © 2012, 2013 by Namir Shammas

Fig. 4 – The results of executing function MLR2.

The results in Figure 4 show that R
2
 is 0.99893 and the regression coefficients are the same values

obtained in the last section. Thus, the fitted model explains 99.89% the variation in the observed values of

y. This high value is expected since we are fitting five data points with a regression model that has a total

of four regression coefficients.

Polynomial Fitting
This section presents an HP 39gII function that allows you to perform polynomial regression between two

variables, x and y. The function calculates the coefficients for the polynomial and also returns the

coefficient of determination.

Table 3 shows the source code for the function PolyReg. This function has the following parameters:

 The parameter DSMat represents the matrix that has the x and y data.

 The parameter SelXCol designates the column in matrix DSMat which contains the values for x.

 The parameter SelYCol designates the column in matrix DSMat which contains the values for y.

 The parameter Order selects the order for the polynomial regression. If you pass an argument of 1

to this parameter, the function PolyReg performs a linear regression. Passing values of 2 and 3 to

the parameter Order causes the function to fit the data with a quadratic and cubic polynomials,

respectively.

The function PolyReg returns a list that contains the value of the coefficient of determination and a

column matrix containing the regression coefficients. I recommend that you store the results of calling

function PolyReg in a list so that you can further examine and/or use the results.

Statement
EXPORT PolyReg(DSMat,SelXCol,SelYCol,Order)

BEGIN

 LOCAL i,j,x,y;

 LOCAL lstDimX,NumRows;

 LOCAL MatX, VectY, RegCoeff;

 LOCAL YMean,Sum1,Sum2,Yhat,Rsqr;

 lstDimX:=SIZE(DSMat);

 NumRows:=lstDimX(1);

 // initialize matrix and vector

 MatX:=MAKEMAT(1,NumRows,Order+1);

 VectY:=MAKEMAT(1,NumRows,1);

 Sum1:=0;

 // populate matrix X and vector y with data

Page 6 of 11 Copyright © 2012, 2013 by Namir Shammas

Statement
 FOR i FROM 1 TO NumRows DO

 y:=DSMat(i,SelYCol);

 x:=DSMat(i,SelXCol);

 VectY(i,1):=y;

 Sum1:=Sum1+y;

 FOR j FROM 1 TO Order DO

 MatX(i,j+1):=x^j;

 END;

 END;

 // calculate ymean

 YMean:=Sum1/NumRows;

 // calculate regression coefficients

 RegCoeff:=LSQ(MatX,VectY);

 // calculate the sums of squares of

 // (yhat - ymean) and (y - ymean)

 Sum1:=0;

 Sum2:=0;

 FOR i FROM 1 TO NumRows DO

 y:=DSMat(i,SelYCol);

 x:=DSMat(i,SelXCol);

 Yhat:=RegCoeff(1,1);

 FOR j FROM 1 TO Order DO

 Yhat:=Yhat+RegCoeff(j+1,1)*x^j;

 END;

 Sum1:=Sum1+(Yhat-YMean)^2;

 Sum2:=Sum2+(y-YMean)^2;

 END;

 // calculate coefficient of determination

 Rsqr:=Sum1/Sum2;

 RETURN {Rsqr,RegCoeff};

END;

Table 3 –The source code for function PolyReg.

Let’s use the function PolyReg to fit a cubic polynomial using the data in Table 4. Enter the data in

matrix M1.

x y

1 5.1

1.1 4.4

1.2 4.6

1.3 4.0

1.4 3.2

1.5 3.2

1.6 2.4

1.7 2.2

1.8 1.3

Page 7 of 11 Copyright © 2012, 2013 by Namir Shammas

x y

1.9 2.0

Table 4 – Sample data for a cubic polynomial fit.

To obtain the regression coefficients and coefficient of determination for the cubic polynomial fit using

the data in Table 4, execute the following command:

PolyReg(M1,1,2,3)L1

The first argument of calling function PolyReg is the matrix M1 which contains the (x, y) data points.

