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The integral of the standard normal distribution function is an integral without solution and
represents the probability that an aleatory variable normally distributed has values between
zero and x. The normal distribution integral is used in several areas of science. Thus, this work
provides an approximate solution to the Gaussian distribution integral by using the homotopy
perturbation method (HPM). After solving the Gaussian integral by HPM, the result served as
base to solve other integrals like error function and the cumulative distribution function. The error
function is compared against other reported approximations showing advantages like less relative
error or less mathematical complexity. Besides, some integrals related to the normal (Gaussian)
distribution integral were solved showing a relative error quite small. Also, the utility for the
proposed approximations is verified applying them to a couple of heat flow examples. Last, a
brief discussion is presented about the way an electronic circuit could be created to implement the
approximate error function.

1. Introduction

Normal distribution is considered as one of the most important distribution functions in
statistics because it is simple to handle analytically, that is, it is possible to solve a large
number of problems explicitly; the normal distribution is the result of the central limit
theorem. The central limit theorem states that in a series of repeated observations, the
precision of the approximation improves as the number of observations increases [1]. Besides,
the bell shape of the normal distribution helps to model, in a practical way, a variety of
random variables. The normal (or gaussian) distribution integral has a wide use on several
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science branches like: heat flow, statistics, signal processing, image processing, quantum
mechanics, optics, social sciences, financial mathematics, hydrology, and biology, among
others. Normal distribution integral has no analytical solution. Nevertheless, there are several
methods [2] which provide an approximation of the integral by numerical methods: Taylor
series, asymptotic series, continual fractions, and some other more. Numerical integration is
expensive in computation time and it is only good for numerical simulations; in several cases
the power series require many terms to obtain an accurate approximation; this fact makes
them a numerical tool exclusive for computational calculations, which are not adequate for
quick calculations done by hand.

The Homotopy Perturbation Method [3–10] was proposed by He, it was introduced
like a powerful tool to approach various kinds of nonlinear problems. As is well known, non-
linear phenomena appear in a wide variety of scientific fields, such as applied mathematics,
physics, and engineering. Scientists in these disciplines are constantly faced with the task of
finding solutions of linear and nonlinear ordinary differential equations, partial differential
equations, and systems of nonlinear ordinary differential equations. In fact, there are several
methods employed to find approximate solutions to nonlinear problems such as variational
approaches [11–16], Tanh method [17], exp-function [18], Adomian’s decomposition method
[19, 20], and parameter expansion [21]. Nevertheless, the HPM method is powerful, is
relatively simple to use, and has been successfully tested in a wide range of applications
[15, 22–29]. The homotopy perturbation method can be considered as combination of the
classical perturbation technique and the homotopy (whose origin is in the topology), but has
eliminated the limitations of the traditional perturbation methods [30]. The HPM method
does not need a small parameter or linearization, in fact it only requires few iterations for
getting highly accurate solutions. Besides, the HPM method has been used successfully for
solving integral equations, for instance, the case of the Volterra integral equations [31]. The
method requires an initial approximation, which should contain as much information as
possible about the nature of the solution. That often can be achieved through an empirical
knowledge of the solution. Therefore, we propose the use of the homotopy perturbation
method to calculate an approximate analytical solution of the normal distribution integral.

In this work the HPM method is applied to a problem having initial conditions.
Nevertheless, it is also possible to apply it to the case where the problem has boundary
conditions; here, the differential equation solutions are subject to satisfy a condition for
different values of the independent variable (two for the case of a second order equation) [32].

This paper is organized as follows. In Section 2, we solve the normal distribution
integral (NDI) by HPM method. In Section 3, we use the approximated solution of NDI
to establish an approximate version of error function, and the result is compared to other
analytic approximations reported in the literature. In Section 4, a series of normal distribution
related integrals are solved. In Section 6, two application problems for the error function are
solved. In Section 7, we summarize our findings and suggest possible directions for future
investigations. Finally, a brief conclusion is given in Section 8.

2. Solution of the Gaussian Distribution Integral

This section deals with the solution of the Gaussian distribution integral; it is represented as
follows:

y(x) =
∫x

0
exp
(
−πt2

)
dt, x ∈ �. (2.1)
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This integral can be reformulated as a differential equation

y′ − exp
(
−πx2

)
= 0, x ∈ �. (2.2)

Evaluating the integral (2.1) at x = 0, the result will be zero, therefore, the initial condition
for the differential equation (2.2) should be y(0) = 0.

