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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

The cumulative binomial distribution B(x;njp) is 

the probability of x or less successes in n trials with p 

the probability of success in a single trialo There is 

no practical and concise procedure for calculating the 

B(xsn,p) for large values of no There is no brief tabular 

presentation of the B(x;n,p) as there is for the cumula­

tive Poisson and normal distributionso Since the binomial 

distribution represents innumerable systems in realityj, 

Individuals using probability theory or mathematical sta­

tistics in many fields need to have the values of BCxjn^p) 

readily availableo 

The B(x;n,p) is tabulated, but the tabulations are 

published in volumes which are necessarily lengthy since 

the tables are double entry tableso For each value of x 

there is a value of B(x5n,p) for each combination of n and 

Po Few individuals will have these specialized volumes 

readily available unless they have frequent need for themo 

If one needs a value for B(x5n,p) for which the 

value of X makes direct calculation impractical^ then one 



must consult a published volume of B(x5n,p) or use an 

approximation of B(x;njp)o The most commonly used ap­

proximations are the cumulative Poisson and the cumula­

tive normal distributionso These approximations are not 

suitable in most instances if an accuracy of three deci­

mal places is requlredo To obtain three-decimal accuracy 

one may use a published volume of B(x;n,p) or a compact 

book of 72 pages, Binomials Normal and Poisson Probabili­

ties, authored and privately published by Ed Sinclair 

Smith (9)0 Smith's book provides procedures with neces­

sary tables and charts for obtaining B(x;n,p) to three-

decimal accuracyo The book uses six procedures for six 

different areas of an n versus p ploto 

There is clearly a need for a practical and con­

cise procedure for obtaining B(x5n,p) to an accuracy of 

three decimal places o Such a procedurej, if included in 

standard statistical reference books, would provide a 

readily available means for obtaining B(xsn,p) to three-

decimal accuracy when the value of x makes direct calcu­

lation impracticalo Thus, values of B(x$n,p) would be 

more generally available to those individuals in the many 

fields who only occasionally need the values and there­

fore do not have the extensive tabulations of B(x5n,p)o 

In the remainder of this chapter the cumulative 

binomial distribution is operationally defined, and the 

currently used approximations to it are discussedo 



The Cumulative_Blnomiaj. Pî  trlbution 

Let the probability that an event will occur be 

denoted by p and the probability that the event will fail 

to occur be denoted by q = 1-p. If the event occurs in a 

given trial, let the trial be termed a success. If the 

event fails to occur, let the trial be termed a failures 

Then if n independent trials are attempted, the 

probability of obtaining precisely x successes may be 

denoted by 

b(x;n,p) = C^ p"" q''"'' . (1-1) 

This is called the binomial Drobabillty distribution or. 

more simply, the bInomial distr1butionc It is also known 

as the Bernoulli distribution in honor of Jacob Bernoulli 

who was one of the first mathematicians to develop proba­

bility theory for discrete variables (7,Po85)o 

To derive the formula for b(x;n,p), first deter­

mine the probability of x consecutive successes followed 

by n-x consecutive failureso Since the n events are inde­

pendent, the probability is 

P-ĵ oP20 o oP^«q^oq20 0 oq^_^ = P q o (1-2) 

The probability of obtaining precisely x successes and n-x 

failures is the same for any other order of occurrence, 

because the same number of p«s and q's would occur in the 



product merely arranged to correspond to the other ordero 

Thus, the number of possible orders times the probability 

of a specific order produces b(x;n,p)o Now the number of 

possible orders is the number of permutations of n items 

taken all at a time when x items (p*s) are alike and n-x 

items (q*s) are alikeo The number of such permutations 

is the same as the number of combinations of n things 

taken x at a time. 

C" = /^^vU vt (7,Po85)o (1-3) x " Cn-x;! xl 

Thus 

b(x;n,p) = C^ p^ q^"^ o 

The name binomial distribution comes from the 

relationship of b(x;n,p) and B(x5n,p) to the following 

binomial expansions 

= B(n;n,p) 

n 
Z b(x;n,p) 0 (1=4) 

x=0 

The first term of the binomial expansion as shown is the 

probability of 0 successes out of n independent trials 

b(0;n,p); the second term is equal to b(l;n,p); and in 



general the r+lst term is equal to b(r5n.p)o The sum of 

the first r+1 terms is equal to the probability of r or 

less successes in n independent trials, B(r5n,p) (7,Po86) 

Now the probability that x or less successes will 

occur in n independent trials is called the cumulative 

binomial probability distribution, or, more simply, the 

cumulative blnomialo The cumulative binomial may be 

denoted by 

T̂  / \ _ n r n-r / T r- N 
B(x;n,p) = Z c p q o (1-5) 

r=0 ^ 

Direct Computation of the Cumulative Binomial 

To compute B(x5n,p) directly is not practical when 

the values of n and x make the computation of many terms 

necessaryo For instance, to compute B(1000;2000,p) would 

require the computation of 1001 individual point binomial 

terms and then the summing of the 1001 terms as shown by 

the equation 

1000 
B(1000;2000,p) = Z b(r;2000,p) 

r=0 

"̂ r̂̂  20002 r 2000-r 
I r!(^0(;)6-r)i P ^ r=0 

Such a computation would be indeed tediouso A computation 

of, say, twenty-five terms or more would be tiresomeo 



There is a relation due to the symmetry of the 

binomial expansion which is quite useful when applicableo 

It is 

B(x;n,p) = 1 - B(n-x+l;n,l-p) o (1=6) 

The computation of B(x;n,p) directly requires less compu­

tation using this relation if x is greater than n/2o An 

extreme example is the case B(n-l;n,p)o Then 

B(n-l;n,p) « l-B(0;n,l-p) o 

In this case only one term is computed and subtracted from 

1; whereas, if the relation is not used, n terms are com­

puted and summed0 

If B(xjn,p) is computed directly, a recurrence 

relation makes computation of the individual point bino­

mial terms more efficiento Use as a starting point, 

b(0;n,p) = q" « 

Then, 

b(r+l;n,p) = j ^ ^ ^ b(r;n,p) o (1-7) 

The recurrence relation is applied repeatedly until 

b(x;n,p) is coraputedo The sum of the point binomial terms 

thus computed is the desired B(x;n,p)o 



If equation (1-6) is to be employed, compute 

B(n-x-l;n,l-p) firsto Use as a starting point. 

b(0;n,l-p) = p^ 

Then, 

b(r+l;n,q) = [rll]l b(r;n,q) o (1-8) 

The recurrence relation is applied repeatedly until 

b(n-x-l;n,l-p) is computedo Then the sum of the point 

binomial terms thus computed, which is B(n-x-l;n,l-p), is 

subtracted from 1 to obtain B(x;n,p)o 

The tediousness and, in most cases of large n, the 

impracticality of direct computation of the cumulative 

binomial have led those who need its values to the use of 

published volumes of the function B(x5n,p) and to the use 

of approximationso 

The five most widely used volumes containing tabu­

lations of B(x;n,p) are mentioned here with the extent of 

their tabulationss 

Pearson, Karl, Tables of the Incomplete Beta-

Function. Cambridge? The University Press 

(1934)o This volume provides tabular values 

of the cumulative of the beta distribution 

v̂ (P«^) = 1 - B(p;q+p-l,x) with p and q = 
/ 

Oo5(0o5) 10c5, 11(1)50 and with x = 

Oo01(0o01)l to seven decimal placeso 
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National Bureau of Standards, Tables of the Bino­

mial Probability Distribution, Applied Mathe­

matics Series 6 (1950)« This volume provides 

B(x;n,p) with p = OoOl (Oo01)0o5 and with x 

and n = l(l)50o 

Romig, Harry Co, 50-100 Binomial Tables. New Yorks 

John Wiley and Sons, InCo (1953)o This volume 

provides B(x;n,p) with x = l(l)n, n = 50(5)100, 

and p = 0o01(0o01)0o05o 

"Tables of the Cumulative Binomial Probabilities," 

Ordnance Corps Pamphlet ORDP 20-1^ UoS, Govern­

ment Printing Office (September 1952)o This 

volume provides B(x;n,p) with n = 1(1)150 and 

p = Oo01(0o01)0o5o 

Harvard Computation Laboratory, Tables of the Cumu-

latlve Binomial Probability Distribution^ 

Massachusetts? Harvard University Press (1955) 

This volume provides B(x;n,p) with x - 0(l)n, 

n « 1(1)50(2)100(10)200(20)500(50)1000, and 

p = Oo01(0o01)0o5 and p also equal to ten 

values which are multiples of 1/12 and 1/16 

(4,poXx)o 

Approximation of the Cumulative Binomial 

Most statistical texts discuss the use of the 

normal and Poisson distributions to approximate the 



binomial distributionso However, the empirical rules 

regarding the accuracy of the approximations generally are 

not specific, and are almost as numerous as the textbooks 

containing themo 

Some examples of these empirical rules regarding 

the Poisson approximation followo 

It gives a good approximation for large n and 
very small p (7,Po90)o 

The approximation is good when p is small and 
n is largCo It is generally considered justi­
fiable to use the approximation when p<Ool 
(2,po92)o 