The second argument is 1 which tells the function that the data for the independent variable x are in

column 1 of M1. The third argument is 2, which tells the function that the data for the dependent variable

y are in column 2 of M1. The last argument is 3, which specifies the order of the sought polynomial. I

assigned the results to list L1 so that I can examine the results later, if I needed to. Figure 5 shows the

output of using function PolyReg.

Fig. 5 – The results of executing function PolyReg.

The results show that R
2
 is 0.953602 and the fitted polynomial is:

y = –14.8721 + 49.3485 x – 38.6364 x
2
 + 9.0909 x

3

The value of R
2
 indicates that the polynomial explains about 95% of the variation in the values of y.

Power Curve Fitting
Power curve fits allow you to create models where the relations between the logarithmic values of the

variables are linear. In the case of two variables we have:

y = a x
b

Which is the same as the linear form:

ln(y) = ln(a) + b ln(x)

In the case of multiple variables, such as:

y = a x1
b
x2

c
x3

d

The linear form is:

ln(y) = ln(a) + b ln(x1) + c ln(x2) + d ln(x3)

Creating a program function that performs power curve fits for two or more variables is really simple. The

HP 39gII function has to translate the input data into logarithmic values and then use the LSQ function

with the matrix and vector of the logarithmic values. Table 5 shows the source code for the function

Page 8 of 11 Copyright © 2012, 2013 by Namir Shammas

PowerFit. The function PowerFit has two parameters. The first parameter is MatX--the name of the

matrix that contains the values for the independent variables. The second parameter is VectY—the name

of the column vector that contains the values for the dependent variable. The function returns a list

containing the coefficient of determination and the column matrix that stores the regression coefficients.

Statement
EXPORT PowerFit(MatX,VectY)

BEGIN

 LOCAL i,j;

 LOCAL lstDimX,NumRowsX,NumColsX;

 LOCAL TMatX,TVectY,RegCoeff,Rsqr;

 LOCAL YMean,Sum1,Sum2,Yhat;

 // get the number of rows and columns of matrix MatX

 lstDimX:=SIZE(MatX);

 NumRowsX:=lstDimX(1);

 NumColsX:=lstDimX(2);

 // create matrices to store transformed data

 TMatX:=MAKEMAT(1,NumRowsX,NumColsX+1);

 TVectY:=MAKEMAT(1,NumRowsX,1);

 FOR i FROM 1 TO NumRowsX DO

 TVectY(i,1):=LN(VectY(i,1));

 FOR j FROM 1 TO NumColsX DO

 TMatX(i,j+1):=LN(MatX(i,j));

 END;

 END;

 // calculate the regression coefficients

 RegCoeff:=LSQ(TMatX,TVectY);

 // calculate ymean

 Sum1:=0;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+TVectY(i,1);

 END;

 YMean:=Sum1/NumRowsX;

 // calculate the coefficient of determination

 Sum1:=0;

 Sum2:=0;

 Yhat:=TMatX*RegCoeff;

 FOR i FROM 1 TO NumRowsX DO

 Sum1:=Sum1+(Yhat(i,1)-YMean)^2;

 Sum2:=Sum2+(TVectY(i,1)-YMean)^2;

 END;

 Rsqr:=Sum1/Sum2;

 // return the results

 RETURN {Rsqr,RegCoeff};

END;

Page 9 of 11 Copyright © 2012, 2013 by Namir Shammas

Table 5 –The source code for function PowerFit.

The source code in Table 5 shows that the function PowerFit creates the local matrices TMatX and

TVectY. The function uses these matrices to store the logarithmic transformations of the data in matrix

MatX and VectY. The function uses the local matrices TMatX and TVectY to calculate the regression

coefficients, the mean of the logarithm of y values, and the coefficient of determination.

Let’s test function PowerFit with the data in Table 6.

x z t y

1 1 7 7

2 1 5 7.7

3 2 3 7.9

4 2 1 5.3

5 3 2 8.4

6 3 5 11.6

7 4 8 13.6

8 4 9 14.3

9 5 4 12.4

10 5 2 10.6

Table 6 – Sample data for a power fit.

Store the values of the first three columns of Table 6 in matrix M1. Store the values of the rightmost

column of Table 6 in the matrix M2. To calculate the regression coefficient of a power fit between the

independent variables x, z, t, and the dependent variable y, execute the following command:

PowerFit(M1,M2)L2

Figure 6 shows the results of executing the above command.