To apply the homotopy perturbation method, the next equation is created

(
1 − p

)(
G
(
y
) −G

(
yi

))
+ p
(
y′ − exp

(
−πx2

))
= 0, (2.3)

where p is the homotopy parameter. The solution for (2.2) is similar, qualitatively, to a
hyperbolic tangent because when x tends to ±∞, the derivative y′ tends to zero, hence
by symmetry, y tends to the same constant (absolute value) on both directions. Therefore,
it is desirable that the first approach of the HPM method contains a hyperbolic term.
In consequence, a differential equation is established (G(y)) that may be solved using
hyperbolic tangent, which is given by

G
(
y
)
=
(
1 + c2x2

) d

dx
y(x) −

(
d − y(x)2

d

)(
a + ac2x2 + bc

)
. (2.4)

Also, the initial approximation for homotopy would be

yi(x) = d tanh(ax + b arctan(cx)), (2.5)

where a, b, c, and d are adjustment parameters.
Now, by the HPM it is assumed that (2.3) has the following form:

y(x) = y0(x) + py1(x) + p2y2(x) + . . .. (2.6)

Adjusting p = 1, the approximate solution is obtained

y(x) = y0(x) + y1(x) + y2(x) + . . . . (2.7)

Substituting (2.6) into (2.3) and equating terms with powers equals to p, it can be solved for
y0(x), y1(x), y2(x), and so on. In order to fulfill the initial condition from (2.2) (y(0) = 0), it
follows that y0(0) = 0, y1(0) = 0, y2(0) = 0, and so on. Thus, the result is

y0(x) = d tanh(ax + b arctan(cx)), (2.8)

where a = −39/2, b = 111/2, c = 35/111, and d = 1/2; these parameters are adjusted
(using the NonlinearFit command from Maple Release 15) to obtain a good approximation;
this adjustment allows to ignore successive terms. (Given a total of k-samples from the
exact model, the NonlinearFit command finds values of the approximate model parameters



4 Mathematical Problems in Engineering

−0.5
−0.4
−0.3
−0.2
−0.1

0.1
0.2
0.3
0.4
0.5

−4 −3 −2 −1 1 2 3 4

x

Exact (1)

Equation (9)

(a)

×10−6

−175
−150
−125
−100
−75
−50
−25

25

−4 −3 −2 −1 1 2 3 4

x

(b)

Figure 1: (a) Gaussian distribution integral and approximation. (b) Relative error.

such that the sum of the squared k-residuals is minimized.) Therefore, the proposed
approximation for (2.1) is

y(x) =
∫x

0
exp
(
−πt2

)
dt ≈ 1

2
tanh

(
39x
2

− 111
2

arctan
(
35x
111

))
, −∞ ≤ x ≤ ∞. (2.9)

Also, it is known that solution for (2.1) may be expressed in terms of the error function

y(x) =
1
2
erf
(√

πx
)
, (2.10)

where the error function is defined by

erf(x) =
(

2√
π

)∫x

0
exp
(
−t2
)
dt. (2.11)

Figure 1(a) shows the approximate solution (2.9) (continuous line) and the exact solution
(2.1) (diagonal cross), and Figure 1(b) shows the relative error curve.

In Figure 1 it can be seen that the maximum relative error is negligible for many
practical applications in fields like engineering and applied sciences. In fact, the precision
of this approximation allows to derive (2.9) with respect to x and graphically compare it to
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Figure 2: (a) (2.11) and exact function exp(−πx2). (b) Relative error.

the exact function exp(−πx2), as shown in Figure 2(a), reaching an acceptable relative error
(see Figure 2(b)) in the range of −1.3 ≤ x ≤ 1.3. Therefore,

y′(x) ≈ 3
(
16428 + 15925x2)[exp(−39x + 111 arctan(35x/111))

]
(12321 + 1225x2)

[
exp(−39x + 111 arctan(35x/111)) + 1

]2 , −∞ ≤ x ≤ ∞. (2.12)

From this approximation it is possible to generate normal distribution functions like the error
function or the cumulative distribution function.

3. Error Function

From (2.9) and (2.10) it can be concluded that

erf(x) = 2y
(

x√
π

)
≈ tanh

(
39x
2
√
π

− 111
2

arctan
(

35x
111

√
π

))
, −∞ ≤ x ≤ ∞. (3.1)
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Figure 3: (a) Error function erf(x) and approximations. (b) Relative error for each approximation.

Now, function (3.1) is readjusted using the NonlinearFit command, then the command
“convert” (with option “rational”) (by using Maple 15) is applied in order to obtain an
optimized version of (3.1):

erf(x) ≈ tanh
(
4907x
446

−
(
1775
3

)
arctan

(
34x
191

))
, −∞ ≤ x ≤ ∞. (3.2)

Next, three different approximations for the error function are presented; all of them are
compared to the approximations proposed in this work ((3.1) and (3.2)).