If n>50 while np<5, the approximation is very 
close (10,pol24)o 

Now, some examples of the empirical rules regard­

ing the normal approximation followo 

If n is large and p is not small or large, the 
normal approximation may be used (7,PollO)o 

The approximation is poor for p<l/(n+l) or 
p>n/(n-H) and outside the interval np - 3»'npq<x<np 
+ 3 /npqo It is good for p close to 1/2, and Hald 
indicates it is good if npq>9 (2,po90)o 
It is very good if both np and nq are greater than 
5 (10,pol24)o 

The empirical rules provided in statistical texts 

are generally Inadequate if one desires to approximate the 

binomial distribution to some specific accuracy using 

either the normal or the Poisson distributiono Uspensky 

defines with an inequality the absolute value of the error 

in approximating the cumulative binomial with the cumula­

tive normal plus a correction term (12,pol29)o Smith 

defines, with greater precision than Uspensky*s inequality. 
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the useful limits of the same two-term approximation to 

obtain an accuracy of three decimal places (9,Po31)o 

Uspensky also defines with an inequality the 

absolute error in approximating the cumulative normal with 

the cumulative Poisson as follows? 

error<(e -1) max [P(x,np),1-P(x,np)] 

where 

P(x,np) = cumulative Poisson distribution 

and 

K = "P ^ ̂ (n-npS"P^^^" (12.PPa35-139) 

Smith uses Uspensky*s approximations, together with 

others, to give a full discussion of the approximation of 

the binomial to an accuracy of three decimal placeso He 

also provides an excellent practical discussion of the 

accuracy of the normal and Poisson approximations to the 

blnomialo 

Smith's book is an excellent self-contained and 

compact paper of only 72 pageso It contains all of the 

procedures, graphs, and tables necessary for obtaining the 

cumulative binomial probability to an accuracy of three 

decimal placeso The following summary of procedures is 

taken directly from Smith's book (9,PPo4-6)o 
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SUMMARY OP RECOMMENDED PROCEDURES FOR OBTAINING 
VALUES OP THE CUMULATIVE BINOMIAL PROBABILITY 

WITHIN 3-DECIMAL ACCURACY UNIVERSALLY 

In evaluating the cumulative Binomial probability 

B or B(c,n,p) = I ^\ (^^i^) i,"^ "^ f*or any point 

(c,n,p) in the domains 0<j><̂ l, l^n<«, 0<_c<n, the whole 
domain is divided (see Figo'*l) into six regions* in 
which respective recommended procedures give values of 
B within eOOlo 

In region 1. values of B can be found directly 
from a taole (C5) of cumulative Binomial probabilities 
for l̂ n<̂ 20o If a table of B is available for other 
values' ̂ f n and p, it will of course be used; other­
wise the following approximations to B are available 
for use in the other regions as stated below» Before 
computing any values of these approximations, one can 
refer to graphs of percentage points for oOOl and o999, 
see PigSo 14 and 13 of the report, to see whether it 
is necessary to compute such valueso 

In region 2. one can use the Poisson approximation 

« X -a 
P(c,a) = I ^ by entering a cumulative Poisson 

X^'C ^• 

term table (07) with values of the pair (c,a)o Molina 
has published convenient tables of Poisson terms for 
a=np<^100 which is accordingly taken as the upper limit 
of re'gion 2o For a given n, the maximum error de­
creases as p approaches zero, fro^ oOOl at the right-
hand boundary of this region at p=o008 for n>20o 

In region 3t one can use the approximation 
2 " 

Pg(c,a) = P(c,a) - ^ P(c,a) - 2P(c-l,a) + P(c-2,a) 

where P(0,a) = P(-l,a) = P(-2,a) = 1, by entering the 
cumulative Poisson table with (c,a), (c-l,a) and 
(c-2,a)o This approximation is a 2-term modification 
of the Gram-Charlier series, type Bo The maximum 
error of this approximation decreases from about oOOl 
at p=ol, for n>20, to a much lower value at the stated 
righthand boundary of region 2o While PQ(c,a) can be 
used to the left of the last named boundary with less 
than oOOl error, this is not necessary since the first 
term, P(c,a), alone provides this accuracy theree 

*For p>o5, one uses the relation B(c,n,p) = 1 -
B(n-c+l,n,q) and enters the tables or approximations 
with q instead of po 
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In region 4. one can use the Normal approximation 

N(t ) = f 0(t)dt = o5 -f ^ 0(t)dt where t =(c-a-c5)/a, 
^ Jt io ^ 

° -t^/2 
a=np, a=/npq, q=l-p and 0(t) = -i- ® , by entering 

/27 

a Normal integral table (C6) of values of f 0(t)dt 
Jo 

with values of to The maximum error of this approxi­
mation decreases as n increases and as p approaches o5, 
being about oOOl at p=o5 and n=28 at the lower end of 
the lefthand boundary of region 4o 

In region 5. one can use the following approxima-
tlon which comprises the Normal Approximation, N(t ), 

and the second term of the Gram-Charlier series, type 
A: 

n^it^) » N(t^) - A, 0^^ht^) Where -A, = ̂  == ^ 

and the second derivative 0^^^(t^) = (t ^-1) 0(t )» 
w c c 

One uses t in entering tables (C6) of the Normal 
integral, density and/or second derivative of the 
densityo The error of the approximation N.(t ) does 

not exceed substantially oOOl at the lefthand bound­
ary of region 5o This error decreases as n increases, 
for a given p, and as p approaches o5, for a given no 
While this approximation can be used in region 4 with 
much less than oOOl error, the second term is of 
course not needed there to have the error less than 
oOOlo 

In region 6a one can use the following "remainder" 
modification of the N.(t ) approximation with less 

than 6001 error for plural values of c*: 

^Ar " ̂ ^^c^ ^ a0^^Ut^) + r(t^)/np where a = -A^S » 

-A^(l+s) = -A^(l+Ooll/a^) 

and r(t ) can be obtained from Pigo 9 of the reporto c 

*Por c=0, use B(0,n,p) = 1 and, for c=l and 
2<a<2o5, use B(l,n,p)*l=q"o 
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Alternatively, a can be obtained from Pigo 80 As long 
as ol^<^o5 and a=np>̂ 2, this approximation (N. ) can 

also be used with less than oOOl error for values of n 
outside region 6, but this is not recommended since it 
is simpler to use tables of B for lower n and the 
respective approximation N. or N for higher no The 

approximation N. is the only one, recommended for 

cumulative Binomial probabilities in the report, which 
involves empirical coefficients or curve-fittingo 

Example? To find B(3,25,ol0), for which t =0, np = 

2o5, npq = 2o25 ^ 0^, 0 ^ lo5, -A^ = ^ ^ » ̂ ^ ^ = 

,08889, s = . ^ = 4r^ = o04889 or s can be read from npq 2o25 

the strip scale for either npq or a, a = -A,(l+s) = 

o08889xlo04889 = o093235, and B(3,25,olO) = 0̂ "-̂ (̂O) + 

a0^^\o) + r(0)/2o5, since r=0 from Pigo 9, = o5 + 
(-o39894)(o093235) + 0 = o462805 which is within ,0001 
of e462906, the correct value, (6,ppo4-6) 

Smith's excellent book filled a very definite need 

when published and is still essential for binomial approxi­

mations for values of n greater than 1000o The book is an 

excellent reference book on binomial approximations0 

Since the publication of tables of the cumulative binomial 

in 1955 which extend the range of n to 1000, a book of 

approximation procedures for n in the range from 150 to 

1000 is no longer essentialo 

Need for Concise and Practical Approximation 

The current need is for a practical procedure for 

approximating the cumulative binomial to a reasonable 

accuracy which is concise enough to be suitable for 
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inclusion in standard statistical reference books and in 

books of standard mathematical tables. 