Fig. 6 – The results of executing function PowerFit.

The results show that R
2
 is 0.98063 and the power fit is:

y = 1.34674 + 0.213781026 * ln(x) + 0.161625179 * ln(z) + 0.3159252 * ln(t)

Which also has the following nonlinear form,

y = 3.844878 * (x^ 0.213781026) * (z^0.161625179) * (t^0.3159252)

The value of R
2
 indicates that the power fit explains about 98% of the variation in the values of y.

Page 10 of 11 Copyright © 2012, 2013 by Namir Shammas

About Entering the Source Code
I found it much easier to enter source code by first using an HP 39gII emulator. You can do that too by

following these steps:

1. Search the Internet for the HP 39gII emulator software. Download and install the software on your

PC

2. Using your PC, copy the source code from this and other articles into a text editor of your choice.

Alternatively you can type in your own source code in a text editor, if you are writing your own

functions. This step offers a significant time-saver.

3. Turn on the visible spaces in your text editor (choose a text editor that has this feature).

4. Locate and remove any unusual and extended ASCII characters. Also replace tab characters with

spaces.

5. Save the source code to your PC.

6. Copy all of the source code into the PC’s clipboard buffer.

7. Run the HP 39gII emulator and create the HP 39gII function for the code you wish to insert.

8. Select the new function for editing.

9. Delete all of the default source code that the emulator inserts for the new function.

10. Use the Edit | Paste menu commands in the emulator. This step pastes the source code from the

clipboard buffer to the emulator.

11. Examine the source code to make sure that the pasting yielded a good listing. You can also use the

CHECK command to detect errors in the source code. If these errors require minor editing, then do

so. If not go back to step 3. In most cases, this step goes without any problems.

12. Test the function in the emulator to make sure that it runs correctly. This step may require entering

data in the predefined matrices. Correct runtime errors if they occur, by examining the source

code. The CHECK command does not always catch all errors. Common undetected errors include

(a) a missing colon in an assignment statement and (b) missing semicolons at the end of

statements. If you are writing your own functions, then any errors in the source code you typed in

will cause errors to show up in this step or in the last one.

13. Connect your PC to the physical HP 39gII calculator using a USB cable.

14. Select and copy the function from the emulator to the calculator by using the SEND command

(available in Prgm mode).

15. Verify that the physical HP 39gII calculator shows the function you just copied.

Don’t be intimidated by the number of the above steps. Once you get the hang of it, you can really speed

up developing HP 39gII programs. The Pascal-like programming language is powerful and allows the HP

39gII to perform sophisticated calculations.

Page 11 of 11 Copyright © 2012, 2013 by Namir Shammas

Observations and Conclusions
This article introduced you to regression analysis calculations with the HP 39gII calculator. You learned

about using the built-in LSQ function. The article also presented functions that prepared the matrices and

vectors used by LSQ to perform multiple regression, polynomial regression, and power fitting. In

addition, these functions included code to calculate the coefficient of determination, which indicates the

goodness of fit. The reader can conclude that the HP 39gII can perform regression calculations with ease

using the built-in LSQ function and the matrix operations. Moreover, the matrix editor is a suitable tool to

enter and edit data used in regression calculations.

The next article shows you how to perform linearized regression between two and three variables.

References

1. Wikipedia article Coefficient of Determination.

2. Wikipedia article Linear Regression.

3. Wikipedia article Simple Linear Regression.

4. Draper and Smith, Applied Regression Analysis, Wiley-Interscience; 3rd edition (April 23, 1998)

5. Neter, Kuther, Wasserman, and Nachtsheim, Applied Linear Statistical Models, McGraw-

Hill/Irwin; 4th edition (February 1, 1996).

6. Fox, Applied Regression Analysis and Generalized Linear Models, Sage Publications, Inc; 2nd

edition (April 16, 2008).

7. Montgomery, Peck, and Vining, Introduction to Linear Regression Analysis, Wiley-Interscience;

4th edition (2006).

8. Seber and Lee, Linear Regression Analysis, Wiley; 2nd edition (February 5, 2003).