(1) In [33] it was presented the following approximation

erf(x) ≈
√
1 − exp

[(
− 4
π

+ 0.14x2
)
(1 + 0.14x2)x2

]
, x ≥ 0. (3.3)
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Figure 4: (a) Cumulative distribution function (4.1) and approximations (4.3) and (4.5). (b) Relative error
for each approximation x ∈ [−3, 0]. (c) Relative error for each approximation x ∈ [0, 4].

Due to the fact that (3.3) is only useful for values x � 0, it is considered a disadvantage
because it limits variation over x axis.

(2) In [34], it was reported an approximation related to the function error, which is
expressed as

F(x) =
∫∞

x

exp

(
− t

2

2

)
dt, x ∈ �. (3.4)

The approximation for (3.4) is

P(x) = P0 + x−1

⎧⎪⎨
⎪⎩exp

(
−x

2

2

)
−
⎡
⎣P 2

0x
2 +

exp
(−x2/2

)(
1 + bx2)1/2

1 + ax2

⎤
⎦

1/2
⎫⎪⎬
⎪⎭, (3.5)
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where

P0 =
(π
2

)1/2
, a =

(
1 +
(
1 − 2π2 + 6π

)1/2)
2π

, b = 2πa2. (3.6)

In order to compare our work with (3.5), consider

F(x) =
∫∞

x

exp

(
− t

2

2

)
dt = −

√
π

2
erf
(

x√
2

)
+
√

π

2
. (3.7)

Replacing P(x) for F(x), it is obtained that

P(x) ≈ −
√

π

2
erf
(

x√
2

)
+
√

π

2
, (3.8)

for solving erf(x/
√
2),

erf
(

x√
2

)
≈ 1 −

√
2
π
P(x). (3.9)

From (3.9), the conclusion is

erf(x) ≈ 1 −
√

2
π
P
(√

2x
)
, (3.10)

where P(
√
2x) is calculated from (3.5).

(3) In [2]was reported an approximation of the normal distribution integral, which is
transformed into an error function

erf(x) ≈ tanh

(
2x
(
1 + 0.089430x2)

√
π

)
. (3.11)

Figure 3(a) shows the exact error function contrasted to (3.1), (3.2), (3.3), (3.10), and (3.11),
finding a high level of accuracy for all five approximations. Besides, Figure 3(b) shows the
relative error for the five approximations, where (3.10) has the lowest relative error followed
by (3.1) and (3.2), while (3.11) has the highest relative error.

4. Cumulative Distribution Function

The cumulative distribution function [2] is defined as

Φ(x) =
∫x

−∞
φ(t)dt =

1
2

(
1 + erf

(
x√
2

))
, (4.1)
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Figure 5: Scheme for Example 1.

where φ(x) is the standard normal probability density function defined as follows:

φ(x) =
1√
2π

exp

(
−x2

2

)
. (4.2)

From (3.1) and (4.1) it can be concluded that

Φ(x) ≈ 1
2
tanh

(
39x

2
√
2π

− 111
2

arctan
(

35x

111
√
2π

))
+
1
2
, −∞ ≤ x ≤ ∞. (4.3)

Then, the process applied to (3.1) is repeated to convert coefficients of (4.3) into fractions.
The result is an approximate version of (4.3) now in fractions, which is given by

Φ(x) ≈ 1
2
tanh

(
179x
23

− 111
2

arctan
(
37x
294

))
+
1
2
, −∞ ≤ x ≤ ∞, (4.4)

where, converting the result into exponential terms and performing simplification, the
expression becomes

Φ(x) ≈
[
exp
(
−358x

23
+ 111 arctan

(
37x
294

))
+ 1
]−1

, −∞ ≤ x ≤ ∞. (4.5)

Figure 4(a) shows the cumulative distribution function versus (4.3) and (4.5), it can
be seen a higher level of accuracy in both approximations, except for region x < −3, where
values of Φ(x) are close to zero.

5. Table for Normal Distribution Function-Related Integrals

In [2] are shown a series of integrals without exact solution, these involve the use of the
cumulative distribution function (4.1), and the standard normal probability density function
(4.2). The cumulative distribution function is replaced for its approximate version (4.5) to
generate the integrals in Table 1.

For illustrative purposes, we have chosen values for a, b, c, C, k, and n to be able
to calculate the relative error between the exact and approximate solutions. Thus, to obtain
a new solution, it can be done assigning a new value to the desired constant, or constants,
and perform the required calculations. In this case, the approximate version with coefficients
expressed as fractions (4.5) for the cumulative distribution function (4.1) was employed
in order to make simple manual calculations easier. Nevertheless, it is also possible to use
approximation (4.3).
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6. Application Cases

As an example to apply the error function, two cases are considered for the unidimensional
heat flow equation.