The binomial distribution is a frequency distri­

bution which represents innumerable systems in reality,, 

Many fields of endeavor, certainly including those using 

probability theory or mathematical statistics, need to 

have reasonably accurate values of the cumulative binomial 

probability readily availableo The binomial distribution 

is the correct distribution to use in applying many sta­

tistical quality control techniqueso 

This paper provides a simple, unified procedure 

for approximating the cumulative binomial within an accu­

racy of three decimal places which is concise enough for 

inclusion in standard statistical reference books and in 

books of standard mathematical tableso 

In Chapter II the general approach to the problem 

is presented, and several specific approaches which did 

not lead to acceptable results are discussedo Then in 

Chapter III the investigation of Wilks' coverage of 

asymptotic sampling theory is discussed, leading to the 

concise and practical procedure for approximating the 

cumulative blnomialo This procedure is presented as an 

algorithm in Chapter IV along with recommendations for 

further researcho 



CHAPTER :i 

APPROACHES TO THE PROBLEM 

General Approach 

The factorials in the general form of the binomial 

coefficient make the general form of the binomial distri­

bution not suitable for integrationo Integration of the 

binomial distribution would produce the cumulative blno­

mialo The general approach to the problem was to try to 

find a suitably accurate approximation (accurate to three 

decimal places) to the factorial or to the binomial coef­

ficient which when substituted into the binomial distribu­

tion would permit integration of the distributiono A 

logical starting point was Stirling's formulae 

Stirling's formula 

The last few steps of one method for deriving 

Stirling's formula are as followso An expression for n! 

is obtained? 

n! = A n"-̂ l/2 ^-n+e/(12n) (2=1) 

where A and 6 are unknown constants 

16 
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This value for factorials neglecting the quantity 0/(12n) 

is substituted into the following formula of Wallis. 

lim 2^^inl)^ 

n-»-« /IH (2n)! 

Prom this is derived 

= /ir/P o (2-2) 

A ^ /2v , 

which when substituted into (2-1) gives Stirling's formula 

in the following form? 

n2-/^ n"+^/2 e-^ . (2-3) 

This remarkable approximation formula gives sur­

prisingly accurate results even for comparatively small 

values of no For instance? 

10! = 3»628,800 

and 

10^° e~̂ °/207r = 3,598,699 o (4,ppo94-95) 

These results, however, were not accurate enough 

for our purposeso An attempt was made to improve the accu= 

racy by determining a value for Qo Equation (2-1) was 

solved for A, giving 

A _ n! 3 (2-4) 
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Then using the relation 

n! = n(n-l)! 

and expanding (n-1)! with equation (2-1), A was again solved 

for and found to be 

' = ^^;:7)H=T75;=^;e7fr2THrrTr» (^-s) 

The right sides of equations (2-4) and (2-5) were equated 

The n! factor neatly canceled permitting a solution for e 

in terms of no 

0 = 12n(n-l)lnCn"'^/^e'^^(n-l)°^^^/^^ o (2-6) 

Substituting this value for e into equation (2-1) 

gave an expression for n* containing one unknown constant 

Ac This expression was substituted into Wallis^ formula 

(2-2) leading to the following expression for A? 

(an)""'-"-^! (2n-l)-''"'-^3n-l/2 ^ ^̂ ^̂ ^ 

^2n ^ ^2n^«n+2 . ,N=2n^+3n-i n-*» 2 e n (n-1) 

An indication of the limiting value fcr A was 

obtained by using a computer^ The value for A with in­

creasing value for n appeared to be converging on 2 as a 

limito The following few values for n and A indicated the 

trend? 
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n A 

5 2o069 
10 2o036 
100 2o00n9 
1000 2o00037 
10000 2o000037 
50000 2o0000075 
90000 2o000004l 

Substituting the value of 2 for A and (2-6) for 9 

into (2-1) gave the following expression for n! 

n!.2 „n'-l/2n+l^l-2n(„_,).n2+3/2n-l/2 ^ (2_8) 

This formula disappointingly gave results which 

were less accurate than the formula obtained by omitting 

the e/(12n) term (2-3)o For instance, the value for 10! 

obtained from formula (2-8) was 2,896,800o This value, 

while of the same order of magnitude as the correct answer, 

was much less accurate than the answer obtained from (2-3)o 

The value for A could be found in a different 

mannero Equation (2-8) was used with the 2 replaced by the 

constant Ao Using known values of factorials, values for A 

were found as follows? 

n A 

10 2o5054 
50 2o5620 
100 2o7951 

So A was not constant; neither its values nor the 

logarithms of its values were linear in relation to no 
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This attempt to improve the accuracy of Stirling's formula 

proved to be unsuccessfulo 

Stirling's formula with series 

Stirling's formula with series was next considered 

in looking for a suitably accurate approximation of the 

factorial0 One formula with series is obtained by using 

the Euler-Maclaurin formula to obtain the sum of loga­

rithms e This formula with series is 

3 
, X+1/2 -X /?r- ̂  n /o n\ 

x!=x e /2TT e , (2-9) 

where 

" Bpr 

n ^^-^ 2r(2r-l)x̂ "̂-'-

B. are Bernoulli numbers. 

and 

S„ = + -i- i-* + i-* - '00 (ll,ppol28-136) 
" 12x 360x^ 1260X-

Another Stirling formula with series was taken 

from Beckenbach (l,pol36)o It was 

. x+1 p 1/2 
x!.(ii±i) (|1̂ ) s^ (2-10) 
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S = 1 + 1 + 1 . 139 
" 12(x+l) 288(x+l)^ 5l840(x+l)^ 

571 ^ ^̂ ^ 

2 488 320(x+l) 

This Stirling series appeared to converge more rapidly for 

small X than did the series derived from the Euler-

Maclaurin formulao The first three terms of S gave suit­

able accuracy even for relatively small values of Xo The 

use of the first three terms gave a value for the factorial 

of nine which was accurate to four significant figureso 

An expression approximating the value of b(x;n,p) 

could be obtained by substituting the first three terms of 

the factorial approximation (2-10) into the formula for 

b(x5n,p),(l-l)o The expression thus obtained could then 

be integrated over limits adjusted for discreteness to 

give an approximation for B(x;n,p) as follows? 

B(x;n,p)-j^^°3^5 b(r;n,p)dr 

^s^^^ r n-r 
^(^5n,p) = f (̂ ,̂ ).f ir) P ^ (2-11) 

s s 

where f (x) represents the approximation for x! shown in s 

equation (2-10)o 

Unfortunately, bcth f^(n-r) and f„(r) contained 
s s 

the variable of integration r raised to the power ro This 

factor was not integrableo Manipulation of the function 
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proved fruitless in attempting to get rid of the factor. 

The Stirling series (2-9) obtained from the Euler-Maclaurin 

formula also contained this troublesome factoro 

Log C(^) 

The apparent linearity of the logarithm of the 

binomial coefficient was investigated as a possible 

approach to approximating the binomial coefficiento A 

cursory inspection of a table of logarithms of C(") shows 

that some of the values closely follow linear patterns« 

For instance, a sequence of values for log C(^) where x=3 

is shown below? 

2o21748 
2o34242 
2o45637 
2o56llO 
2o65801 
2o748l9 

Values of log C(^) were plotted against x for the 

ratio n to X equal to 1/2, 1/4, and 1/8; a line was plotted 

for each ratio* The lines, though appearing to be, were 

not quite linear for values of x greater than 10, 

For Instance, the line for x/n=5l/2 had slopes as 

follows? 

Prom To Slope 

x=10 x=50 0o59343 
x=25 x=50 0o59608 
x=10 x=25 0o58901 

The slopes were quite closeo 
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The same values of log C(^) used for the three 

lines above were plotted on semi-log and log-log graph 

papera The plots were not linear. In a further effort to 

find an integrable function for the binomial coefficient, 

the values were differenced through the eighth difference 

without the differences becoming constant. The first dif­

ference as expected was almost constsmt. Succeeding dif­

ferences diverged. 

Binomial coefficient as a 
ratio of two polynomials 

Another investigation was made of the binomial 

coefficient in an effort to put an approximation of it 

into integrable form. The binomial coefficient C(^) was 

put into the form 

n/Hv _ n! _ n(n-l) (n-2)»* • (n-x-H) ,5 ,̂ v 
^^x^ - (n-x)lxl - x(x-l)(x-S)*>ol « (2-12) 

It was noted with interest that the numerator and denomi­

nator both had x number of factors and also that the roots 

of the factors in the numerator were the same as those in 

the denominator. Thus, the numerator and denominator were 

identical except the numerator was in variable n and the 

denominator was in variable x. 

When the factors of the numerator and denominator 

were multiplied together, the result was 
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n^-A^n^ •^+A^n^ i. .O+A n «, v 
C(^) = ^ . 2 X . f n f . 
^K J X x-1 x-2 fTxT ' ^^'^i) 

^ X -A^x^ •^+A2X^ ^. ..+A X ^^^^ 

The coefficients A. were functions of x and could be deter­

mined using the rules governing the expressing of coeffi­

cients in terms of roots (6,po227)o These rules gave us 

A, = sum of roots; 

Ap = sum of products of roots taken 
two at a time; 

A^ = sum of products of roots taken 
0 three at a time; etCo; 

A = product of all the roots 

Determining the A. in general form was somewhat 

simplified, since there were always x roots whose values 

were 0,1,2,•o",x-lo 

.̂  = l+2+3+««' + (x-l) = ^̂ '̂-̂ ^ , (2-14) 

using Gauss' simple scheme for getting the sum of such a 

series. 

x-2 y 
Ap = Z i[x(x-l)-K(K+l)] (2-15) 

'^ K=l "^ 

X—2 K—1 
A^ = E I ^ [x(x-l)-K(K+l)] (2-16) 

^ K=2 J=l "̂  
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x-2 K-1 J=l 
A. = E I I ^^ [x(x-l)-K(K+l)] (2-17) 

K=3 J=2 1 = 1 "̂  

The equations for Ap, A^, and A were arrived at 

by grouping the products in orderly arrangements and writ­

ing down the function. The general form for A appears 
m 

logically to be 

x-2 K-1 J-1 C-1 B-1 
A = E E E °-«» E E g(x) 

K=m-1 J=m-2 I=m-3 B=2 A=l 

where 

g(x) = A°Boo^i,j,K [;x(x-l).K(K-l)] 

and 

A, B,°«« K occur only if > 0, (2-18) 

The ratio of polynomials in (2-13) was such a neat 

and orderly function that it seemed there should be some 

simple method to evaluate it. It is regrettable that this 

investigation did not reveal such a simple method. 

