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Abstract 

In this paper, we propose a single-polynomial approximation to the normal 

cumulative distribution function, as also that of the inverse of the normal cumulative 

distribution function too, using this polynomial. Our approximation has significantly less 

absolute error of approximation relative to other popular approximations available in 

the literature, including the recent improved approximation achieved by Aludaat K. M. 

& M. T. Alodat (2008). This paper is motivated by the powerful polynomial 

approximation operator of Sahai (2004), which uses a probabilistic approach. We 

compare all the competing approximations empirically, relative to the relevant exact 

values, via calculating their respective Percentage Absolute Relative Errors. 
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1.  Introduction 

The problem of approximation arises in many areas of science and engineering in 

which numerical analysis and computing are involved. In 1885, Weierstrass proved his 

celebrated approximation theorem: if f ε C [a, b]; for every δ > 0; there is a polynomial 

„p‟ such that f - p  < δ.  

This result marked the beginning of mathematicians‟ interest in „polynomial 

approximation of an unknown function using its values generated experimentally or 

known otherwise at certain chosen „Knots‟ of interest in the domain of relevant variable. 

Later, Russian mathematician S. N. Bernstein proved the Weierstrass‟ approximation 

theorem in a manner which was very stimulating and interesting in many ways.  

He first noted a simple but important fact that if the Weierstrass‟ theorem holds 

for C [0, 1], it also holds for C [a, b] and conversely. Essentially C [0, 1] and C [a, b] are 

identical, for all practical purposes, as they are linearly isometric as normed spaces and 

order isomorphic as algebras (rings).  

Perhaps the most important contribution in Bernstein‟s proof of this theorem 

consisted in the fact that Bernstein actually displayed a sequence of polynomials that 

approximate a given function f(x) ε C [0, 1]. If f (x) is any bounded function on C [0, 1], 

the sequence of Bernstein‟s Polynomials for f (x) is defined by: 

)))((( xfBn

nk

k nk nkfw
0 , )/(*                  (1.1) 
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Where, =  are the respective weights for the values „f (k/n)‟ of the 

function at the knots” (k/n)” [k = 0 (1) n].  

 The most significant fact to be noted, at this stage, is that any polynomial is such a 

„nice‟ continuous function. The polynomials are infinitely integrable and may be 

differentiated arbitrarily many times till they cease to exist. 

Thus, our proposed single-polynomial approximation of the normal distribution 

function will not only be more efficient than existing approximations but will also be very 

easy to calculate, even with a pocket calculator.  

We proceed to introduce this in what follows. 

Let X be the standard normal random variable, i.e., a random variable with the 

following probability density function. 

 

f (x) = (1/√ (2π)) exp (-x
2
/2);   - ∞ < x < ∞.                        (1.2) 

 Hence, the distribution function [F(x) = P (X < x)] for the standard normal random 

variable X is: 

dtxF
x

-

2 )2/ t (- exp )2(1/)(
                (1.3) 

The aim of this paper is to achieve a single-polynomial approximation for 

approximating F (x) in (1.3) above, and the inverse distribution function F
-1

 (x)= IF(x) 

(Say), for the standard normal distribution. 
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2. The Efficient Probabilistic Polynomial Approximation Operator of Sahai (2004). 

 We know that for the standard normal distribution, the value of the distribution 

function F (x) for x=3.0 happens to be: 

 F (3.0) = 0.9987 = 0.5 + dxx )2/exp(.)2/1( 2

0.3

0

               (2.1) 

 Hence, for our proposed polynomial-approximation the target is effectively: ≈ 

 ≈ dxx )2/exp(.)2/1( 2

0.3

0

≡ dxx )*)5.4(exp(.)2/3( 2

1

0

                      (2.2) 

 Now, this conforms to the ambit-interval C [0, 1] of Sahai (2004)‟s “computerizable 

quadrature-polynomial formula using the probabilistic approach”. It is desirable, for 

ease of reference, to detail here the genesis of this „simple probabilistic polynomial 

approximator‟ to be used for our target as in (2.1), above. 