6.1. Example 1

Consider the case for a thin semi-infinite bar (x � 0)whose surface is isolated (see Figure 5);
it has a constant initial temperature To. Suddenly, zero temperature is applied at the x = 0
end and is kept at that value. It is attempted to determine the temperature distribution for
the bar, T(x, t), at any point x and time t. This problem will be solved using techniques from
Fourier integral [35].

From heat flow theory, it is known that T(x, t) should satisfy (heat conduction
equation)

a2 ∂
2T

∂x2
=

∂T

∂t
, (6.1)

where a2 = k, known as thermal diffusivity. It is subject to initial condition u(x, 0) = To
and boundary condition u(0, t) = 0. The method of separation of variables is applied. This
technique assumes that it is possible to obtain solutions in a product fashion

T(x, t) = X(x)Y (t). (6.2)

Replacing (6.2) in (6.1) results in T(x, t) becoming

T(x, t) = exp
(
−kλ2t

)
(A cos(λx) + B sin(λx)), (6.3)

where λ is a separation constant, A and B are constants to be determined.
From boundary conditions follows that A = 0, and since there is no restriction for λ, it

is possible to integrate over λ, replacing B in function B(λ) such that solution to the problem
takes the shape

T(x, t) =
∫∞

0
B(λ) exp

(
−kλ2t

)
sin(λx)dλ, (6.4)

where B(λ) is determined from the following integral equation:

To =
∫∞

0
B(λ) sin (λx)dλ, (6.5)

now, it is possible to express the heat distribution as follows:

T
(
x, y
)
=

2T0
π

∫∞

0

∫∞

0
exp
(
−kλ2t

)
sin(λV ) sin(λx)dλdV, (6.6)
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Figure 6: (a) Graphical comparison between exact (6.9) and approximate (6.10) results. (c)–(h) Relative
error for the considered distance x = {0.1m, 0.2m, 0.3m, 0.4m, 0.5m, 0.6m}.

using

sin(λV ) sin(λx) =
1
2
[cosλ(V − x) − cos λ(V + x)],

∫∞

0
exp
(
−αx2

)
cos
(
βλ
)
dλ =

1
2

√
π

α
exp

(
− β2

4α

)
.

(6.7)
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T(x, 0) = Tf
x

T(0, t) = Ts

Figure 7: Scheme for Example 2.

It is possible to express (6.6) in terms of the error function

T(x, t) =
2To√
π

∫x/2
√
kt

0
exp
(
−w2
)
dw, (6.8)

or

T(x, t) = To erf
(

x

2
√
kt

)
. (6.9)

Expressing (6.9) in terms of the approximate solution, given by (3.1), we obtain

T(x, t) ≈ To tanh
(

19.5x

2
√
πkt

− 55.5 arctan
(

35x

222
√
πkt

))
. (6.10)

Figure 6 shows how temperature varies for a certain distance (expressed in meters) and time
(measured in seconds); temperature is expressed in Kelvin. Thermal diffusivity parameter
(k) employed for this example is 1.6563E − 4m2/s which belongs to silver, pure (99.9%).

6.2. Example 2

Another interesting example of heat flow is the nonstationary flux in an agriculture field due
to the sun (Figure 7). Suppose that the initial distribution of temperature on the field is given
by T(x, 0) = Tf , and the superficial temperature Ts is always constant [36].

Let the origin be on the surface of the field, in such a way that the positive end for x
axis points inward the field. For symmetry reasons, it is possible to consider T as a function of
x and time t T(x, t). The temperature distribution is governed, again, by (6.1). It is subject to
conditions T(0, t) = Ts and T(x, 0) = Tf . Unlike Example 1, (6.1) is expressed as an ordinary
single variable second-order differential equation using the substitution

V (u) = T(x, t), (6.11)

where

u = u(x, t) =
x

2a
√
t
. (6.12)
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This substitution immediately converts (6.1) into

d2V (u)
du2

= −2udV (u)
du

. (6.13)

Integrating (6.13) leads to the following:

V (u) = C1

∫u

o

exp
(
−p2
)
dp + C2, (6.14)

where C1 and C2 are integration constants.
Using (2.11) and (6.12), it is possible to express (6.14) in terms of the error function by

T(x, t) = C1 + C2 erf
(
1
2

x

a
√
t

)
. (6.15)

Determining C1 and C2 constants results from applying the initial and boundary conditions,
such that the final result is given as