Other specific approaches 

The approaches discussed so far are the most inter­

esting of the nonproductive approaches studied in this 

investigation. Two other approaches are mentioned below 

without detailed discussion, because it quickly became 
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apparent when they were investigated that they would not 

yield an approximation of the desired accuracy, 

A function of the form 

^-B (x-np)^ 
2 npq 

was fitted to B(x;n,p) in the least squares sense. The 

values of A and B obtained did not give B(x;n,p) to the 

desired accuracy. The form of the function was suggested 

by the form of the Gram-Charlier series type A used by 

Smith (9,Po23)o 

The Poisson distribution was considered. Plots of 

curves of the difference between B(x;n,p) and the cumula­

tive Poisson were looked at. The forms of the two func­

tions were manipulated and compared. 

Many small tangential investigations were explored 

along with those discussed. Investigation finally turned 

to an evaluation of the asymptotic expansion of the dis­

tribution of a sample sum as an approximation of B(x;n,p), 

This approach yielded results within the desired accuracy 

of three decimal places. The details of this approach are 

given in Chapter III, 



CHAPTER III 

APPROXIMATION OP THE CUMULATIVE BINOMIAL 
PROBABILITY DISTRIBUTION 

Introduction 

Turning to asymptotic expressions leads to the 

conclusion of the investigation covered in this papers 

Professor Ghare, the chairman of the advisory committee, 

suggested the investigation of Wilks' coverage of asymp­

totic sampling theory for large samples (13,PP,254-276), 

The use of an asymptotic expansion of the distribution of 

a sample sum produces an approximation of the cumulative 

binomial probability distribution with the desired accu­

racy of three decimal places. 

Evaluation of the Asymptotic Expansion 
of the Distribution of a Sample Sum 

Explanation of the development of the asymptotic 

expansion will not be attempted, Wilks' development is 

quoted below, 

ASYMPTOTIC EXPANSION OF DISTRIBUTION 
OF SAMPLE SUM 

Theorem 9o2ol contains a statement of the limiting 
form of the distribution of (z - ny)//no as n-»-«. One 
problem which arises here is the determination, for 
large values of n, of a higher decree of approximation 
to the distribution of (z - n\i)/^a than that provided 
by the distribution N(0,1), We shall examine this 
problem, 

27 
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Suppose the central moments >̂-i , o o,,w ,r>2, of the 

population Cod,f, P(x) exist and are finite. Then if 
<j>(t) is the characteristic function of (x - y)//rra, we 
have 

( 9 o 4 o l ) . 
r iltya. 

<j,(t) = i - i « + j ; — — 1 = + 0 ( ( ^ ) 
^ j»3 j!(/?r)^ vv/?r/ 

where x. = y./o*̂  and n • 0((t//rr)^) tends to zero 

as n-̂ « for any t / 0, But the characteristic function 
of (z - ny)//na, namely, <j) (t), is given by 

(9o4o2) 

(|>n(t) = [(|.(t)]" , 

Taking logarithms, we find 

(9o4o3) 
.2 r (it)'^(K*) /. \r 

log * (t) =. - :^ + n j; /^i*^ + n o 0 — 
" "̂  j = 3 j!(/^)'' VV*^ 

where the K* are semi-invariants of the distribution of 

(x - u)/a in the population. Therefore, we have 

(9o4,4) 

,^. -l/2t^ 
(j)̂ (t) = e exp 

- r (it)«^(K«) r (it)^(K*) f/x.^\ 
n I -= i- + n . 0 (^) j 
..1=3 . i !(/^)^ VV/?rM 

which can be written as 

(9o4o5) 

" ' J=l (/n) E*4'7^*"-°fe)l 
where y.(it) is a polynomial of degree 3J in (it) 

whose coefficients are functions of the K*'s but do 
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not depend on n. The lowest power of (it) in y.(it) 
is j + 2, «J 

If we let 

(9o4,6) 

F (x) = P(^^ ° ^"^ < x^ 

and put X' = (x + y)/2, 6 = (x = y)/2 in (5olol4), 
then if x and y are continuity points of F (x), 

(9o4,7) 

P^(x) - F^(y) = i[ 
3 00 

sin( = *-|t 
2j_ e-it[l/2(x+y)] (,)^, 

t n 

Substituting the expression for <l>yj(t) from (9,4,5) 

and simplifying, we obtain 

(9o4,8) 

P^(x) - P^(y) = ^ 
If" (e'^^^ - e^^^y) 

2(-it) 

_ 1 -l/2t' = =- e 
" r-2 y.(it) 
1 + '̂ -i—=-=« + n ° 0 I ( -^ ] j i dt, 
- j=l {^)^ /?r I 

But it can be verified without particular difficulty 
that 

(9o4o9) 

1 
earn 

IT 

I g-l/2t ^^ ^ ^(^) _ ̂ (y) 

Where $(x) is the c,d,fo of the distribution N(0,1), 
All other terms in (9o4,7) are of the following form, 
except for a constant multiplier. 
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1 
S> 0 9 

9B OC' 

(.lt)-'(e-̂ *'' e-"y)e-^/2t' ^^ 

Which has the value 

(9c4ol0) 

i d-̂  
2Tr dx̂ < 

^-itx.l/2t' ^^ 1 dJf 

2it dy 

.lty-l/2t^ dt = 
• 00 

»<J*1)(^) . *CJ+l)(y) 

Where 

o.'tai) 

*(J^l)(x) 1_ ^-l/2x-

Hence, we obtain for (9,4,7) 

(9o4,12) 

P„(x) - F (y) = $(x) - *(y) + \ n n j^^ 

r-2 [y?(x) - yf(y)] 
i 

/:J 
+ 0 

'n 
r-« 

where yf(x) and y?(y) are the functions one obtains by 

replacing (it)P in y.dt) by $̂ P"̂ -'-̂ (x) and *̂ P"̂ -̂ (̂y) 

respectively. 
If we let y-*-— in (9o4,12), we obtain as the 

asymptotic expansion of F (x), 

(9o4,13) 
r-2 y*(x) / T \ 

F̂ (x) = *(x) + I - L _ + 0-7=;:̂  
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If ^^(^) has a podof, f^(^)» we find by taking the 

derivative of (9o4ol3) with respect to x that 

(9o4,l4) 

n 

r-2 y»'(x) 
f^(x) = *^^^(x) + T i L m + o|--i—^ 

vy^r-2 ' 

where y*'(x) is the first derivative of y*(x). 

As a matter of fact, even if F (x) has no p,d,f, 
* n 

(that is, F (x) may be a discrete c,d,f,), (9o4,l4) is 
still a useful approximation. In this case the right-
hand side of (9o4,l4) is a representation of a p,d,f, 
such that E (x) is approximated by integrating this 
podof, from -» to x. 

We shall not write out the general expression for 
the function yf(r). But it is of some interest to 

write out the expressions on the right-hand sides of 
3 

(9o4,13) and (9o4,l4) to terms of order n , These 
are 

(9o4,15) 

P^(x) = *(x) i ! 3 ,(3)(,) 

/?r 3! 

n 
?r(a., -3)*^''^x).i^a2*(6)(,) 
Tf̂ îi FT^s 

1 
^ ( a ^ - 10a2)*^^^x) + ^0^(0^ 

-5! 7! 

3)*^'^^X) 

. 280^3,(9)(,) 

9J 

/ 

+ 0 1 
1 

and 
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(9o4,l6) 

f^(x) = *^^) 
n 

(x) ^^^.^'h.) 
/n 3! 

n 
1 , 3)*^^^x) 10 2^(7)/ N -a-,$̂  (x) 

n'''-5! 

^"(a^ - 10a3)*^^^x) + ^03(0^ - 3)*^^\x) 

7! 

. 280 3^(10), V + «—>a^*^ '(x) 

9! 