 

As such, the interval of integration happens to be [0, 1], while x0= 0 and xn= 1. We 

consider the equidistant nodes: xi= (i/n); i= 0, 1, 2. . . n.             (2.3) 

 

Now, considering the line [0, 1], let us visualize a randomly sitting point x on it. It is 

obvious that the probability of a point on this line being less than x (on its left, on the 

line) is x, whereas the probability of a point on this line being more than x (on its right, 

on the line) is 1 - x, i.e., P(X < x) = x and P(X > x) = 1 – x.                        (2.4) 
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Hence, the expected number of points out of n equidistant-points on the line which 

are on the left of the point x (or smaller than x) will be nx, and the expected number of 

points out of n equidistant points on the line which are on the right of the point x (or 

greater than x) will be (n – n.x) or equivalently n (1 – x). 

 

Now, to devise the weight function „Ak (x)‟ associated with the node xk, we simply 

place it in the shoes of x. However, we know that according to our choice of the n + 1 

nodes in (2.3), for any node xk there are k nodes on the left of the node xk, and that there 

are (n – k) nodes on the right of the node xk. Consequently, in this probabilistic setup, the 

probability of our choice of the node xk is 

kn

xn

k

nx )1.(
*

n

n
/ ≡ 

kn

xn

k

nx )1.(
*  = Ak (x)  [As 1

n

n
]              (2.5) 

The equation in (2.5) might well be expressed in terms of the well-known Gamma 

functions for computational purposes to accommodate any real value of x in [0, 1].  

Therefore, the „probabilistic polynomial approximator‟ for the distribution 

function F (x), as in (2.2) (resulting from using the aforesaid probabilistic perspective of 

polynomial approximation) is simply: 

F (x) ≈ 0.5 +

x

0

nk

k kk dxxfxA
0

).(*)( ; wherein f (xk) =
2)(*)5.4(exp()2/1.(3 kx   (2.6) 

The last integral in (2.2) has no closed form. Most basic statistical books give the 

values of this integral for different values of x in a table called the standard normal table. 
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From this table we can also find the value of x when Φ(x) is known. Several authors gave 

approximations using polynomials (Chokri, 2003; Johnson, 1994; Bailey, 1981; Polya, 

1945). 

These approximations give quite high accuracy, but computer programs are 

needed to obtain their values and they have a maximum absolute error of more than 

.003. Only the Polya's approximation 

F (x) = 0.5*[1+√ (1- exp ((-2/π)*x
2
)]                            (2.7) 

has one-term to calculate, while the others need more than one term. They are reviewed 

in Johnson et al. (1994) as follows: 

1. Let F1 (x) ≈  1 – 0.5*( a1 + a2 x + a3 x
2
 + a4 x

3
 + a5 x

4
 + a6 x

5
)

-16
; wherein,           (2.8) 

a1 = 0.9999998582, a2 = 0.487385796,    a3 = 0.02109811045, a4  = 0.003372948927,  

a5 = 0.00005172897742, and a6 = 0.0000856957942. 

2. Let F2 (x) ≈ 1- (2. π)
-1/2

 * exp (- 0.5 x
2
 - 0.94 x

-2
), [x ≥ 5.5/ Thus. excluded!]  (2.9) 

3. Let F2 (x) ≈ exp (2*y) / (1 + exp (2*y)),   y = 0.7988.x (1 + 0.04417. x
2
).         (2.10) 

4. Let F3 (x) ≈ 1 – 0.5*exp [- (83*x +351)*x + 562) / (703/x + 165)].                    (2.11) 

5. Let F4 (x) ≈ 0.5*[1 + √ (1 - exp (-√(π/8)*x
2
))]                     (2.12)  

                        Whereas the approximation in (2.12) was proposed by Aludaat and Alodat 

(2008) as an improvement of that by Polya‟s in (2.7), all the other approximations need 

computer programs to calculate, since their inverse functions are quite intricate and 

implicit.  
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Now, using our probabilistic polynomial approximation as in (2.6) with n=8 [i.e. „9‟ 

knots], we get the 8
th

.-degree polynomial:  

nk

k kk xfxA
0

)(*)( =1.196826841-0.0144665656.x–5.0871271.x
2
–2.3574816544.x

3
+ 

1.32473472.x
4
– 18.16066369. x

5 
–5.33531361.x

6
+12.93269242.x

7
–4.485957222.x

8
. (2.13) 