T(x, t) =
(
Tf − Ts

)
erf
(
1
2

x

a
√
t

)
+ Ts. (6.16)

The approximate solution is obtained by substituting (3.1) in (6.16) as follows:

T(x, t) ≈ (Tf − Ts
)
tanh

(
19.5x
2a

√
πt

− 55.5
(

35x
222a

√
πt

))
+ Ts. (6.17)

Figure 8 shows how temperature varies in depth; values are in meters. The temperature is
in Kelvin, and time is measured in seconds. For this case, field temperature is Tf = 285◦K,
surface temperature is Ts = 300◦K, and the thermal conductivity value is k = a2 = 0.003m2/s.

7. Discussion

This paper presents the normal distribution integral as a differential equation. Then, instead
of using a traditional linear function L in HPM, a nonlinear differential equation G is used
which has analytic solution (qualitatively related to the solution of the normal distribution
integral). This is done to initiate the HPM method at the “closest” point to the solution. In
fact, in the research area of homotopy continuation methods [37–40], it is well known that
when the homotopy parameter is p = 0, the solution of the homotopy function must be trivial
or simple to solve. Hence, it is possible to use a nonlinear differential equation G instead
of L as long as the differential equation G has an analytic solution (at p = 0). The arctan
function nested into the tanh function helps to establish a better approximation for the normal
distribution integral. Then, the HPMmethodwas successfully applied on the treatment of the
normal distribution integral. From this result other related integrals were calculated, finding
that the maximum relative error for the Gaussian integral was less than 180E−6 (Figure 1(b)).
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Figure 8: (a) Graphical comparison between exact (6.16) and approximate (6.17) results. (b)–(f) Relative
error for the considered distance x = {0.01m, 0.05m, 0.1m, 0.2m, 0.3m} expressed in meters.

For the case of the approximate error function (3.1) and (3.2), the relative error was less than
200E − 6 (Figure 3(b)), and for the cumulative error function the maximum error for region
x > 0 was less than 90E − 6 (Figure 4(c)). Therefore, those approximations have a high level
of accuracy, comparable to other approximations found in the literature; nevertheless, the
proposed approximations in this work have such mathematical simplicity that allows to be
used on practical engineering applications where the relative error does not represent a severe
constraint.

The approximate solution of the cumulative distribution function was used to solve
some defined and undefined integrals without known analytic solution, showing a low
order relative error. Besides, the approximate error function (3.1) was employed to express,
analytically, the solution for two heat flow problems, obtaining results with low order relative
error.
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Figure 9: Relative error for approximation (7.1) of error function erf(x).

Approximations (2.9), (3.2), and (4.4) have a low order of mathematical complexity
so they become susceptible to be implemented in hardware for analog circuits. Therefore,
approximations for the Gaussian, error, and cumulative functions may be part of a circuit
for analog signal processing. Finally, the necessary blocks to implement some of the normal
distribution functions in a circuit using the current-current mode are as follows:

(1) The hyperbolic tangent was implemented in analog circuits [41].

(2) Arctangent function was implemented in [42].

(3) To multiply a current by a factor, it is only necessary to use current mirrors [43].

(4) The addition or subtraction of constant values is achieved by connecting to the
terminal a positive or negative current, respectively [43].

(5) The addition of constants is equivalent to add constant current sources by using
current mirrors [43].

Finally, after analyzing qualitatively the proposed approximation of this work, it
is possible to establish a better approximation (see Figure 9) to the error function with
hyperbolic tangents nested, resulting in the following:

erf(x) ≈ tanh
(
77x
75

+
(
116
25

)
tanh

(
147x
73

−
(
76
7

)
tanh

(
51x
278

)))
, (7.1)

where values for constants were calculated by means of the same numerical adjustment
procedure employed to calculate (2.9). This approximation for the error function may be
implemented in a circuit easily by means of the repeated use of the analog block for the
hyperboloidal tangent [41] and some current mirrors [43].

8. Conclusion

This work presented an approximate analytic solution for the Gaussian distribution integral
(by using HPM method), the error function and the cumulative normal distribution pro-
viding low order relative errors. Besides, the relative error for the error function is com-
parable to other approximations found in the literature and has the advantage of being a
simple expression. Also, it was possible to solve, satisfactorily, a series of normal distribution-
related integrals, which may have potential applications in several areas of applied sciences.
It was also demonstrated that the approximate error function can be employed on the
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practical solution of engineering problems like the ones related to heat flow. Besides, given
the simplicity of the approximations, these are susceptible of being implemented in analog
circuits focusing on the analog signal processing area.
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