+ 0 1 I — * > I 

We may summarize these results, which were origi­
nally obtained by Edgeworth (1905), as follows; 
9,4,1 If (x 

9o4 

1» ooo,x ) is a sample from a distribution 

with finite moments y 

Codof, P 

y (r>2), then the 

n 

^ , 0 O O J) ^ j , 

(x) of (z - nu)/>^o can be expanded in 

the form (9o4,13), the explicit expansion to 

3 

terms of order n being given by (9»4,15), 
The quantities a^ (= \i^/a^) and o^ - 3 (= Mu/o^ - 3)» 

usually denoted by y^ and y^ respectively, are some­
times called the skewness and kurtosis respectively, 
of a distribution function having mean y, variance 

and third and fourth central moments y^ and y 

These two constants play an important role in the 
degree to which the cdof, Ej,(x) can be approxi­
mated by the Codofo<l>(x) of the distribution N(0,1), 
It will be noted from an inspection of (9o4,15) 
that, in general, F (x) is approximated by $(x) 

except for terms of order l/Zn, But the following 
corollary of 9°4,1 gives conditions under which 
higher orders of approximation hold; 
la If the skewness of the distribution from 

which (x 8ooo,x ) is drawn is zero, F (x) is 
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approximated by *(x) except for terms of order 
1/n; if both the skewness and kurtosis are 
zero, E«,(x) is approximated by *(x) except for 

terms of order l//n'. 
It should be pointed out that Lyapunov (1901) was 

the pioneer on the problem of determining higher 
degrees of approximation to the distribution of x in 
large samples than that provided by the normal distri­
butiono Cramer (1937) has shown that the remainder 
term in (9o4,13) and (9o4ol4) is of the same order as 
the first term neglected, Esseen (1944) has made more 
recent investigations of the accuracy of such asymp­
totic expansionso Asymptotic expansions in powers of 
\//^ have been established for other statistics than 
sample means by Cramer (1937), Hsu (1945a, 1945b), 
Chung (1946), and others. An expository article on 
asymptotic approximations to distributions with an 
extensive bibliography has been published by Wallace 
(1958), (13,ppo262-266) 

The use of z and x in Wilks' formulation is the 

reverse of the use of z and x in the remainder of this 

paper. For instance, Wilks'' formula F^(x) (9o4,15) is 

P (z) in the remainder of this paper. Thus, z is the 

normalized version of x in this paper, 

Wilks' formula for F (z) (9o4,15) is used to ap-
n 

proximate B(x;n,p)o When the central moments of the point 

binomial are used in the formula, then F^(z) represents 

asymptotically the probability that the sum of successes 

in n trials of one each taken from a point binomial dis­

tribution will be <̂  Xo 

The central moments or moments about the mean of 

the binomial distribution and the required values for the 

accumulative normal distribution are first computed. To 

compute the central moments let 



and 

Then 

and 

Let 

Then 

and 

and 

Thus 

and 

PCx-0] = 1-p 

PCx=l] = p 

E(x) - 0 ( l - p ) + l ( p ) = p , 

E(x^) = 0 ^ ( l - p ) + l 2 ( p ) = p . 
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E(x^) - p , (3=1) 

y - x-E(x) = x-p, 

PCy=-p] = P[x=0] = 1-p 

P [y^=(o -p )^ ] = l - p ; 

P[y=i«p] = PCx=i] = p . 

P [ y ^ = ( i - p ) ' ' ] = p 

E(y) = - p ( l - p ) + ( l - p ) p = 0 , (3-2) 

E ( Y ^ ) - ( - p ) ^ ( l » p ) + ( l « p ) ^ p „ (3 -3) 

The required central moments are computed as fol­

lows from the general formula (3-3)o 
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E(y^)=(.p)^(l-p)+(l.p)2p 

= p^(l-p)+(l-p)^p 

= P(l-p)[p+(l-p)] 

= p(l-p)o (3-i|) 

a = /p(l-p) (3»5) 

Similarly, 

E(y3) = p(l-p)(l-2p), (3-6) 

E(y^) = p(l-p)(l-3p+3p^), (3-7) 

E(y5) = p(l-p)(l-4p+6p^-4p3), (3-8) 

In Wilks' formulation with x changed to z 

z 2 
0 (z) = / J ^ e"^/2^ dz (3-9) 

The derivatives of 0(z) are set down using the 

Tchebycheff-Hermite polynomials (8,p,196) 

,(l)(z) = ̂  e-V2z2 ^ ^^_^^^ 

/27 

0^^^z) = -z0^^^z) , (3-11) 

0^^^z) = (z^-l) 0^^^z) , (3-12) 

0^^^z) =̂  -(z3-3z) 0^^^z) , (3-13) 

0^^hz) = (z^-6z2+3)0(l)(2) , (3-111) 
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0^^\z) = -(z5-10z3+i5z) 0^^^z) , (3-15) 

0^'^\z) = (z^-15z^+45z^-15) 0^-^\z) , (3-16) 

0^Q)(z) = -(z'^-21z5+105z^-105z) 0^^^z) , (3-17) 

and 

0^^^z) = (z^-28z^+210z^-420z^+105) 0^-^^z) , (3-l8) 

Substituting values into Ej,(z) gives as the first 

term T,(z) of the asymptotic expansion the following? 

z 2 
T (z) = / J ^ Q'^/^^ dz . (3-19) 

^ -00 /27 

T,(z) is the cumulative normal distribution 

The second term is 

T2(z) = -K(z^-l)4»^^^z) (3-20) 

where 

V - 1 l-2p 

"̂  6(p-p^) 

and the third term is 

where 

T^(z) = -(A+B)(|)̂ ^̂ z (3-21) 

A . ^ (-^- 6](z3-3z) 
24n p-p 

and 



37 

2 
B = ^ (z^=10z^+15z) , 

The fourth term, not shown, contains approximately 

three times the number of individual factors as does the 

third term. Fortunately, it is not necessary to use the 

fourth term. The first two terms of the expansion are 

equivalent to the first two terms of the Gram-Charlier 

Series, Type A which Smith uses as one of his approximat­

ing forms for B(x5n,p) (9,Po23)o 

Computations for evaluation of the series are 

accomplished on the IBM 1620 Mod II Electronic Computer 

with Disc Packs, The initial limited evaluation of the 

series is made using the entering argument 

z = ^°^P , (3-22) 

The error of the approximation obtained is much larger 

than desired. To improve the approximation the entering 

argument is adjusted for discreteness to 

(x-t-l/2)-np ^ (3_23) 

The approximation now proves to have the desired accuracy 

over certain combinations of the variable and parameters 

of B(x;n,p), 
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The initial evaluation work on the series is accom­

plished using a combination of computer computations and 

manual operations. The terms T2(x), T-.(x), and T|̂ (x) are 

computed on the computer, and T,(x) and B(x;n,p) are 

extracted from tables. The desired terms are manually 

combined and compared with B(x;n,p), 

The series is to be evaluated over a map of n 

versus p with n ranging from 20 to 1000 and p ranging from 

OoOOl to Oo5o To evaluate the series over one (n,p) point 

requires the consideration of three variations of the 

series § only the first term of the series (a one-term 

series), the first two terms of the series (a two-term 

series), and the first three terms of the series (a three-

term series). 

To evaluate any one of the one, two, or three-

term series over a specific (n,p) point, the series is 

first computed and compared to B(x;n,p) for the maximum 

value of X which obtains a value of B(x;n,p) less than 

0o999o If the series value differs from B(x;n,p) by less 

than 0,001, the value of x is reduced by one and the 

series value is again compared to B(x;n,p)o This pro­

cedure is repeated until one of two things happens« One, 

the minimum value of x is determined which in the series 

produces a value differing from B(x;n,p) by more than 

OoOOlo Two, the series produces values differing from 

B(x;n,p) by less than 0,001 for all values of x for which 
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0,001 <̂  B(x;n,p) <_ 0,999o For some (n,p) points this 

requires over one hundred repetitions of the procedure. 

Thus, a range of x is determined; with every value of x in 

this range the series produces a value within 0,001 of 

B(x;n,p) for a specific (n,p) point. Over certain areas 

of the n versus p map the one^ two, and three-term series 

all must be evaluated. 

The large number of computations involved in the 

over-all evaluation of the series precludes the use of 

the manual computation procedures used in the initial 

evaluation. To obtain other than a limited evaluation 

requires that the evaluation procedure be computerized as 

much as possible. 

Use of IBM-1620 Computer in Evaluation 

The major difficulty in computerizing the evalua­

tion procedure is the lack of computer programs for the 

cumulative normal and the cumulative binomial distribu­

tions o Values for both are used many times for the evalu­

ation of each (n,p) point, 

A suitable series approximation for the following 

form of the cumulative normal 0(z) with the mean equal to 

zero and variance equal to one is derived as followss 

0(z) = /-=i- e "̂  dx o (3-24) 
o/27 
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The exponential factor is expanded in a Maclaurin 

series. The integrand is then integrated term by term to 

give 

3 5 7 
0(z) = Z - - ^ + ^x - ^^ + 0.0 (3-25) 

3°2 5°2'̂ °2! 7°2^o3J 

(3-26) 

This series is a convergent alternating series which is 

used to obtain 0(z) with an error < 0,00001, The series 

is not efficient for large values of Z, requiring thirty 

terms when Z = 4,2, In the computer program, however, 

only the number of terms necessary to obtain desired accu= 

racy is used, and for Z <̂  1 only five or less terms are 

required. 