And hence, using (2.6), we get the following single-polynomial approximation to the 

distribution function of the standard normal, a ninth-degree polynomial: 

6. Let F5 (x) ≈ 0.5 + 

x

0

nk

k kk dxxfxA
0

).(*)( = 0.5 + 1.196826841.x – 0.00723328282.x
2 

– 

1.695709047.x
3
- 0.5893704135.x

4
 + 0.264946944.x

5 
– 3.026777282.x

6 
- 

0.7621876586.x
7 
+ 1.616586552.x

8
 –  0.4984396913.x

9
.                                 (2.14) 

   Now, as mentioned earlier in the introduction, we will take up the 

approximation of the inverse distribution function” F
-1

(p) [F (x) = p ≈ F
-1

(p) =x (where 0 

≤ p ≤ 1)]. This will have many applications in practical situations. One such application 

will be in generating random x-values for standard Normal variate.  

                      The probability p (0 ≤ p ≤ 1) may be generated using a random-number 

generator from the Uniform Distribution U [0, 1]. Suppose we would have generated p1,  

p2, p3, …, pn that could be used to generate the standard Normal Variates: { xα; α = 1(1) 

n}, using the inverse distribution Function for the Standard Normal distribution, namely 

“F
-1

(pα)” [α = 1 (1) n]. Therefore we now consider the approximations to F
-1

(p) in what 

follows. As F1 (x) in (2.8) would have infinite terms, it could not be expressed in a closed 

form via a finite degree polynomial.  
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In a „Closed form‟, it would very implicit and tedious to generate a good approximation 

to the inverse function, F
-1

[1] (p). Hence we consider only the approximations to the 

inverse functions, say F
-1

[I] (p); I = 2 (1) 5 in (2.10), (2.11), (2.12) and (2.14), as follows. 

F
-1

[2] (p) = Real Root [Between 0 to 2] of the equation: ~  

0.7988. x. (1+0.04417.x
2
) = {log (p) – log (1-p)}/2.          (2.15) 

F
-1

[3] (p) = Real Root [Between 0 to 2] of the equation: ~ 

    (83.x + 351).x +562 + ((703/x) + 165). (log (2-2.p)) = 0.         (2.16) 

 

F
-1

[4] (p) =√ [- log (1- (2.p-1)
2
)/ √ (π/8)]               (2.17) 

 

And;   F
-1

[5] (p) = Real Root [Between 0 to 2] of the equation: ~ 

    F5 (x) - 0.5 = p.  [F5 (x), as per (2.14)]                   (2.18) 

 

3.   A Numerical Comparison of the Approximations to F (x) and F
-1

(p). 

In this section, we compare the exact value of F (x) with its approximated 

ones, namely F1 (x), F2 (x), F3 (x), F4 (x), and F5 (x) [As per their expressions in 

equations (2.8), (2.10), (2. 11), (2.12), and (2.14), in the preceding section. The comparison 

is afforded per their numerical values so calculated vis-à-vis the exact value of F (x), for 

each of the illustrative example-values of „x‟ (= 0.1, 0.3, 0.6, 1.0, 1.5, and 2.0), respectively. 

These values are tabulated in the „Table A.1‟ given in the APPENDIX. The 

following „Table A.2‟ displays the values of Abs. Per. Rel. Error [APRE] For Various 

Approximating Functions F (•) (x).  
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Wherein; APRE [F (J) (x)] =
)(

%100*)())((

xF

xFxJF
; J = 1 (1) 5. The most 

favourable „approximation F (•) (x)‟s value/ APRE value has been highlighted.  

It is quite evident that our proposed approximation F5 (x) is doing rather 

well, and is consistently better than that by Aludaat and Alodat (2008) approximation F4 

(x)! 

  Similarly, we compare the exact value of F
-1

(p) with its 

approximated ones, namely F
-1

[2] (p), F
-1

[3] (p), F
-1

[4] (p), and F
-1

[5] (p) [As per their 

expressions in equations (2.15), (2. 16), (2.17), and (2.18), in the preceding section. The 

comparison is afforded per their numerical values so calculated vis-à-vis the exact value 

of F
-1

 (p), for each of the illustrative example-values of „p‟ (=0.539828, 0.617911, 0.725747, 

0.841345, 0.933193, and 0.977250), respectively, tabulated in „Table A.3‟ in the 

APPENDIX.  