In the evaluation procedure a cumulative binomial 

is used in the form 

B,(x+l5n,p) = 1 - B(x;n,p) , 

This expediency allows direct checking of the values of 

B. (x;n,p) obtained with the computer program with the 
t 

values of B,(x;n,p) contained in tables of the cumulative 

binomial being used (5)o 

A recurrence procedure is used to obtain the 

required values for B.(x;n,p). For the evaluation over 
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an (n,p) point of any one of the series, an initial value 

of B^(x;n,p) is taken from a table and an initial value of 

b(x5n,p) is computed directly. Subsequent values of 

B^(x;n,p) are obtained using the following relationss 

B (x;n,p) = table value with x equal to one more 

than the maximum value of x which 

obtains a value of B,(x;n,p) less than 

0o999o 

b(x;n,p) = value computed directly using a five-

term series approximation of the 

factorials (2-10), 

b(x-l;n,p) = pj-|-^ o I o b(x;n,p) (3-27) 

B ̂(x-l;n,p) = B^(x;n,p) + b(x-l;n,p) (3-28) 

Then operations (3-27) and (3-28) are repeated to obtain 

subsequent values of B (x;n,p)o 

The above procedures for obtaining the required 

values of the cumulative binomial distribution are shown 

Included in the final evaluating computer program which is 

contained in the AppendiXo 

Feller's norming 

An attempt is made to obtain better two-term 

series results by using a norming procedure suggested in 

an article by Feller (3,Po319)o Feller uses limits 
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different from traditional limits in obtaining a better 

approximation of B(x;n,p) using the cumulative normal dis­

tribution. Feller uses limits as follows? 

Traditional Feller's 

(x4-l/2)-np x-H-(n+l)p (3-29) 
o a 

(x-l/2)-np x-(n+l)p (3-30) 
0 0 

Since Feller is approximating the discrete bino­

mial with the continuous normal, it seems that his norming 

might improve the two-term series which is also continuous. 

Feller's limits are applied to only the first term and to 

both terms of the two-term series of the Wilks' asymptotic 

expansion without improving the series. The results are 

less accurate in both caseso 

Graphic Presentation of Evaluation Results 

The most useful presentation of the results of the 

evaluation of the one, two, and three-term series of the 

Wilks' asymptotic expansion is graphicalo Contour lines 

representing the minimum values of x giving a series 

approximation of B(x;n,p) with desired accuracy are 

plotted on a map of n versus p, A separate graph is made 

initially for the one, two, and three-term series. The 

contour lines of x can be represented as straight lines 
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on full logarithmic graph paper without great loss of accu­

racy. When accuracy is lost, it is through a shift of the 

line in the direction which will insure that all values of 

X greater than the value represented by the contour line 

will still give a series approximation of desired accuracy. 

The three separate graphs are consolidated on one 

graph for simplicity of use and conciseness. The consoli­

dated graph is shown in Figure 2, 

The graph is divided into four areas by three dark 

lines. The leftmost area is designated area A for discus­

sion purposes. The next area toward the right is desig­

nated area B, the next C, and the triangular shaped area 

in the upper right corner is designated area D, 

In area A four contour lines are shown. The 

straight line separating areas A and C and areas B and C 

represents another contour line. These contour lines 

represent minimum values of x ensuring three decimal 

place accuracy of B(x;n,p) when using the two and three-

term series. Thus, for any (n,p) point in area A one can 

determine a minimum value for x which gives a series ap­

proximation of B(x;n,p) with an accuracy of three decimal 

places. For instance, for (n,p) equal (200,0,03) the 

two-term series gives an approximation of desired accu­

racy if X >̂  14 and the three-term series if x >̂  12, 

Naturally one would use the shortest series giving the 

desired accuracy. 
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The gradient across the contour lines is continu­

ous though not linear. One can interpolate for values of 

X between contour lines if sufficient care is usedc Assum­

ing linearity of gradient for interpolation provides a 

slight safety factor to counterbalance possible interpola­

tion error. For instance, for the example just used with 

(n,p) equal (200,0,03), one can use the two-term series if 

X >̂  13 rather than 14 and use the three-term series with 

X >̂  10 rather than 12, 

In area A if x is not large enough to use either 

the two or three-term series, then B(x;n,p) must be com­

puted directly. One should consider the values of x on 

the percentage point graph. Figure 3, when deciding whether 

to sum b(x;n,p) terms for values of x which are > x or to 

sum those b(x;n,p) terms for values of x which are <̂  Xc 

Probably five or less b(x;n,p) terms past the term for the 

percentage point value of x must be included in the sum to 

obtain three decimal place accuracy. 

As an example, let (n,p) equal (40,0,3) and x=l4o 

At this (n,p) point x is not large enough to permit use 

of even the three-term series; it must be >̂  15* There­

fore, B(l4i40,Oc3) must be computed directly. The values 

of X on the Percentage Point Chart for this (n,p) point 

are 4 and 22. Obviously it is more efficient to sum 

b(x;n,p) terms for values of x which are greater than l4 

than to sum terms for lower values of x; it requires 
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computation of eight b(x;n,p) terms plus overrun rather 

than eleven plus overrun. The sum of the b(x;n,p) terms 

for X > 14 is then subtracted from one to obtain 

B(14;40,0,3)0 When percentage point values of x are used 

to determine which b(x;n,p) terms to sum, a maximum of 

twelve terms plus overrun will be required anywhere in 

area A to compute B(x;n,p) directly. 

In area B the three-term series produces an 

approximation of B(x;n,p) within three decimal place 

accuracy for any value of x for which 0,001 < B(x;n,p) < 

Oe999o The values of x satisfying this requirement can 

be determined from the percentage point graph in Figure 3o 

Therefore, in area B the two-term series is used if x is 

large enough and, if not, the three-term series is used. 

In area C only one term of the series is used if 

X is sufficiently large as determined by the contour 

lines. If X is not large enough, the two-term series is 

used. In area D the one-term series produces the approxi­

mation to three decimal place accuracy for values of x in 

the range shown on Figure 3° 

The percentage point graph shown in Figure 3 

enables one to determine the range of x for each (n,p) 

point which produces B(x;n,p) such that 0,001 < B(x;n,p) 

< 0,999o Actually, the two sets of contours are plotted 

from values of x such that 
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B(x;n,p) < 0,0001 < B(x+l;n,p) 

for one set and for the other set 

B(x-l;n,p) < 0,999 < B(x;n,p) o 

Computing B(x||n.p) using 
app]?oximatin^ series 

The following example problems demonstrate the 

computing procedures. 

Example 1,—area A, two terms 

n=100, p=0,l, x=20 

This (n,p) point on Figure 2 (page 44) is in area A where 

one can use the two-term series if x >̂  18 and the three-

term series if x >̂  15o Thus, one can use either series 

and will naturally use the two-term series. 

z = X + 0,5 - n£ ^ 3^^ 
/np(l-p) 

T,(z) = / N(z)dx = 0,9998 
o 

2 -z 

n oCp-p ; /27r 

T^(z) + T2(z) = 0,99945 
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Actual B(x;n,p) 

Difference 

Example 2,—area A, two terms 

n=100, p=Ool, x=l8 

T^(z) 

T^(z) + T2(z) 

Actual B(x;n,p) 

Difference 

0,99919 

0,00026 

2,8333 

0,9977 

'0,00225 

0,99545 

0,99542 

0,00003 

Example 3e—area A, two terms 

n=1000, p=0,01, x=l8 

T^(z) 

T^iz ) 

T^(z) + T2(z) 

Actual B(x;n,p) 

Difference 

= 2,7015 

= 0,9965 

= -0,00356 

= 0,99294 

= 0,99310 

= 0,00016 

Example 4,--area A, three terms 

n=1000, p=0,01, x=15 

TEXAS TECHf^OLG.scAL COLLt t t t 
LUBBOCK. TEXAS ^ 
LIBRARY 
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^ = 1,7480 

T3^(z) ^ 0,9597 

"^2^^^ = -0,00923 

'^3^2) ^ 0,00128 

T^(z) + T2(z) + T3(z) = 0,95175 

Actual B(x;n,p) = 0,95213 

Difference ^ 0,00038 

Example 50—area B, two terms 

n=200, p=0,l, x=24 

z = 1,0607 

T^Cz) = 0,8556 

T2(z) = -0,00089 

T^(z) + T2(z) = 0,85471 

Actual B(x;n,p) = 0,85511 

Difference = 0,00040 

Example 6,—area B, three terms 

n=200, p=0,l, x=20 

z = 0,117851 

T^Cz) = 0,5469 

^2(2) = 0,01228 

^3(2) = -0,00052 
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T^(z) + T2(z) + T3(z) = 0-.55866 

Actual B(x5n,p) = 0,55917 

Difference = 0.00051 

Example 7o—area C, two terms by interpolation 

n==400, p»0,3, x='l45 

z = 2,7823 

T^(z) = 0,9973 

Actual B(x;n,p) = 0,99692 

Difference = 0,00038 

Example 8,—area C, two terms 

n=400, p=0,3, x=100 

z = -2,1276 

T^(z) = 0,0167 

T2(z) = -O0OOOIO6 

T3̂ (z) + T2(z) = 0,01659 

Actual B(x;n,p) = 0,01553 

Difference = 0,00106 

Example 9o—area D, one term 

n='800, p=0,45, x=350 

z = -0,6751 

T^(z) = 0,25023 
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Actual B(x;n,p) = 0,25001 

Difference = 0,00022 

Example 10,—In Example 2 with n = 100, p=0,l and x=l8 the 

value of X lies very close to a percentage point value for 

x on Figure 3 (page 46), Therefore, few individual terms 

would be required to compute this case directly. To com­

pute this case directly it is best to sum individual terms 

of b(xjn,p) for values of x which are greater than l8, 

then subtract the sum from one. Compute b(19;n,p) 

directly, then for the remaining terms use the recurrence 

relation 

b(r+l5n,p) = ̂  ^ b(r;n,p) 

b ( 1 9 s l O O , 0 , l ) = l 9 t ( 1 6 6 l l $ ) i ( 0 ° ! ) ^ ^ ( 0 , 9 ) ^ ^ 

l o g 100! = 157o97000 

19 l o g 0 , 1 = 1 ,00000-20 

81 l o g 0 ,9 = 6 ,29344-10 

Sum = 135o26344 

- l o g 19! = - 17 ,08509 

- l o g 81! = - 1 2 0 , 7 6 3 2 1 

Sum = -137o84830 

Sum = 7o41514-10 

b ( 1 9 ; 1 0 0 , 0 , l ) = 0 ,0026010 

b(20;n,p) = ^?S:P S 4 (0,002601) 
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= 1^ (0,111111)(0,002601) 

= 0,001170 

Orv 

b(21;n,p) - ^ (0,111111) (0,001170) 

= 0,000495 

b(22;n,p) = I| (0,111111)(0,000495) 

= 0,000197 

b(235n,p) = H (0,111111)(0,000197) 

= 0,000074 

Considering the rate of decrease in value of the indi­

vidual terms, the remaining terms can probably be ignored. 

Summing and subtracting from one gives 

1 - 0,004537 = 0,995463 

which is within 0,00004 of the actual value of B(l8;100,0,l) 

Only five individual terms are required which are computed 

quite rapidly on a desk calculator after the Initial term 

is computed. Fortunately the logarithms of the factorials 

required for the initial term in this case are tabulated. 

If the values are too large to be found in tables or tables 

are not available, the values are obtained using Stirling's 

series approximation (2-10), 

The development in this chapter shows the use of 

three or less terms of Wilks' asymptotic expansion in ob­

taining B(x;n,p) to an accuracy of three decimal places. 
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An algorithm based on this development and utilizing the 

Procedures Map and Percentage Point Chart is presented in 

the next chapter. 



CHAPTER IV 

SUMMARY AND RECOMMENDATIONS 

Summary of Procedures for Obtaining the Cumulative 
binomial Probability distribution BCxjnjp/ 

within Wominai Three Decimal Place 

The cumulative binomial 

T~> f \ „ n r n-r 
B(x5n,p) = Z c^ p q 

r=0 ^ 

can be approximated within a nominal accuracy of three 

decimal places using one, two, or three terms of the 

asymptotic expansion of the distribution of a sample sum, 

The first term of the expansion is the cumulative normal 

2 -z 
T (z) = / -i- e ^ dz 
-•• -00 / 2 7 

where 

1 
„ x+^-np 

/np(l-p; 

The second term is 

T2(z) = -K(z^.l)*^^\z) 

55 
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where 

and the third term is 

T^(z) = -(A+B)/^^z 

where 

A = JL^ (.= 1, « 6)(z^-3z} 
24n p-p"̂  

and 

2 
B = ̂  (z^-10z^+15z) , 

These procedures can be applied with confidence in 

the domain? 0 < n < 1000, 0 < p < 1 and 0 < x < 1000, If 

a problem has p > Oo5, use the relation 

B(xjn,p) =• 1 - B(n"X+l;n,l-p) , 

Enter the Percentage Point Chart in Figure 3 (page 

46) to determine if the case is nontrlvial; that is, if 

OoOOl ^ B(x;n,p) <̂  0,999o Proceed only if the case is 

nontrlvial. 

Enter Procedures Map on Figure 2 (page 44) with 

values of x, n, and p. If in area A and p <« 0,007, use 
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cumulative Poisson tables if available (9,PPo4,32), If 

Poisson tables are not available, use the two or three-term 

series according to the value of x. If x is too small to 

permit use of the three-term series, compute B(x;n,p) 

directly by summing individual binomial terms b(r5n,p). 

Use the values on the Percentage Point Chart (Figure 3, 

page 46) to determine whether to sum b(r;n,p) terms for 

values of r which are > x and subtract the sum from one 

or to sum b(r5n,p) terms for values of r which are ^ x. 

Use the following recurrence relations to compute b(r5n,p) 

terms after computing as the initial term either b(x+l;n,p) 

or b(x5n,p)s 

(n-r) 
b(r+l;n,p) = l^ll) q t)(r5n,p) 

b(r-l;n,p) = (̂ -r-t̂ Dp ̂ ^^»^»P) 

Use the following relation when required 

n T̂  / \ T r. n r n-r B(x;n,p) = 1 - I c p q 
r=x+l ^ 

If in area B on the Procedures Map, use the two-

term series when x > 24j otherwise, use the three-term 

series. 

If in area C use one term, the cumulative normal, 

when X is large enough. Otherwise, use the two-term 
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series. Only by Interpolation between contour lines for 

minimum value of x will the use of one term be indicated 

in an appreciable proportion of area C, If in area D the 

small triangular area in the upper right of the map, use 

one term. 

The one and two-term series can be used to cover 

the majority of the area not mapped in Figure 2 (page 44) 

which lies above the line for n=1000. The 0,001 limit for 

1 24 the two-term series is defined by the expression np ° >^ 

1207 and can be extended into the area of higher n. The 

two-term series obtains B(x;n,p) within three decimal 

place accuracy in the area to the right of this 0,001 

limit (9,Po31)o The one-term series obtains the B(x;n,p) 

to the right of the limit defined by the expression np -

4000 (9,Po33)o Procedures are not prescribed for the 

area to the left of the OoOOl limit for the two-term 

series and above the n=1000 line. The x value contours 

on Figures 2 and 3 and the 0,001 limit of the three-term 

series on Figure 2 cannot be extrapolated above the n=1000 

line with confidence. 

Recommendations 

It is recommended that the procedure developed in 

this thesis for approximating B(x;n,p) be made universal 

by extending the domain in which the procedure can be 

applied with confidence to include values of n exceeding 

1000, 
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It is recommended that an attempt be made to find 

a more effective norming procedure to use with Wilks' 

asymptotic expansion. Traditional norming, using the 

factor of 1/2 to adjust a continuous distribution to 

reflect a more accurate representation of a discrete dis­

tribution, is used in this thesis for lack of something 

better rather than for its effectivenesso 

It is further recommended that additional (n,p) 

points on the Procedures Map (Figure 2, page 44) be evalu­

ated to improve the effectiveness of the procedure of this 

thesis for approximating B(x;n,p), The evaluation of (n,p) 

points is to provide minimum values of x ensuring three 

decimal place accuracy of the approximation of B(x;n,p) 

obtained with the one, two, and three-term series of Wilks* 

asymptotic expansion of the distribution of a sample sum. 

The additional values of x are the means of refining the 

position of the contour lines on the Procedures Map, The 

contour lines as shown include various amounts of safety 

factor ensuring three decimal place accuracy of the ap­

proximation of B(x;n,p), and thus the over-all procedure 

is not as efficient as it could possibly be. 
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APPENDIX 

COMPUTER PROGRAM FOR EVALUATING (n,p) POINTS 

INTRODUCTION 

This is a FORTRAN II program written to be used on 

the IBM 1620 Electronic Computer Mod II, The program is 

developed specifically for the requirements of the investi­

gation accomplished for this thesis, 

PURPOSE 

The purpose of this program is to determine the 

minimum values of x for a specific (n,p) point which ensure 

accuracy within 0,001 and within 0,002 of the approximation 

of B(x5n,p) obtained with the one, two, and three-term 

series of Wilks' asymptotic expansion of the distribution 

of a sample sum, 

INPUT DATA 

The evaluation of each (n,p) point requires a data 

card in the following format. 