The following „Table A.4‟ displays the values of Abs. Per. Rel. Error [APRE] 

for various approximating functions F
-1

 (•) (p). Wherein; APRE [F
-1

 (J) (p)] = 

=
)(

%100*)())((

1

11

pF

pFpJF

; J = 1 (1) 5. The most favourable „approximation F
-1

 (•) (p)‟s 

value/ APRE value has been highlighted; making it evident that our proposed 

approximation “F
-1

[5] (p)” is doing rather well, and is consistently better than that by 

Aludaat and Alodat (2008) approximation F4 (x)! 
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APPENDIX. 

Table A.1: Values of Various Approximating Functions F (•) (x) & Actual Value of 

Normal Feller Function F (x). 

x-values → 

Apxg. Fns. ↓ 

0.1 0.3 0.6 1.0 1.5 2.0 

F (1) (x) 0.538972 0.615312 0.719751 0.830390 0.919689 0.966501 

F (2) (x) 0.539873 0.618028 0.725877 0.841331 0.933053 0.977240 

F (3) (x) 0.539872 0.617933 0.725693 0.841280 0.933172 0.977250 

F (4) (x) 0.539519 0.617088 0.724700 0.841184 0.934699 0.979181 

F (5) (x) 0.539823 0.617895 0.725733 0.841330 0.933179 0.977234 

F (x)-Values:  0.539828 0.617911 0.725747 0.841345 0.933193 0.977250 

 

Table A.2: Values of Abs. Per. Rel. Error [APRE] For Various Approximating Functions 

F (•) (x).  

x-values → 

Apxg. Fns. ↓ 

0.1 0.3 0.6 1.0 1.5 2.0 

APREF (1) (x) 0.158569 0.420611 0.826183 1.302082 1.447075 1.099923 

APREF (2) (x) 0.008336 0.018935 0.017913 0.001664 0.015002 0.001023 

APREF (3) (x) 0.008151 0.003560 0.007440 0.007726 0.002250 0.000000 

APREF (4) (x) 0.057240 0.133191 0.144265 0.019136 0.161381 0.197595 

APREF (5) (x) 0.000926 0.002589 0.001929 0.001783 0.001500 0.001637 

 

Table A.3: Values of Approximating Inverse Functions F
-1

(•) (p) & Actual Value of The 

Inverse Function F
-1

(p). 

p-values → 

Apxg. Fns. ↓ 

0.539828 0.617911 0.725747 0.841345 0.933193 0.977250 

F
-1

 (2) (p) 0.099887 0.299694 0.599611 1.000057 1.501082 2.000184 

F
-1

 (3) (p) 0.099889 0.299943 0.600163 1.000269 1.500158 2.000006 

F
-1

 (4) (p) 0.100785 0.302171 0.603140 1.000658 1.486901 1.965099 

F
-1

 (5) (p) 0.100013 0.300041 0.600043 1.000061 1.500110 2.000288 

F
-1

(p)-Values:  0.100000 0.299999 0.600000 1.000001 1.500002 2.000002 
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Table A.4: Values of Abs. Per. Rel. Error [APRE] For Various Approximating Functions 

F (•) (x)  

p-values → 

Apxg. Fns. ↓ 

0.539828 0.617911 0.725747 0.841345 0.933193 0.977250 

APREF
-1

 (2) (p) 0.113000 0.101667 0.064833 0.005600 0.072000 0.009100 

APREF
-1

 (3) (p) 0.111000 0.018667 0.027167 0.026800 0.010400 0.000200 

APREF
-1

 (4) (p) 0.785000 0.724002 0.523333 0.065700 0.873399 1.745148 

APREF
-1

 (5) (p) 0.013000 0.014000 0.007167 0.006000 0.007200 0.014300 

F
-1

(p)-Values:  0.100000 0.299999 0.600000 1.000001 1.500002 2.000002 

 