Columns 
1 - 5 The value of n with decimal point, 

6 - 1 0 The value of p with decimal point, 

11 - 15 The value of x without decimal point 
which is the maximum value of x which 
obtains B^(x;n,p) >^ 0,999o This value 

is obtained from cumulative binomial 
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tables, B (x;n,p), which is equal to 

1- B(xin,p), is the form of the cumula­
tive binomial tabulated in reference 
five, 

16 - 20 The value of x without decimal point 
which is the minimum value of x which 
obtains B (x;n,p) <̂  0,001, 

26 - 35 The initial value of Bj^(x;n,p) = 

B (x;n,p) from cumulative binomial 

tables for x equal to one plus the 
value in columns 16-20, 

Examples of the data form of three input cards follow. 

1000,,1 
lOOo oil 

20o o2 

lUTPUT 

73 
4 
1 

131 
22 
11 

,00069 
0OOO34 
oOOOlO 

The output for the sample input followso 

N= 1000 P= ,10 X ERR X ERR Z B 

N« 100 P= oil X ERR X ERR Z B 
17,5 oOOl 2,0774 ,024220 

N= 40 P= ,20 X ERR X ERR Z B 
12,5 oOOl 1,7787 o043237 

3o5 =002 -1,7787 o971536 

The output for n=1000, p=Ool shows no values under 

the x's in the headingo This indicates that the series 

being evaluated obtains an approximation of B(x;n,p) 

within an accuracy of 0,0001 for all values of x which 

obtain 0,001 <̂  B(x;n,p) <, 0,999o 

The output for n=100, p=0oll shows x=17o5, error= 

0,001, Z»2o0074, and B=0,024220, The x value is the maxi­

mum value of X for which the series approximation differs 
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from B(x5n,p) by more than 0,001, Thus, x+l=l8,5 is the 

minimum value of x for which the series approximation 

differs from B(x;n,p) by less than 0,001, With the norm­

ing factor of 1/2 removed the minimum value of x becomes 

18, The Z output is the value for "̂̂ "̂ "̂ P , 

•HpTT^pT 

The B output is value of B^(l8;n,p) computed using a recur-

rence relation repeatedly with initial value of B (x;n,p) 

from the input data. The B output is used to check the 

accuracy of the recurrence relation computations. No 

value is shown under the second x in the heading. This 

indicates that the approximation of B(x;n,p) is within 

0,002 for all values of x which obtain 0,001 ^ B(x;n,p) 

< Oc999o 

The output for n=40, p=0o20 is an example showing 

minimum values of x for accuracies of 0,001 and 0,002, 

Interpretation of values are similar to the above example, 

SPECIAL OPERATING PROCEDURES 

Card 9999 in the computer program is different 

for evaluation using one, two, and three-term series. The 

correct card must be inserted for each series. 

The accuracy limits in the evaluation can easily 

be changed by changing the values on cards 5000 and 5001, 

The value for the more stringent accuracy limit must be 

on card 5000, 
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COMPUTER PROGRAM 

READ J mpi x VALUE FOR 0,1 AND 99,^ PERCENTAGE POINT 
OF B(x5n,p); AND B(JJ+l;n,p) 

DIMENSION D(30) 
1 READ 2, AN, P, II, JJ, 3T 
2 FORMAT ( 2F5o2, 2I5,5X,F10,5 ) 

COMPUTE & STORE 0' THROUGH 30! FOR USE 
IN COMPUTING CUMULATIVE NORMAL 

0 D(l)=l 
D(2)«l 
DO 12 N:=3, 30 
A=N 

12 D(N)=D(N-1) * (A-1,) 

PUNCH n,p & COLUMN HEADINGS 

NN»AN 
PUNCH 4,NN,P 

4 PORMAT(2HN=l6,5X2HP«F5o3s5XlHX5X3HERR7XlHX5X3HERR12XlHZ10XlHB) 
PUNCH 3 

3 FORMAT(17X1HX5X5HE-LIM5X1HX5X5HE-LIM10X1HZ10X1HB ) 
KKKK=0 
KKK«-1 

5000 DM«c001 
DO 30 I«II, JJ 
KKK=KKK+1 
AlaJJ-KKK 
Y»AI +1, 

COMPUTE b(JJ;n,p) = BI 

IP(KKK)1000,1000,5 
1000 AAA«AN 

III=-2 
1 0 0 1 1 1 1 = 1 1 1 + 1 

AAA=sAAA+lo 
FA= l o + l o / ( 1 2 o *AAA)+lo / ( 2 8 8 o * AAA*«2) 
FA=FA-139o /(51840, » AAA**3)-571o /(2488320, » AAA**4 ) 
FA«L0GF(FA) 
FA«FA+(AAA )*L0GP((AAA )/2,7l828l8284) 
FA=«FA+,5*LOGP(6,2831853072 / AAA ) 
IP(III) 1005, 1010, 1020 

1005 FN=FA 
AAA«Y 
GO TO 1001 

1010 FY«PA 
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AAA»(AN-Y) 
GOTO 1001 

1020 FD«PA 
BI»PN-PD-PY+ Y»L0GF(P) + (AN-Y)*LOGF(1,-P) 
BI=EXPP(BI) 

COMPUTE RECURRENCE BI, 

b(r-l5n,p) = — T T ^(^5n,p) 

5 AK=AI+1, 
BI=BI»AK» (1,-P) / (AN-AK+1,) / P 

COMPUTE RECURRENCE BT 
BT = B(x;n,p) = B(r+l;n,p) + b(r;n,p) 

BT«BT+BI 

COMPUTE SERIES ENTERING ARGUMENT 

Y=«AI-,5 
6 FORMAT (F7,l) 
X«Y 
X=(X-AN*P)/((AN»P*( 1,-P)) **o5 ) 

COMPUTE THIRD TERM OF SERIES 

XX=X 
H«P 
V= -((l,-3o*P+3o*P*P) / (P-P*P) - 3o ) »X»(X*X-3o) / 24, 
V=V-(1,-2,»P)**2»( (X*X-10,')*X*X+15o )*X / (72,*(P-P»P) ) 
V«V /( 2,71828183 ** (,5*X«X) * 6,2831854 ** ,5 *AN) 

COMPUTE SECOND TERM OF SERIES 

U«-(l,-2o*P) * (X*X-1,) / (6, * (P-P*P) ** ,5) 
U«U / (2,71828183 ** (,5*X*X) * 6,2831854 »* ,5 *AN«*,5 ) 

FOR ONE-TERM SERIES THIS LINE IS 9999 T=0,0 
FOR TWO-TERM SERIES THIS LINE IS 9999 T=U 
FOR THREE-TERM SERIES THIS LINE IS 9999 T=U+V 

9999 T-U+V 

COMPUTE CUMULATIVE NORMAL PN FROM 0 TO Z 
FOR ABSOLUTE VALUE OP STANDARD DEVIATE Z 

IP (ABSP(X) - 4,2 ) 20, 20, 18 
20 F»0o39894228 

X»ABSF (X) 
PN=0o0 
N-0 
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16 N=N+1 
A=N 
K=N-1 
J»2»N-1 
G«P*X**J / ( (2,«A-1,) * 2,**K ) 
G-G/D(N) 
JaN+1 
S=(-l) **J 
IP (G-0,00001) 19,17,17 

17 PN=PN+S*G 
GO TO 16 

18 PN»,5 
19 CONTINUE 

SUM CUMULATIVE NORMAL FIRST TERM TO OTHER TERMS 

IP(XX) 21,21,22 
21 T«T+,5-PN 

T»lo-T 
GO TO 23 

22 T=T+,5+PN 
T«lo-T 

OPERATOR MONITOR SWITCH 

2 3 CONTINUE 
IP(SENSE SWITCH 2)2000,2001 

2000 PRINT 2002,XX,T 
2002 FORMAT (2P15o5) 

COMPUTE B(x;n,p) MINUS SERIES APPROXIMATION AND 
PUNCH ANSWER IP DIFFERENCE > 0,001 OTHERWISE 

CONTINUE ITERATIONS 

2001 CONTINUE 
DIP-BT-T 
IP(KKKK)99a99,110 

99 IF(DM-oOOl) 100,100,110 
100 IP(ABSF(BT-T) -DM) 30, 30, 101 
101 PUNCH 102, Y,DM,XX,BT 
102 PORMAT(21X,F7ol,P7o3,19X,P12o4,P12,6) 
5001 DM»,002 

KKKK-KKKK+1 

PUNCH ANSWER IP DIFFERENCE > 0,002 
OTHERWISE CONTINUE ITERATIONS 

110 IF(ABSP(BT-T) -DM) 30,30,111 
111 PUNCH 112,Y,DM,XX,BT 
112 P0RMAT(34X,P10,l,P7,3,P15o4,F12,6) 

GO TO 31 
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30 CONTINUE 
31 CONTINUE 

PUNCH 32 
32 FORMAT (/ ) 

IF (SENSE SWITCH 1) 33 
33 CONTINUE 

END 






